Skip to main content

Influence of Nanotoxicity on Human Health and Environment: The Alternative Strategies

  • Chapter
  • First Online:
Reviews of Environmental Contamination and Toxicology Volume 242

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 242))

Abstract

Currently, nanotechnology revolutionizing both scientific and industrial community due to their applications in the fields of medicine, environmental protection, energy, and space exploration. Despite of the evident benefits of nanoparticles, there are still open questions about the influence of these nanoparticles on human health and environment. This is one of the critical issues that have to be addressed in the near future, before massive production of nanomaterials. Manufactured nanoparticles, which are finding ever-increasing applications in industry and consumer products fall into the category of emerging contaminants with ecological and toxicological effects on populations, communities and ecosystems. The existing experimental knowledge gave evidence that inhaled nanoparticles are less efficiently separated than larger particles by the macrophage clearance mechanisms and these nanoparticles are known to translocate through the lymphatic, circulatory and nervous systems to many tissues and organs, including the brain. In this review we highlight adverse impacts of nanoparticles on human and the environment with special emphasis on green nanoscience as a sustainable alternative.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf 28:313–318

    CAS  Google Scholar 

  • Alfaro-Moreno E, Nawrot TS, Nemmar A (2007) Particulate matter in the environment: pulmonary and cardiovascular effects. Curr Opin Pulm Med 13:98–106

    Google Scholar 

  • Alvarez-Román R, Naik A, Kalia YN, Guy RH, Fessi H (2004) Skin penetration and distribution of polymeric nanoparticles. J Control Release 99:53–62

    Google Scholar 

  • Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, Oxford England, New York

    Google Scholar 

  • Arts JH, Hadi M, Irfan MA, Keene AM, Kreiling R, Lyon D, Maier M, Michel K, Petry T, Sauer UG, Warheit D, Wiench K, Wohlleben W, Landsiedel R (2015) A decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping). Regul Toxicol Pharmacol 71(2 Suppl):S1–S27

    CAS  Google Scholar 

  • Aschberger K, Johnston HJ, Stone V, Aitken RJ, Tran CL, Hankin SM, Peters SA, Christensen FM (2010) Review of fullerene toxicity and exposure—appraisal of a human health risk assessment, based on open literature. Regul Toxicol Pharmacol 58:455–473

    CAS  Google Scholar 

  • Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4:634–641

    CAS  Google Scholar 

  • Awasthi KK, John PJ, Awasthi A, Awasthi K (2013) Multi walled carbon nano tubes induced hepatotoxicity in Swiss albino mice. Micron 44:359–364

    CAS  Google Scholar 

  • Baalousha M, Lead JR (2009) Overview of nanoscience in the environment. In: Emma S, Jamie RL (eds) Environmental and human health impacts of nanotechnology. Wiley-Blackwell Publishing Ltd, Hoboken, NJ, pp 1–25

    Google Scholar 

  • Baker TJ, Tyler CR, Galloway TS (2014) Impacts of metal and metal oxide nanoparticles on marine organisms. Environ Pollut 186:257–271

    CAS  Google Scholar 

  • Balbus JM, Maynard AD, Colvin VL (2007) Report: hazard assessment for nanoparticles-report from an interdisciplinary workshop. Environ Health Perspect 115:1654–1659

    Google Scholar 

  • Batley GE, Kirby JK, McLaughlin MJ (2013) Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc Chem Res 46:854–862

    CAS  Google Scholar 

  • Bazaka K, Jacob MV, Ostrikov KK (2016) Sustainable life cycles of natural-precursor-derived nanocarbons. Chem Rev 116:163. doi:10.1021/acs.chemrev.5b00566

    Article  CAS  Google Scholar 

  • Beddoes CM, Case CP, Briscoe WH (2015) Understanding nanoparticle cellular entry: a physicochemical perspective. Adv Colloid Interface Sci 218:48–68

    CAS  Google Scholar 

  • Behra R, Krug H (2008) Nanoecotoxicology: nanoparticles at large. Nat Nanotechnol 3:253–254

    CAS  Google Scholar 

  • Bergin IL, Witzmann FA (2013) Nanoparticle toxicity by the gastrointestinal route: evidence and knowledge gaps. Int J Biomed Nanosci Nanotechnol 3:1–2

    Google Scholar 

  • Bianco C, Kezic S, Visser MJ, Pluut O, Adami G, Krystek P (2015) Pilot study on the identification of silver in skin layers and urine after dermal exposure to a functionalized textile. Talanta 136:23–28

    CAS  Google Scholar 

  • Bottini M, Bruckner S, Nika K, Bottini N, Bellucci S, Magrini A, Bergamaschi A, Mustelin T (2006) Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett 160:121–126

    CAS  Google Scholar 

  • Boxall AB, Tiede K, Chaudhry Q (2007) Engineered nanomaterials in soils and water: how do they behave and could they pose a risk to human health? Nanomedicine (Lond) 2:919–927

    CAS  Google Scholar 

  • Braakhuis HM, Gosens I, Krystek P, Boere JA, Cassee FR, Fokkens PH, Post JA, van Loveren H, Park MV (2014) Particle size dependent deposition and pulmonary inflammation after short-term inhalation of silver nanoparticles. Part Fibre Toxicol. doi:10.3109/17435390.2015.1012184

    Article  Google Scholar 

  • Braakhuis HM, Oomen AG, Cassee FR (2015) Grouping nanomaterials to predict their potential to induce pulmonary inflammation. Toxicol Appl Pharmacol. doi:10.1016/j.taap.2015.11.009

    Article  Google Scholar 

  • Braydich-Stolle LK, Schaeublin NM, Murdock RC, Jiang J, Biswas P, Schlager JJ, Hussain SM (2009) Crystal structure mediates mode of cell death in TiO2 nanotoxicity. J Nanopart Res 11:1361–1374

    CAS  Google Scholar 

  • Brenner SA, Neu-Baker NM, Eastlake AC, Beaucham CC, Geraci CL (2016) NIOSH Field Studies Team assessment: worker exposure to aerosolized metal oxide nanoparticles in a semiconductor fabrication facility. J Occup Environ Hyg 12:1–31

