Skip to main content

Practical problems in turbulent reacting flows

  • Chapter
  • First Online:
Turbulent Reacting Flows

Part of the book series: Topics in Applied Physics ((TAP,volume 44))

Abstract

This chapter discusses the practical problems of turbulent combustion which may be solved, or at least more fully understood, by consideration of the theory of turbulent reacting flows and provides perspective on our current ability to predict the properties of such combustion. The quantities which characterize the turbulence in various practical devices involving turbulent combustion are discussed first. Then cases of quasi-steady flows such as arise in the combustors of gas turbines are considered with emphasis on comparison of the predictions based on current methods of analysis with experimental data. There follows a similar discussion of quasi-periodic flows such as arise in the internal combustion engine.

With 14 Figures

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. N. C. Bray: “The Interaction between Turbulence and Combustion”, in Seventeenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh 1979) pp. 223–233

    Google Scholar 

  2. W. G. Agnew: “Automotive Engine Combustion Research Needs”, presented at 1977 meeting, Eastern States Section/The Combustion Institute

    Google Scholar 

  3. W. G. Agnew: Prog. Energy Combust. Sci. 4, 115–155 (1978)

    Article  Google Scholar 

  4. P. N. Blumberg: “Requirements, Needs, and Outstanding Combustion Related Problems of the Automotive Community”, Workshop on the Numerical Simulation of Combustion for Application to Spark and Compression Ignition Energies, SAI, La Jolla, California (1975) pp. 3-65-3-77

    Google Scholar 

  5. N. A. Henein: Prog. Energy Combust. Sci. 1, 165 (1976)

    Article  Google Scholar 

  6. J. B. Heywood: “Pollutant Formation and Control in Spark Ignition Engines”, Fifteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh 1975) pp. 1191–1211

    Google Scholar 

  7. J. B. Heywood: Prog. Energy Combust. Sci. 1, 135 (1976)

    Article  Google Scholar 

  8. S. M. Shahed, P. E. Flynn, W. T, Lyn: “Diesel Combustion: Review and Prospects”, presented at 1978 Meeting, Central States Section/The Combustion Institute

    Google Scholar 

  9. A. H. Lefebvre: “Pollution Control in Continuous Combustion Engines”, Ref. 2.6, pp. 1169–1180

    Google Scholar 

  10. A. M. Mellor: “Gas Turbine Engine Pollution”, Pollution Formation and Destruction in Flames, Vol. I of Progress in Energy and Combustion Science, ed. by N. A. Chigier (Pergamon, Oxford 1976) pp. 111–133

    Google Scholar 

  11. A. M. Mellor: “Turbulent-combustion Interaction Models for Practical High Intensity Combustors”, Ref. 2.1, pp. 377–387

    Google Scholar 

  12. R. E. Henderson, W. S. Blazowski: “Turbopropulsion Combustion Technology”, in The Aerothermodynamics of Aircraft Gas Turbine Engines, AFAPL-TR-78-52 (1978) Chap. 20

    Google Scholar 

  13. E. Zukoski: “Afterburners”, Ref. 2.12, Chap. 21

    Google Scholar 

  14. B.P. Breen: “Combustion in Large Boilers: Design and Operating Effects on Efficiency and Emissions”, Sixteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh 1977) pp. 19–35

    Google Scholar 

  15. R. H. Essenhigh: “Combustion and Flame Propagation in Coal Systems: A Review”, Ref. 2.14 pp. 353–374

    Google Scholar 

  16. J. M. Beér: “Fluidized Combustion of Coal”, Ref. 2.14 pp. 439–460

    Google Scholar 

  17. A. Maček: “Coal Combustion in Boilers: a Mature Technology Facing New Constraints”, Ref. 2.1 pp. 65–75

    Google Scholar 

  18. B.R.Bronfin: “Continuous Flow Combustion Lasers”, Ref. 2.6 pp. 935–950

    Google Scholar 

  19. P. H. Thomas: “Behavior of Fires in Enclosures — Some Recent Progress”, Fourteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh 1973) pp. 1007–1020

    Google Scholar 

  20. R. A. Strehlow: “Unconfined Vapor Cloud Explosions — An Overview”, Ref. 2.19 pp. 1189–1200

    Google Scholar 

  21. J. Grumer: “Recent Research Concerning Extinguishment of Coal Dust Explosions”, Ref. 2.6, pp. 103–114

    Google Scholar 

  22. F. A. Williams: “Mechanisms of Fire Spread”, Ref. 2.14 pp. 1281–1294

    Google Scholar 

  23. J. de Ris: “Fire Radiation — A Review”, Ref. 2.1, pp. 1003–1016

    Google Scholar 

  24. R. Goulard, A. M. Mellor, R. W. Bilger: Combust. Sci. Technol. 14,195–219 (1976)

    Google Scholar 

  25. M. A. Serag-Eldin,D. B. Spalding:“Computation of Three-dimensional Gas Turbine Combustion Chamber Flows”, ASME 23rd International Gas Turbine Conference, London (1978)

    Google Scholar 

  26. M. A. Serag-Eldin: “The Numerical Prediction of the Flow and Combustion Processes in a Three-dimensional Can Combustor”, Ph. D. Thesis, London University (1977)