    Google Scholar 

  • Bumbudsanpharoke N, Choi J, Ko S (2015) Applications of nanomaterials in food packaging. J Nanosci Nanotechnol 15(9):6357–6372

    CAS  Google Scholar 

  • Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):17–71

    Google Scholar 

  • Cahouet A, Denizot B, Hindre F (2002) Biodistribution of dual radiolabeled lipidic nanocapsules in the rat using scintigraphy and gamma counting. Int J Pharm 242:367–371

    CAS  Google Scholar 

  • Camargo PHC, Satyanarayana KG, Wypych F (2009) Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res 12:1–39

    CAS  Google Scholar 

  • Cena LG, Chisholm WP, Keane MJ, Chen BT (2015) A field study on the respiratory deposition of the nano-sized fraction of mild and stainless steel welding fume metals. J Occup Environ Hyg 12:721–728

    CAS  Google Scholar 

  • Chaudhuri S, Sardar S, Bagchi D, Dutta S, Debnath S, Saha P, Lemmens P, Pal SK (2015) Photoinduced dynamics and toxicity of a cancer drug in proximity of inorganic nanoparticles under visible light. Chemphyschem. doi:10.1002/cphc.201500905

    Article  Google Scholar 

  • Chen Z, Meng H, Zing G (2006) Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 163:109–120

    CAS  Google Scholar 

  • Chen Y, Wang Q, Wang T (2015) Facile large-scale synthesis of brain-like mesoporous silica nanocomposites via a selective etching process. Nanoscale 7:16442–16450

    CAS  Google Scholar 

  • Cinelli M, Coles SR, Sadik O, Karn B, Kirwan K (2016) A framework of criteria for the sustainability assessment of nanoproducts. J Clean Prod 126:277–287

    Google Scholar 

  • Civeira MS, Pinheiro RN, Gredilla A, de Vallejuelo SF, Oliveira ML, Ramos CG, Taffarel SR, Kautzmann RM, Madariaga JM, Silva LF (2015) The properties of the nano-minerals and hazardous elements: potential environmental impacts of Brazilian coal waste fire. Sci Total Environ 544:892–900

    Google Scholar 

  • Clarke AG, Robertson LA, Hamilton RS (2004) A Lagrangian model of the evolution of the particulate size distribution of vehicular emissions. Sci Total Environ 334:197–206

    Google Scholar 

  • Corsi I, Cherr GN, Lenihan HS, Labille J, Hassellov M, Canesi L, Dondero F, Frenzilli G, Hristozov D, Puntes V, Della Torre C, Pinsino A, Libralato G, Marcomini A, Sabbioni E, Matranga V (2014) Common strategies and technologies for the ecosafety assessment and design of nanomaterials entering the marine environment. ACS Nano 8:9694–9709

    CAS  Google Scholar 

  • Cui D, Tian F, Ozkan CS (2005) Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett 155:73–85

    CAS  Google Scholar 

  • Dhawan A, Sharma V (2010) Toxicity assessment of nanomaterials: methods and challenges. Anal Bioanal Chem 398:589–605

    CAS  Google Scholar 

  • Dhawan A, Sharma V, Parmar D (2009) Nanomaterials: a challenge for toxicologists. Nanotoxicology 3:1–9

    CAS  Google Scholar 

  • Di Bona KR, Xu Y, Gray M, Fair D, Hayles H, Milad L, Montes A, Sherwood J, Bao Y, Rasco JF (2015) Short- and long-term effects of prenatal exposure to iron oxide nanoparticles: influence of surface charge and dose on developmental and reproductive toxicity. Int J Mol Sci 16:30251–30268

    Google Scholar 

  • Dobrovolskaia MA, Shurin M, Shvedova A (2016) Current understanding of interactions between nanoparticles and the immune system. Toxicol Appl Pharmacol 5(299):78–89

    Google Scholar 

  • Dobon A, Cordero P, Kreft F, Ostergaard SR, Antvorskov H, Robertsson M, Smolander M, Hortal M (2011) The sustainability of communicative packaging concepts in the food supply chain. A case study: part 2. Life cycle costing and sustainability assessment. Int J Life Cycle Assess 16:537

    CAS  Google Scholar 

  • Donaldson K, Poland CA (2013) Nanotoxicity: challenging the myth of nano-specific toxicity. Curr Opi Biotechnol 24:724–734

    CAS  Google Scholar 

  • Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, Alexander A (2006) Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92:5–22

    CAS  Google Scholar 

  • Donaldson K, Murphy FA, Duffin R, Poland CA (2010) Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol 7:5. doi:10.1186/1743-8977-7-5

    Article  CAS  Google Scholar 

  • Dunford RA, Salinaro L (1997) Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients. FEBS Lett 418:87–90

    CAS  Google Scholar 

  • Eckelman MJ, Zimmerman JB, Anastas PT (2008) Towards green nano—E-factor analysis of several nanomaterials syntheses. J Industrial Ecol 12:316–328

    CAS  Google Scholar 

  • El-Ansary A, Al-Daihan S, Bacha AB, Kotb M (2015) Toxicity of novel nanosized formulations used in medicine. Methods Mol Biol 1028:47–74

    Google Scholar 

  • Emmanuel R, Karuppiah C, Chen SM, Palanisamy S, Padmavathy S, Prakash P (2014) Green synthesis of gold nanoparticles for trace level detection of a hazardous pollutant (nitrobenzene) causing methemoglobinaemia. J Hazard Mater 279:117–124

    CAS  Google Scholar 

  • Fan J, Sun Y, Wang S, Li Y, Zeng X, Cao Z, Yang P, Song P, Wang Z, Xian Z, Gao H, Chen Q, Cui D, Ju D (2015) Inhibition of autophagy overcomes the nanotoxicity elicited by cadmium-based quantum dots. Biomaterials 78:102–114

    Google Scholar 

  • Favi PM, Valencia MM, Elliott PR, Restrepo A, Gao M, Huang H, Pavon JJ, Webster TJ (2015) Shape and surface chemistry effects on the cytotoxicity and cellular uptake of metallic nanorods and nanospheres. J Biomed Mater Res A 103:3940–3955

    CAS  Google Scholar 

  • Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5:161–171

    CAS  Google Scholar 

  • Fischman M, Storey E, McCunney RJ, Kosnett K (2011) National institute for occupational safety and health nanomaterials and worker health conference—medical surveillance session summary report. J Occup Environ Med 53:S35–S37

    Google Scholar 

  • Gambardella C, Morgana S, Bari GD, Ramoino P, Bramini M, Diaspro A, Falugi C, Faimali M (2015) Multidisciplinary screening of toxicity induced by silica nanoparticles during sea urchin development. Chemosphere 139:486–495

    CAS  Google Scholar 

  • Gao GY, Chen ML, Li MY, Yang ZB, Li ZP, Mei XG (2015a) Current status and prospect of translational medicine in nanotechnology. Yao Xue Xue Bao 50:919–922

    Google Scholar 

  • Gao Y, Jin B, Shen W, Sinko P, Xie X, Zhang H, Jia L (2015b) China and the United States—global partners, competitors and collaborators in nanotechnology development. Nanomedicine 12(1):13–19, pii: S1549-9634(15)00181-1

    Google Scholar 

  • Geetha P, Latha MS, Pillai SS, Koshy M (2015) Nanoalginate based biosorbent for the removal of lead ions from aqueous solutions: equilibrium and kinetic studies. Ecotoxicol Environ Saf 122:17–23

    CAS  Google Scholar 

  • Ghodake G, Vassiliadis VS, Choi JH, Jang J, Lee DS (2015) Facile synthesis of gold nanoparticles by amino acid asparagine: selective sensing of arsenic. J Nanosci Nanotechnol 15:7235–7239

    CAS  Google Scholar 

  • Ghodake G, Kim DY, Jo JH, Jang J, Lee DS (2016) One-step green synthesis of gold nanoparticles using casein hydrolytic peptides and their anti-cancer assessment using the DU145 cell line. J Ind Eng Chemist 33:1–6

    Google Scholar 

  • Gidhagen L, Johansson C, Omstedt G (2004) Model simulations of NOx and ultrafine particles close to a Swedish highway. Environ Sci Tech 38:6730–6740

    CAS  Google Scholar 

  • Gopee NV, Roberts DW, Webb P (2007) Migration of intradermally injected quantum dots to sentinel organs in mice. Toxicol Sci 98:249–257

    CAS  Google Scholar 

  • Gouin T, Roche N, Lohmann R, Hodges G (2011) A thermodynamic approach for assessing the environmental exposure of chemicals absorbed to microplastic. Environ Sci Technol 45:1466–1472

    CAS  Google Scholar 

  • Green M, Howman E (2005) Semiconductor quantum dots and free radical induced DNA nicking. Chem Commun (Camb) 1:121–123

    Google Scholar 

  • Grillo R, Rosa AH, Fraceto LF (2015) Engineered nanoparticles and organic matter: a review of the state-of-the-art. Chemosphere 119C:608–619

    Google Scholar 

  • Grimsdale AC, Chan KL, Martin RE, Jokisz PG, Holmes AB (2009) Synthesis of light emitting conjugated polymers for applications in electroluminescent devices. Chem Rev 109:897–1091

    CAS  Google Scholar 

  • Guadagnini R, Halamoda Kenzaoui B, Walker L, Pojana G, Magdolenova Z, Bilanicova D, Saunders M, Juillerat-Jeanneret L, Marcomini A, Huk A, Dusinska M, Fjellsbø LM, Marano F, Boland S (2015) Toxicity screenings of nanomaterials: challenges due to interference with assay processes and components of classic in vitro tests. Nanotoxicology 9:13–24

    CAS  Google Scholar 

  • Hagens WI, Oomen AG, de Jong WH (2007) What do we (need to) know about the kinetic properties of nanoparticles in the body? Regul Toxicol Pharmacol 49:217–219

    CAS  Google Scholar 

  • Haliullin TO, Zalyalov RR, Shvedova AA, Tkachov AG (2015) Hygienic evaluation of multilayer carbon nanotubes. Med Tr Prom Ekol 7:37–42

    Google Scholar 

  • Hamilton RF Jr, Wu NN, Porter D (2009) Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity. Part Fibre Toxicol 6:35–45

    Google Scholar 

  • Handy RD, Vonder Kammer F, Lead JR (2008) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 4:257–264

    Google Scholar 

  • Hartmann NIB, Skjolding LM, Hansen SF, Baun A, Kjølholt J, Gottschalk F (2014) Environmental fate and behaviour of nanomaterials: new knowledge on important transfomation processes. Copenhagen K, Danish Environmental Protection Agency, Environmental Project No. 1594

    Google Scholar 

  • Hassellöv M, Readman JW, Ranville JF, Tiede K (2008) Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology 17:344–361

    Google Scholar 

  • Haynes CL (2010) The emerging field of nanotoxicology. Anal Bioanal Chem 398:587–588

    CAS  Google Scholar 

  • Hougaard KS, Campagnolo L, Chavatte-Palmer P, Tarrade A, Rousseau-Ralliard D, Valentino S, Park MV, de Jong WH, Wolterink G, Piersma AH, Ross BL, Hutchison GR, Hansen JS, Vogel U, Jackson P, Slama R, Pietroiusti A, Cassee FR (2015) A perspective on the developmental toxicity of inhaled nanoparticles. Reprod Toxicol 56:118–140

    CAS  Google Scholar 

  • Hussain I, Singh NB, Singh A, Singh H, Singh SC (2015) Green synthesis of nanoparticles and its potential application. Biotechnol Lett. doi:10.1007/s10529-015-2026-7

    Article  Google Scholar 

  • Hutchison JE (2008) Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology. ACS Nano 2:395–402

    CAS  Google Scholar 

  • Iavicoli I, Leso V, Ricciardi W, Hodson LL, Hoover MD (2014) Opportunities and challenges of nanotechnology in the green economy. Environ Health 13:78

    Google Scholar 

  • Injac R, Prijatelj M, Strukelj B (2013) Fullerenol nanoparticles: toxicity and antioxidant activity. Methods Mol Biol 1028:75–100

    CAS  Google Scholar 

  • Jafar G, Hamzeh G (2013) Ecotoxicity of nanomaterials in soil. Ann Biol Res 4:86–92

    Google Scholar 

  • Jang MH, Bae SJ, Lee SK, Lee YJ, Hwang YS (2014) Effect of material properties on stability of silver nanoparticles in water. J Nanosci Nanotechnol 14:9665–9669

    CAS  Google Scholar 

  • Jeannet N, Fierz M, Schneider S, Künzi L, Baumlin N, Salathe M, Burtscher H, Geiser M (2015) Acute toxicity of silver and carbon nanoaerosols to normal and cystic fibrosis human bronchial epithelial cells. Nanotoxicology 26:1–13

    Google Scholar 

  • Jeliazkova N, Chomenidis C, Doganis P, Fadeel B, Grafström R, Hardy B, Hastings J, Hegi M, Jeliazkov V, Kochev N, Kohonen P, Munteanu CR, Sarimveis H, Smeets B, Sopasakis P, Tsiliki G, Vorgrimmler D, Willighagen E (2015) The eNanoMapper database for nanomaterial safety information. Beilstein J Nanotechnol 6:1609–1634

    CAS  Google Scholar 

  • Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube multi-wall nanotube, and fullerene. Environ Sci Technol 39:1378–1383

    CAS  Google Scholar 

  • Journeay WS, Suri SS, Moralez JG (2008) Rosette nanotubes show low acute pulmonary toxicity in vivo. Int J Nanomed 3:373–383

    CAS  Google Scholar 

  • Kahru A, Dubourguier HC (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269:105–119

    CAS  Google Scholar 

  • Kahru A, Ivask A (2013) Mapping the dawn of nanoecotoxicological research. Acc Chem Res 46:823–833

    CAS  Google Scholar 

  • Kashi TS, Eskandarion S, Esfandyari-Manesh M, Marashi SM, Samadi N, Fatemi SM, Atyabi F, Eshraghi S, Dinarvand R (2012) Improved drug loading and antibacterial activity of minocycline-loaded PLGA nanoparticles prepared by solid/oil/water ion pairing method. Int J Nanomed 7:221–234

    Google Scholar 

  • Kaur IP, Kakkar V, Deol PK, Yadav M, Singh M, Sharma I (2014) Issues and concerns in nanotech product development and its commercialization. J Control Release 193:51–62

    CAS  Google Scholar 

  • Keller J, Wohlleben W, Ma-Hock L, Strauss V, Gröters S, Küttler K, Wiench K, Herden C, Oberdörster G, van Ravenzwaay B, Landsiedel R (2014) Time course of lung retention and toxicity of inhaled particles: short-term exposure to nano-Ceria. Arch Toxicol 88:2033–2059

    CAS  Google Scholar 

  • Kermanizadeh A, Gosens I, MacCalman L, Johnston H, Danielsen PH, Jacobsen NR, Lenz AG, Fernandes T, Schins RP, Cassee FR, Wallin H, Kreyling W, Stoeger T, Loft S, Møller P, Tran L, Stone V (2016) A multilaboratory toxicological assessment of a panel of 10 engineered nanomaterials to human health—ENPRA project—the highlights, limitations, and current and future challenges. J Toxicol Environ Health B Crit Rev 19:1–28

    CAS  Google Scholar 

  • Kim JS, Yoon T-J, Yu KN, Kim BG, Park SJ, Kim HW, Lee KH, Park SB, Lee J-K, Cho MH (2006) Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol Sci 89:338–347

    CAS  Google Scholar 

  • Kim JH, Nam DH, Park CB (2014) Nanobiocatalytic assemblies for artificial photosynthesis. Curr Opin Biotechnol 28:1–9

    Google Scholar 

  • Kirchner C, Liedl T, Kudera S (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5:331–338

    CAS  Google Scholar 

  • Kovacic P, Somanathan R (2009) Pulmonary toxicity and environmental contamination: radicals, electron transfer, and protection by antioxidants. Rev Environ Contam Toxicol 201:41–69

    CAS  Google Scholar 

  • Kuempel ED, Geraci CL, Schulte PA (2012) Risk assessment and risk management of nanomaterials in the workplace: translating research to practice. Ann Occup Hyg 56:491–505

    Google Scholar 

  • Kuhn M, Ivleva NP, Klitzke S, Niessner R, Baumann T (2015) Investigation of coatings of natural organic matter on silver nanoparticles under environmentally relevant conditions by surface-enhanced Raman scattering. Sci Total Environ 535:122–130

    Google Scholar 

  • Kumar S, Sharma A, Tripathi B, Srivastava S, Agrawal S, Singh M, Awasthi K, Vijay YK (2010) Enhancement of hydrogen gas permeability in electrically aligned MWCNT-PMMA composite membranes. Micron 41:909–1014

    CAS  Google Scholar 

  • Kumar V, Kumari A, Guleria P, Yadav SK (2012) Evaluating the toxicity of selected types of nanochemicals. Rev Environ Contam Toxicol 215:39–121

    Google Scholar 

  • Kumar S, Lather V, Pandita D (2015) Green synthesis of therapeutic nanoparticles: an expanding horizon. Nanomedicine (Lond) 10:2451–2471

    CAS  Google Scholar 

  • Lademann J, Weigmann H, Rickmeyer C (1999) Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol Appl Skin Physiol 12:247–256

    CAS  Google Scholar 

  • Lam CW, James JT, Mc Cluskey R (2004) Pulmonary toxicity of single-wall nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126–134

    CAS  Google Scholar 

  • Lambert S, Sinclair C, Boxall A (2014) Occurrence, degradation, and effect of polymer-based materials in the environment. Rev Environ Contam Toxicol 227:1–53

    CAS  Google Scholar 

  • Landsiedel R, Ma-Hock L, Kroll A (2010) Testing metal-oxide nanomaterials for human safety. Adv Mater 22:2601–2627

    CAS  Google Scholar 

  • Lehto M, Karilainen T, Róg T, Cramariuc O, Vanhala E, Tornaeus J, Taberman H, Jänis J, Alenius H, Vattulainen I, Laine O (2014) Co-exposure with fullerene may strengthen health effects of organic industrial chemicals. PLoS One 9(12), e114490

    Google Scholar 

  • Leo BF, Chen S, Kyo Y, Herpoldt KL, Terrill NJ, Dunlop IE, McPhail DS, Shaffer MS, Schwander S, Gow A, Zhang J, Chung KF, Tetley TD, Porter AE, Ryan MP (2013) The stability of silver nanoparticles in a model of pulmonary surfactant. Environ Sci Technol 47:11232–11240

    CAS  Google Scholar 

  • Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4:26–49

    CAS  Google Scholar 

  • Li XQ, Elliott DW, Zhang WX (2006) Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit Rev Solid State Mater Sci 31:111–122

    CAS  Google Scholar 

  • Linkov I, Kurth MH, Hristozov D, Keisler JM (2015) Nanotechnology: promoting innovation through analysis and governance. Environ Syst Decis 35:22–23

    Google Scholar 

  • Liou SH, Tsou TC, Wang SL, Li LA, Chiang HC, Li WF et al (2012) Epidemiological study of health hazards among workers handling engineered nanomaterials. J Nanopart 14:878

    Google Scholar 

  • Liu Z, Tabakman S, Welsher K, Dai HJ (2009) Carbon nanotubes in biology and medicine in vitro and in vivo detection, imaging and drug delivery. Nano Res 2:85–120

    CAS  Google Scholar 

  • Liu H, Liu T, Wang H, Li L, Tan L, Fu C, Nie G, Chen D, Tang F (2013) Impact of PEGylation on the biological effects and light heat conversion efficiency of gold nanoshells on silica nanorattles. Biomaterials 34:6967–6975

    CAS  Google Scholar 

  • Liu Y, Deng H, Xiao C, Xie C, Zhou X (2014) Cytotoxicity of calcium rectorite micro/nanoparticles before and after organic modification. Chem Res Toxicol 27:1401–1410

    CAS  Google Scholar 

  • Lockman PR, Koziara JM, Mumper RJ, Allen DD (2004) Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J Drug Target 12:635–641

    CAS  Google Scholar 

  • Loux NT, Su YS, Hassan SM (2011) Issues in assessing environmental exposures to manufactured nanomaterials. Int J Environ Res Public Health 8:3562–3578

    Google Scholar 

  • Lovric J, Bazzi HS, Cuie Y, Fortin GRA, Winnik FM, Maysinger D (2005) Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J Mol Med 83:377–385

    Google Scholar 

  • Lowry GV, Gregory KB, Apte SC, Lead JR (2012) Transformations of nanomaterials in the environment. Environ Sci Technol 46:6893–6899

    CAS  Google Scholar 

  • Lucarelli M, Gatti AM, Savarino G (2004) Innate defence functions of macrophages can be biased by nano-sized ceramic and metallic particles. Mast cell activation and its relation to proinflammatory cytokine production in the rheumatoid lesion. Eur Cytokine Netw 15:339–346

    CAS  Google Scholar 

  • Lv M, Huang W, Chen Z, Jiang H, Chen J, Tian Y, Zhang Z, Xu F (2015) Metabolomics techniques for nanotoxicity investigations. Bioanalysis 7:1527–1544

    CAS  Google Scholar 

  • Ma S, Lin D (2013) The biophysicochemical interactions at the interfaces between nanoparticles and aquatic organisms: adsorption and internalization. Environ Sci Process Impacts 15:145

    CAS  Google Scholar 

  • Ma J, Mercer RR, Barger M, Schwegler-Berry D, Cohen JM, Demokritou P, Castranova V (2015) Effects of amorphous silica coating on cerium oxide nanoparticles induced pulmonary responses. Toxicol Appl Pharmacol 288:63–73

    CAS  Google Scholar 

  • Mackevica A, Foss HS (2015) Release of nanomaterials from solid nanocomposites and consumer exposure assessment—a forward-looking review. Nanotoxicology 14:1–50

    Google Scholar 

  • Mann EE, Thompson LC, Shannahan JH, Wingard CJ (2012) Changes in cardiopulmonary function induced by nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4:691–702

    CAS  Google Scholar 

  • Marconnet AM, Yamamoto N, Panzer MA, Wardle BL, Goodson KE (2011) Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density. ACS Nano 5:4818–4825

    CAS  Google Scholar 

  • Mashwani ZU, Khan T, Khan MA, Nadhman A (2015) Synthesis in plants and plant extracts of silver nanoparticles with potent antimicrobial properties: current status and future prospects. Appl Microbiol Biotechnol 99:9923–9934

    CAS  Google Scholar 

  • Matranga V, Corsi I (2012) Toxic effects of engineered nanoparticles in the marine environment: model organisms and molecular approaches. Mar Environ Res 76:32–40

    CAS  Google Scholar 

  • Mckenzie LC, Hutchison JE (2004) Green nanoscience: an integrated approach to greener products, processes, and applications. Chem Today 2004:25–28

    Google Scholar 

  • Meesters JA, Veltman K, Hendriks AJ, van de Meent D (2013) Environmental exposure assessment of engineered nanoparticles: why REACH needs adjustment. Integr Environ Assess Manag 9(3):e15–e26

    Google Scholar 

  • Michael AW, Nguyen HT, Adrian SM, Kannangara GSK, Volk H, Lu GQM (2008) Nanomaterials in soils. Geoderma 146(1–2):291–302

    Google Scholar 

  • Mitrano DM, Motellier S, Clavaguera S, Nowack B (2015) Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products. Environ Int 77:132–147

    CAS  Google Scholar 

  • Monteiro-Riviere NA, Nemanich RJ, Inman AO (2005) Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett 155:377–384

    CAS  Google Scholar 

  • Mukhopadhyay SS (2014) Nanotechnology in agriculture: prospects and constraints. Nanotechnol Sci Appl 7:63–71

    Google Scholar 

  • Nalwa HS (2014) A special issue on reviews in nanomedicine, drug delivery and vaccine development. J Biomed Nanotechnol 10:1635–1640

    CAS  Google Scholar 

  • Nath D, Banerjee P (2013) Green nanotechnology—a new hope for medical biology. Environ Toxicol Pharmacol 36:997–1014

    CAS  Google Scholar 

  • Nguyen KC, Rippstein P, Tayabali AF, Willmore WG (2015) Mitochondrial toxicity of cadmium telluride quantum dot nanoparticles in mammalian hepatocytes. Toxicol Sci 146:31–42

    CAS  Google Scholar 

  • Niu X, Zou W, Liu C, Zhang N, Fu C (2009) Modified nanoprecipitation method to fabricate DNA-loaded PLGA nanoparticles. Drug Dev Ind Pharm 35:1375–1383

    CAS  Google Scholar 

  • Nogueira V, Lopes I, Rocha-Santos T, Gonçalves F, Pereira R (2015) Toxicity of solid residues resulting from wastewater treatment with nanomaterials. Aquat Toxicol 165:172–178

    CAS  Google Scholar 

  • Nurkiewicz TR, Porter DW, Barger M (2006) Systemic microvascular dysfunction and inflammation after pulmonary particulate matter exposure. Environ Health Perspect 114:412–419

    Google Scholar 

  • Oberdorster G (2010) Safety assessment for nanotechnology and nanomedicine. J Intern Med 267:89–105

    CAS  Google Scholar 

  • Oomen AG, Bos PM, Fernandes TF, Hund-Rinke K, Boraschi D, Byrne HJ, Aschberger K, Gottardo S, von der Kammer F, Kühnel D, Hristozov D, Marcomini A, Migliore L, Scott-Fordsmand J, Wick P, Landsiedel R (2014) Concern-driven integrated approaches to nanomaterial testing and assessment—report of the NanoSafety Cluster Working Group 10. Nanotoxicology 8:334–348

    Google Scholar 

  • Oughton DH, Hertel-Aas T, Pellicer E, Mendoza E, Joner EJ (2008) Neutron activation of engineered nanoparticles as a tool for tracing their environmental fate and uptake in organisms. Environ Toxicol Chem 27:1883–1887

    CAS  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720

    CAS  Google Scholar 

  • Pantarotto D, Briand JP, Prato M (2004) Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun (Camb) 26:16–17

    Google Scholar 

  • Park SY, Lee HU, Lee YC, Choi S, Cho DH, Kim HS, Bang S, Seo S, Lee SC, Won J, Son BC, Yang M, Lee J (2015) Eco-friendly carbon-nanodot-based fluorescent paints for advanced photocatalytic systems. Sci Rep 5:12420. doi:10.1038/srep12420

    Article  Google Scholar 

  • Parker JP, Ude Z, Marmion CJ (2016) Exploiting developments in nanotechnology for the preferential delivery of platinum-based anti-cancer agents to tumours: targeting some of the hallmarks of cancer. Metallomics 8(1):43–60

    CAS  Google Scholar 

  • Pattan G, Kaul P (2014) Health hazards associated with nanomaterials. Toxicol Ind Health 30:499–519

    CAS  Google Scholar 

  • Pelclova D, Zdimal V, Fenclova Z, Vlckova S, Turci F, Corazzari I, Kacer P, Schwarz J, Zikova N, Makes O, Syslova K, Komarc M, Belacek J, Navratil T, Machajova M, Zakharov S (2016) Markers of oxidative damage of nucleic acids and proteins among workers exposed to TiO2 (nano)particles. Occup Environ Med 73(2):110–118, pii: oemed-2015-103161

    CAS  Google Scholar 

  • Perez JE, Contreras MF, Vilanova E, Felix LP, Margineanu MB, Luongo G, Porter AE, Dunlop IE, Ravasi T, Kosel J (2015) Cytotoxicity and intracellular dissolution of nickel nanowires. Nanotoxicology 22:1–38

    Google Scholar 

  • Peters K, Unger RE, Kirkpatrick CJ (2004) Effects of nano-scaled particles on endothelial cell function in vitro: studies on viability, proliferation and inflammation. J Mater Sci Mater Med 15:321–325

    CAS  Google Scholar 

  • Pickering KD, Wiesner MR (2005) Fullerol, sensitized production of reactive oxygen species in aqueous solution. Environ Sci Technol 39:1359–1365

    CAS  Google Scholar 

  • Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH, Seaton A (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–428

    CAS  Google Scholar 

  • Polshettiwar V, Basset JM, Astruc D (2012) Nanoscience makes catalysis greener. ChemSusChem 5:6–8

    CAS  Google Scholar 

  • Rashidi K, Shabani A, Saen RF (2015) Using data envelopment analysis for estimating energy saving and undesirable output abatement: a case study in the Organization for Economic Co-Operation and Development (OECD) countries. J Clean Product 105:241–252

    Google Scholar 

  • Ray PC, Yu H, Peter PF (2009) Toxicity and environmental risks of nanomaterials: challenges and future needs. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27:1–35

    CAS  Google Scholar 

  • Reddy VBA, Reddy GK, Madhavi V (2012) Degradation of chlorpyrifos in aqueous solutions with chitosan—stablilized FeO nanoparticles. Int J Sci Innov Discov 2:106–112

    Google Scholar 

  • Rickerby DG, Morrison M (2007) Nanotechnology and the environment: a European perspective. Sci Technol Adv Mat 8(1-2):19–24

    CAS  Google Scholar 

  • Rocha TL, Gomes T, Sousa VS, Mestre NC, Bebianno MJ (2015) Ecotoxicological impact of engineered nanomaterials in bivalve molluscs: an overview. Mar Environ Res 111:74–88

    CAS  Google Scholar 

  • Rouse JG, Yang J, Ryman-Rasmussen JP (2007) Effects of mechanical flexion on the penetration of fullerene amino acid derivatized peptide nanoparticles through skin. Nano Lett 7:155–160

    CAS  Google Scholar 

  • Russell-Jones GJ (2000) Oral vaccine delivery. J Control Release 65:49–54

    CAS  Google Scholar 

  • Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA (2006) Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol Sci 91:159–165

    CAS  Google Scholar 

  • Saathoff JG, Inman AO, Xia XR, Riviere JE, Monteiro-Riviere NA (2011) In vitro toxicity assessment of three hydroxylated fullerenes in human skin cells. Toxicol In Vitro 25:2105–2112

    CAS  Google Scholar 

  • Saini P, Saha SK, Roy P, Chowdhury P, Sinha Babu SP (2015) Evidence of reactive oxygen species (ROS) mediated apoptosis in Setaria cervi induced by green silver nanoparticles from Acacia auriculiformis at a very low dose. Exp Parasitol 160:39–48

    Google Scholar 

  • Santos SM, Dinis AM, Peixoto F, Ferreira L, Jurado AS, Videira RA (2014) Interaction of fullerene nanoparticles with biomembranes: from the partition in lipid membranes to effects on mitochondrial bioenergetics. Toxicol Sci 138:117–129

    CAS  Google Scholar 

  • Sayes C, Fortner J, Guo W (2004) The differential cytoxicity of water-solute fullerenes. Nano Lett 4:1881–1887

    CAS  Google Scholar 

  • Schaeublin NM, Braydich-Stolle LK, Schrand AM (2012) Surface charge of gold nanoparticles mediates mechanism of toxicity. Nanoscale 3:410–420

    Google Scholar 

  • Schulte PA, Iavicoli I, Rantanen JH, Dahmann D, Iavicoli S, Pipke R, Guseva Canu I, Boccuni F, Ricci M, Polci ML, Sabbioni E, Pietroiusti A, Mantovani E (2016) Assessing the protection of the nanomaterial workforce. Nanotoxicology. doi:10.3109/17435390.2015.1132347

    Article  Google Scholar 

  • Seo YS, Cha SH, Yoon HR, Kang YH, Park Y (2015) Caffeic acid: potential applications in nanotechnology as a green reducing agent for sustainable synthesis of gold nanoparticles. Nat Prod Commun 10:627–630

    Google Scholar 

  • Shakeel M, Jabeen F, Shabbir S, Asghar MS, Khan MS, Chaudhry AS (2016) Toxicity of nano-titanium dioxide (TiO2-NP) through various routes of exposure: a review. Biol Trace Elem Res 172(1):1–36

    CAS  Google Scholar 

  • Sharma VK, Filip J, Zboril R, Varma RS (2015) Natural inorganic nanoparticles—formation, fate, and toxicity in the environment. Chem Soc Rev 44:8410–8423

    CAS  Google Scholar 

  • Shiohara A, Hoshino A, Hanaki K (2004) On the cytotoxicity caused by quantum dots. Microbiol Immunol 48:669–675

    CAS  Google Scholar 

  • Shvedova AA, Castranova V, Kisin E (2003) Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health A 66:1909–1926

    CAS  Google Scholar 

  • Sigg L, Behra R, Groh K, Isaacson C, Odzak N, Piccapietra F, Röhder L, Schug H, Yue Y, Schirmer K (2014) Chemical aspects of nanoparticle ecotoxicology. Chimia (Aarau) 68:806–811

    CAS  Google Scholar 

  • Simkó M, Mattsson MO (2014) Interactions between nanosized materials and the brain. Curr Med Chem 21:4200–4214

    Google Scholar 

  • Sly PD, Schüepp K (2012) Nanoparticles and children’s lungs: is there a need for caution? Paediatr Respir Rev 13:71–72

    Google Scholar 

  • Smulders S, Larue C, Sarret G, Castillo-Michel H, Vanoirbeek J, Hoet PH (2015) Lung distribution, quantification, co-localization and speciation of silver nanoparticles after lung exposure in mice. Toxicol Lett 238:1–6

    CAS  Google Scholar 

  • Som C, Wick P, Krug H, Nowack B (2011) Environmental and health effects of nanomaterials in nanotextiles and façade coatings. Environ Int 37:1131–1142

    CAS  Google Scholar 

  • Soni D, Naoghare PK, Saravanadevi S, Pandey RA (2015) Release, transport and toxicity of engineered nanoparticles. Rev Environ Contam Toxicol 234:1–47

    CAS  Google Scholar 

  • Soto K, Garza KM, Murr LE (2007) Cytotoxic effects of aggregated nanomaterials. Acta Biomater 3:351–358

    CAS  Google Scholar 

  • Spruit SL, Hoople GD, Rolfe DA (2015) Just a cog in the machine? The individual responsibility of researchers in nanotechnology is a duty to collectivize. Sci Eng Ethics. doi:10.1007/s11948-015-9718-1

    Article  Google Scholar 

  • Stander L, Theodore L (2011) Environmental implications of nanotechnology—an update. Int J Environ Res Public Health 8:470–479

    Google Scholar 

  • Stebounova LV, Guio E, Grassian VH (2011) Silver nanoparticles in simulated biological media: a study of aggregation, sedimentation, and dissolution. J Nanopart Res 13:233–244

    CAS  Google Scholar 

  • Å tengl V, Henych J, JanoÅ¡ P, Skoumal M (2016) Nanostructured metal oxides for stoichiometric degradation of chemical warfare agents. Rev Environ Contam Toxicol 236:239–258

    Google Scholar 

  • Stone V, Nowack B, Baun A, van den Brink N, Fv K, Dusinska M, Handy R, Hankin S, Hassellöv M, Joner E, Fernandes TF (2010) Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterization. Sci Total Environ 408:1745–1754

    CAS  Google Scholar 

  • Sturm R (2015) A computer model for the simulation of nanoparticle deposition in the alveolar structures of the human lungs. Ann Transl Med 3:281. doi:10.3978/j.issn.2305-5839.2015.11.01

    Article  CAS  Google Scholar 

  • Tee JK, Ong CN, Bay BH, Ho HK, Leong DT (2015) Oxidative stress by inorganic nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol. doi:10.1002/wnan.1374

    Article  Google Scholar 

  • Tian F, Cui D, Schwarz H, Estrada GG, Kobayashi H (2006) Cytotoxicity of single-wall carbon nanotubes on human fibroblasts. Toxicol In Vitro 20:1202–1212

    CAS  Google Scholar 

  • Tiede K, Hanssen SF, Westerhoff P, Fern GJ, Hankin SM, Aitken RJ, Chaudhry Q, Boxall AB (2015) How important is drinking water exposure for the risks of engineered nanoparticles to consumers? Nanotoxicology 12:1–9

    Google Scholar 

  • Tinkle SS, Antonini JM, Rich BA (2003) Skin as a route of exposure and sensitization in chronic beryllium disease. Environ Health Perspect 111:1202–1208

    CAS  Google Scholar 

  • Tiwari AJ, Marr LC (2010) The role of atmospheric transformations in determining environmental impacts of carbonaceous nanoparticles. J Environ Qual 39:1883–1895

    CAS  Google Scholar 

  • Torres-Lugo M, Garcia M, Record R (2002) Physicochemical behavior and cytotoxic effects of p(methacrylic acid-g-ethylene glycol) nanospheres for oral delivery of proteins. J Control Release 80:197–205

    CAS  Google Scholar 

  • Totsuka Y, Higuchi T, Imai T, Nishikawa A, Nohmi T, Kato T, Masuda S, Kinae N, Hiyoshi K, Ogo S, Kawanishi M, Yagi T, Ichinose T, Fukumori N, Watanabe M, Sugimura T, Wakabayashi K (2009) Genotoxicity of nano/microparticles in in vitro micronuclei, in vivo comet and mutation assay systems. Part Fibre Toxicol 6:23

    Google Scholar 

  • Vale G, Mehennaoui K, Cambier S, Libralato G, Jomini S, Domingos RF (2015) Manufactured nanoparticles in the aquatic environment-biochemical responses on freshwater organisms: a critical overview. Aquat Toxicol 170:162–174

    Google Scholar 

  • Vinothkannan M, Karthikeyan C, Gnana kumar G, Kim AR, Yoo DJ (2015) One-pot green synthesis of reduced graphene oxide (RGO)/Fe3O4 nanocomposites and its catalytic activity toward methylene blue dye degradation. Spectrochim Acta A Mol Biomol Spectrosc 136 Pt B:256–264

    Google Scholar 

  • Völker C, Oetken M, Oehlmann J (2013) The biological effects and possible modes of action of nanosilver. Rev Environ Contam Toxicol 223:81–106

    Google Scholar 

  • Wang H, Wang J, Deng X (2004) Biodistribution of carbon single wall carbon nanotubes in mice. J Nanosci Nanotechnol 4:1019–1024

    CAS  Google Scholar 

  • Wang L, Mao J, Zhang GH (2007) Nano-cerium-element-doped titanium dioxide induces apoptosis of Bel 7402 human hepatoma cells in the presence of visible light. World J Gastroenterol 13:4011–4014

    CAS  Google Scholar 

  • Wang Z, Xu C, Li X, Liu Z (2015) In situ green synthesis of Ag nanoparticles on tea polyphenols-modified graphene and their catalytic reduction activity of 4-nitrophenol. Col Surf A Physicochem Eng Asp 485:102–110

    CAS  Google Scholar 

  • Warheit DB, Donner EM (2015) Risk assessment strategies for nanoscale and fine-sized titanium dioxide particles: recognizing hazard and exposure issues. Food Chem Toxicol 85:138–147

    CAS  Google Scholar 

  • Weare W, Scott MR, Warner MG, Hutchison JE (2000) Improved Synthesis of Small (dCORE ≈ 1.5 nm) phosphine-stabilized gold nanoparticles. J Am Chem Soc 122:12890–12891

    CAS  Google Scholar 

  • Winkler D (2015) Recent advances, and unresolved issues, in the application of computational modelling to the prediction of the biological effects of nanomaterials. Toxicol Appl Pharmacol. doi:10.1016/j.taap.2015.12.016

    Article  Google Scholar 

  • Witschger O, Fabries JF (2005) Particules ultra-fines etsante au travail 1- caracteristiques et effets potentiels sur la santé. INRS—Hygiene et securite du travail—Cahiers de notes documentaires—2e trimester 199:21–35

    Google Scholar 

  • Yadav T, Mungray AA, Mungray AK (2014) Fabricated nanoparticles: current status and potential phytotoxic threats. Rev Environ Contam Toxicol 230:83–110

    CAS  Google Scholar 

  • Yan L, Feng M, Liu J, Wang L, Wang Z (2015) Antioxidant defenses and histological changes in Carassius auratus after combined exposure to zinc and three multi-walled carbon nanotubes. Ecotoxicol Environ Saf 125:61–71

    Google Scholar 

  • Yan W, Chen C, Wang L, Zhang D, Li AJ, Yao Z, Shi LY (2016) Facile and green synthesis of cellulose nanocrystal-supported gold nanoparticles with superior catalytic. Carbohydr Polym 140:66–73

    CAS  Google Scholar 

  • Yao M, He L, McClements DJ, Xiao H (2015) Uptake of gold nanoparticles by intestinal epithelial cells: impact of particle size on their absorption, accumulation, and toxicity. J Agric Food Chem 63:8044–8049

    CAS  Google Scholar 

  • Yong SK, Shrivastava M, Srivastava P, Kunhikrishnan A, Bolan N (2015) Environmental applications of chitosan and its derivatives. Rev Environ Contam Toxicol 233:1–43

    CAS  Google Scholar 

  • Yuan R, Yu WM, Cheng F, Zhang XB, Ruan Y, Cao ZX, Larré S (2015) Effect of quantum dots on the biological behavior of the EJ human bladder urothelial carcinoma cell line. Mol Med Rep 12:6157–6163

    CAS  Google Scholar 

  • Zhang Z, Kleinstreuer C, Donohue JF (2005) Comparison of micro- and nano-size particle depositions in a human upper airway model. J Aerosol Sci 36:123–129

    Google Scholar 

  • Zhao X, Cui H, Chen W, Wang Y, Cui B, Sun C, Meng Z, Liu G (2014) Morphology, structure and function characterization of PEI modified magnetic nanoparticles gene delivery system. PLoS One 9(6), e98919

    Google Scholar 

  • Zharov VP, Mercer KE, Galitovskaya EN, Smeltzer MS (2006) Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys J 90:619–627

    CAS  Google Scholar 

  • Zhu X, Zhu L, Li Y (2008) Comparative toxicity of several metal oxide nano-particle aqueous suspensions to zebrafish (Danio rerio) early developmental stage. J Environ Sci Health A Tox Hazard Subst Environ Eng 43:278–284

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the R&D Program for Society of the National Research Foundation (NRF) funded by the Ministry of Science, ICT & Future Planning (2013M3C8A3078806 and 2015M3A9E2031372).

Competing interests The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanghyo Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Viswanath, B., Kim, S. (2016). Influence of Nanotoxicity on Human Health and Environment: The Alternative Strategies. In: de Voogt, P. (eds) Reviews of Environmental Contamination and Toxicology Volume 242. Reviews of Environmental Contamination and Toxicology, vol 242. Springer, Cham. https://doi.org/10.1007/398_2016_12

Download citation

Publish with us

Policies and ethics