    Google Scholar 

  27. F. C. Lockwood, F. M. El-Mahallawy, D. B. Spalding: Combust. Flame 23, 283–293 (1974)

    Article  Google Scholar 

  28. S.B.Pope, J. H.Whitelaw: J. Fluid Mech. 73(1), 9–32 (1976)

    Google Scholar 

  29. P. G. Felton, J. Swithenbank, A. Turan: “Progress in Modelling Combustors”, HIC 300, Sheffield University (1977)

    Google Scholar 

  30. J. Swithenbank,A. Turan,P. G. Felton:“Three-dimensional Two-phase Mathematical Modelling of Gas Turbine Combustors”, in Gas Turbine Combustor Design Problems (Hemisphere, Washington 1980) pp. 249–314

    Google Scholar 

  31. R. B. Edelman, P. T. Harsha: “Some Observations on Turbulent Mixing with Chemical Reactions”, Turbulent Combustion (AIAA, New York 1978) pp. 55–102

    Google Scholar 

  32. M. M. M. Abou Ellail, A. D. Gosman, F. C. Lockwood, I. E. A. Megahed: “Description and Validation of a Three-dimensional Procedure for Combustion Chamber Flows”, Ref. 2.31 pp. 163–190

    Google Scholar 

  33. H. G. Mongia, K. Smith: “An Empirical/Analytical Design Methodology for Gas Turbine Combustors”, AIAA Paper No. 78-998 (1978)

    Google Scholar 

  34. J. H. Tuttle, M. B. Colket, R. W. Bilger, A. M. Mellor: “Characteristic Times for Combustion and Pollutant Formation in Spray Combustion”, Ref. 2.14 pp. 209–219

    Google Scholar 

  35. A.M.Mellor: AIAA J. Energy 1, 244–249 (1977)

    Google Scholar 

  36. A.M.Mellor: AIAA J. Energy 1, 257–262 (1977)

    Google Scholar 

  37. D.C. Hammond,Jr.: AIAA J. Energy 1, 250–256 (1977)

    Google Scholar 

  38. A. M. Mellor, R. M. Washam: AIAA J. Energy 3, 250–253 (1979)

    Google Scholar 

  39. S.L.Plee, A. M. Mellor: Combust. Flame 35, 61–80 (1979)

    Article  Google Scholar 

  40. J. E. Peters, A. M. Mellor: Combust. Flame 38, 65–74 (1980)

    Article  Google Scholar 

  41. D. R. Lancaster: SAE Trans. 85, 651–670, paper 760159 (1976)

    Google Scholar 

  42. H.C.Gupta, R.L.Steinberger, F.V.Bracco: Combust. Sci. Technol. 22,63–82 (1980)

    Google Scholar 

  43. W. A. Sirignano: Combust. Sci. Technol. 1, 99–108 (1973)

    Google Scholar 

  44. M. D. Griffin, R. Diwaker, J. D. Anderson: “Computational Fluid Dynamics Applied to Flows in an Internal Combustion Engine”, AIAA Paper 78-57 (1978)

    Google Scholar 

  45. J. R. Bellan, W. A. Sirignano: Combust. Sci. Technol. 12, 75–104 (1976)

    Google Scholar 

  46. C. K. Westbrook: Acta Astron. 5, 1185–1189 (1978)

    Article  Google Scholar 

  47. A. A. Boni, M. Chapman, J. L. Cook, G.P. Schneyer: “Computer Simulation of Combustion in a Stratified Charge Engine”, Ref. 2.14 pp. 1527–1542

    Google Scholar 

  48. H. A. Dwyer, B. R. Sanders: “Unsteady Flow and Flame Propagation in a Prechamber of a Stratified Charge Engine”, The Institute of Mechanical Engineers, Conference on Stratified Charge Engine, London, England (1976)

    Google Scholar 

  49. F. V. Bracco: Combust. Sci. Technol. 8, 69–84 (1973)

    Google Scholar 

  50. T. D. Butler,L. D. Cloutman,J. K. Dukowicz,J. D. Ramshaw,R. B. Krieger:“Toward a Comprehensive Model for Combustion in a Direct-injection Stratified-charge Engine”, in Combustion Modeling in Reciprocating Engines (Plenum, New York 1980) pp. 231–264

    Google Scholar 

  51. G. A. Lavoie, P. N. Blumberg: Combust. Sci. Technol. 8, 25–38 (1973)

    Google Scholar 

  52. R.J.Tabaczynski, C.R.Ferguson, K.Radhakrishnan: SAE Trans. 87, 2414–2433, paper 770647 (1977)

    Google Scholar 

  53. J. R. Bellan, W. A. Sirignano: Combust. Sci. Technol. 8, 51–69 (1973)

    Google Scholar 

  54. W. A. Sirignano: Private communication (1978)

    Google Scholar 

Download references

Authors

Editor information

Paul A. Libby PhD Forman A. Williams PhD

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag

About this chapter

Cite this chapter

Mellor, A.M., Ferguson, C.R. (1980). Practical problems in turbulent reacting flows. In: Libby, P.A., Williams, F.A. (eds) Turbulent Reacting Flows. Topics in Applied Physics, vol 44. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3540101926_8

Download citation

  • DOI: https://doi.org/10.1007/3540101926_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-10192-5

  • Online ISBN: 978-3-540-38273-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics