Skip to main content

Aluminium Toxicity to Plants as Influenced by the Properties of the Root Growth Environment Affected by Other Co-Stressors: A Review

  • Chapter
Reviews of Environmental Contamination and Toxicology Volume 243

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 243))

Abstract

Aluminium toxicity to crops depends on the acidity of the soil and specific plant resistance. However, it is also strongly affected by other environmental factors that have to be considered to properly evaluate the resultant effects on plants. Observed weather perturbations and predicted climate changes will increase the probability of co-occurrence of aluminium toxicity and other abiotic stresses.

In this review the mechanisms of plant—aluminium interactions are shown to be influenced by soil mineral nutrients, heavy metals, organic matter, oxidative stress and drought. Described effects of aluminium toxicity include: root growth inhibition, reduction in the uptake of mineral nutrients resulting from the inhibition of transport processes through ion channels; epigenetic changes to DNA resulting in gene silencing. Complex processes occurring in the rhizosphere are highlighted, including the role of soil organic matter and aluminium detoxification by mucilage.

There is a considerable research gap in the understanding of root growth in the soil environment in the presence of toxic aluminium concentrations as affected by interactions with abiotic stressors. This knowledge is important for the selection of feasible methods aimed at the reduction of negative consequences of crop production in acidic soils affected by adverse growth environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Azeem SAM, Ahmad M, Usman ARA, Kim KR, Oh SE, Lee SO, Ok YS (2013) Changes of biochemical properties and heavy metal bioavailability in soil treated with natural liming materials. Environ Earth Sci 70:3411–3420. doi:10.1007/s12665-013-2410-3

    Article  CAS  Google Scholar 

  • Achary VMM, Panda BB (2010) Aluminium-induced DNA damage and adaptive response to genotoxic stress in plant cells are mediated through reactive oxygen intermediates. Mutagenesis 25:201–209. doi:10.1093/mutage/gep063

    Article  CAS  Google Scholar 

  • Achary VMM, Jena S, Panda KK, Panda BB (2008) Aluminium induced oxidative stress and DNA damage in root cells of Allium cepa L. Ecotoxicol Environ Saf 70:300–310

    Article  CAS  Google Scholar 

  • Achary VMM, Parinandi NL, Panda BB (2013) Calcium channel blockers protect against aluminium-induced DNA damage and block adaptive response to genotoxic stress in plant cells. Mutat Res Genet Toxicol Environ Mutagen 751:130–138. doi:10.1016/j.mrgentox.2012.12.008

    Article  CAS  Google Scholar 

  • Ahn SJ, Sivaguru M, Osawa H, Chung GC, Matsumoto H (2001) Aluminium inhibits the H(+)-ATPase activity by permanently altering the plasma membrane surface potentials in squash roots. Plant Physiol 126:1381–1390

    Article  CAS  Google Scholar 

  • Alvarez I, Sam O, Reynaldo I, Testillano P, del Carmen RM, Arias M (2012) Morphological and cellular changes in rice roots (Oryza sativa L.) caused by Al stress. Bot Stud 53:67–73

    CAS  Google Scholar 

  • Alvim MN, Ramos FT, Oliveira DC, Isaias R, França MGC (2012) Aluminium localization and toxicity symptoms related to root growth inhibition in rice (Oryza sativa L.) seedlings. J Biosci 37:1079–1088. doi:10.1007/s12038-012-9275-6

    Article  CAS  Google Scholar 

  • Barceló J, Guevara P, Poschenrieder C (1993) Silicon amelioration of aluminium toxicity in teosinte (Zea mays L. ssp. mexicana). Plant and Soil 154:249–255

    Article  Google Scholar 

  • Baylis AD, Gragopoulou C, Davidson KJ, Birchall JD (1994) Effects of silicon on the toxicity of aluminium to soybean. Commun Soil Sci Plant Anal 25:537–546

    Article  CAS  Google Scholar 

  • Bengough AG, McKenzie BM, Hallett PD, Valentine TA (2011) Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits. J Exp Bot 62:59–68. doi:10.1093/jxb/erq350

    Article  CAS  Google Scholar 

  • Bhalerao SA, Prabhu DV (2013) Aluminium toxicity in plants—a review. J Appl Chem 2:447–474

    CAS  Google Scholar 

  • Bhuja P, McLachlan K, Stephens J, Taylor G (2004) Accumulation of 1,3-beta-D-glucans, in response to aluminium and cytosolic calcium in Triticum aestivum L. Plant Cell Physiol 45:543–549. doi:10.1093/pcp/pch068

    Article  CAS  Google Scholar 

  • Bian M, Zhou M, Sun D, Li C (2013) Molecular approaches unravel the mechanism of acid soil tolerance in plants. Crop J 1(2):91–104. doi:10.1016/j.cj.2013.08.002

    Article  Google Scholar 

  • Blair LM, Taylor GJ (1997) The nature of interaction between aluminium and manganese on growth and metal accumulation in Triticum aestivum L. Environ Exp Bot 37:25–37. doi:10.1016/S0098-8472(96)01036-2

    Article  CAS  Google Scholar 

  • Blamey FPC (2001) The role of the root cell wall in aluminium toxicity. In: Ae N, Arihara J, Okada K, Srinivasan A (eds) Plant nutrient acquisition: new perspectives. Springer, Tokyo, pp 201–226

    Chapter  Google Scholar 

  • Blevins DG, Lukaszewski KM (1998) B in plant structure and function. Annu Rev Plant Physiol Plant Mol Biol 49:481–500

    Article  CAS  Google Scholar 

  • Bolan NS, Adriano DC, Curtin D (2003) Soil acidification and liming interactions with nutrient and heavy metal transformation. Adv Agron 78:215–269

    Article  CAS  Google Scholar 

  • Boscolo PRS, Menossi M, Jorge RA (2003) Aluminium-induced oxidative stress in maize. Phytochemistry 62:181–189. doi:10.1016/S0031-9422(02)00491-0

    Article  CAS  Google Scholar 

  • Bose J, Babourina O, Rengel Z (2011) Role of magnesium in alleviation of aluminium toxicity in plants. J Exp Bot 62:2251–2264. doi:10.1093/jxb/erq456

    Article  CAS  Google Scholar 

  • Brunner I, Sperisen C (2013) Aluminium exclusion and aluminium tolerance in woody plants. Front Plant Sci 4:1–12. doi:10.3389/fpls.2013.00172

    Article  Google Scholar 

  • Cai M, Wang N, Xing C, Wang F, Wu K, Du X (2013) Immobilization of aluminium with mucilage secreted by root cap and root border cells is related to aluminium resistance in Glycine max L. Environ Sci Pollut Res 20:8924–8933. doi:10.1007/s11356-013-1815-6

    Article  CAS  Google Scholar 

  • Cakmak I, Horst WJ (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tips of soybean (Glycine max L.). Physiol Plant 83:463–468

    Article  CAS  Google Scholar 

  • Cakmak I, Kirkby EA (2008) Role of magnesium in carbon partitioning and alleviating photooxidative damage. Physiol Plant 133:692–704. doi:10.1111/j.1399-3054.2007.01042.x

    Article  CAS  Google Scholar 

  • Cao Y, Lou Y, Han Y, Shi J, Wang Y, Ming F (2011) Al toxicity leads to enhanced cell division and changed photosynthesis in Oryza rufipogon L. Mol Biol Rep 38(8):4839–4846. doi:10.1007/s11033-010-0618-9

    Article  CAS  Google Scholar 

  • Chang YC, Ma JF, Matsumoto H (1998) Mechanisms of Al-induced iron chlorosis in wheat (Triticum aestivum L.). Al-inhibited biosynthesis and secretion of phytosiderophore. Plant Physiol 102(1):9–15. doi:10.1034/j.1399-3054.1998.1020102.x

    Article  CAS  Google Scholar 

  • Chen RF, Zhang FL, Zhang QM, Sun QB, Dong XY, Shen RF (2012) Aluminium-phosphorus interactions in plants growing on acid soils: does phosphorus always alleviate aluminium toxicity? J Sci Food Agric 92:995–1000. doi:10.1002/jsfa.4566

    Article  CAS  Google Scholar 

  • Choi CS, Sano H (2007) Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophospho diesterase-like protein in tobacco plants. Mol Genet Genomics 277(5):589–600

    Article  CAS  Google Scholar 

  • Clarkson DT (1965) The effect of aluminium and some other trivalent metal cations on cell division in the root apices of Allium cepa. Ann Bot 29(2):310–315

    Article  Google Scholar 

  • Clarkson DT (1969) Metabolic aspects of aluminium toxicity and some possible mechanisms for resistance. In: Rorison IH (ed) Ecological aspects of the mineral nutrition of plants, British Ecological Symposium No. 9. Blackwell Scientific Publications, p 381–397

    Google Scholar 

  • Clune TS, Copeland L (1999) Effects of aluminium on canola roots. Plant and Soil 216:27–33

    Article  CAS  Google Scholar 

  • Cumming JR, Ning J (2003) Arbuscular mycorrhizal fungi alter phosphorus relations of broomsedge (Andropogon virginicus L.) plants. J Exp Bot 54:1447–1459

    Article  CAS  Google Scholar 

  • da Silva IR, Ferrufino A, Sanzonowicz C, Smyth TJ, Israel DW, Carter TE Jr (2005) Interactions between magnesium, calcium, and aluminium on soybean root elongation. Rev Bras Ciênc Solo 29:747–754

    Article  Google Scholar 

  • de Camargo CDO, Filho AWPF (2001) Breeding bread wheat for tolerance to aluminium toxicity. In: Bedõ Z, Láng L (eds) Wheat in a global environment. Kluwer Academic, The Netherlands, pp 655–664

    Chapter  Google Scholar 

  • Delhaize E, Ryan PR (1995) Aluminium toxicity and tolerance in plants. Plant Physiol 107(31):5–321

    Google Scholar 

  • Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T, Matsumoto H (2004) Engineering high-level aluminium tolerance in barley with the ALMT1 gene. Proc Natl Acad Sci U S A 101:15249–15254. doi:10.1073/pnas.0406258101

    Article  CAS  Google Scholar 

  • Domingues AM, Silva E, Freitas G, Ganança JF, Slaski JJ, Ângelo M, PDE C (2013) Aluminium tolerance in bean traditional cultivars from Madeira. Rev Ciênc Agron 36:148–156

    Google Scholar 

  • Dong ZY, Wang YM, Zhang ZJ, Shen Y, Lin XY, Ou XF, Han FP, Liu B (2006) Extent and pattern of DNA methylation alteration in rice lines derived from introgressive hybridization of rice and Zizania latifolia Griseb. Theor Appl Genet 113:196–205

    Article  CAS  Google Scholar 

  • Dorneles AOS, Pereira AS, Rossato LV, Possebom G, Sasso VM, Bernardy K, Sandri RQ, Nicoloso FT, Ferreira PAA, Tabaldi LA (2016) Silicon reduces aluminium content in tissues and ameliorates its toxic effects on potato plant growth. Cienc Rural 46:506–512

    Article  Google Scholar 

  • Ezaki B, Katsuhara M, Kawamura M, Matsumoto H (2001) Different mechanisms of four aluminium (Al)-resistant transgenes for Al toxicity in Arabidopsis. Plant Physiol 127:918–927

    Article  CAS  Google Scholar 

  • Foy CD (1978) Plant adaptation to acid, aluminium-toxic soils. Commun Soil Sci Plant Anal 19:959–987

    Article  Google Scholar 

  • Gassmann W, Schroeder JI (1994) Inward-rectifying K1 channels in root hairs of wheat: a mechanism for aluminium-sensitive low-affinity K1 uptake and membrane potential control. Plant Physiol 105:1399–1408

    Article  CAS  Google Scholar 

  • Godbold DL, Kettner C (1991) Use of root elongation studies to determine aluminium and lead toxicity in Picea abies seedlings. J Plant Physiol 138(2):231–235

    Article  CAS  Google Scholar 

  • Goldman IL, Catrer TE Jr, Patterson RP (1989) A determinal interaction of subsoil aluminium and drought stress on the leaf water status of soybean. Agron J 81:461–463

    Article  CAS  Google Scholar 

  • Grauer UE, Horst WJ (1992) Modeling cation amelioration of aluminium phytotoxicity. Soil Sci Soc Am J 56:166–172. doi:10.2136/sssaj1992.03615995005600010026x

    Article  CAS  Google Scholar 

  • Gundersen P, Rasmussen L (1990) Nitrification in forest soils: effects from nitrogen deposition on soil acidification and aluminium release. Rev Environ Contam Toxicol 113:1–45

    Google Scholar 

  • Guo TR, Zhang GP, Zhou MX, Wu FB, Chen JX (2004) Effects of aluminium and cadmium toxicity on growth and antioxidant enzyme activities of two barley genotypes with different Al resistance. Plant and Soil 258:241–248. doi:10.1023/B:PLSO.0000016554.87519.d6

    Article  CAS  Google Scholar 

  • Guo Z, Liao B, Huang C (2005) Mobility and speciation of Cd, Cu and Zn in two acidic soils affected by stimulated acid rain. J Environ Sci 17(2):332–334

    CAS  Google Scholar 

  • Guo TR, Zhang GP, Zhou MX, Wu FB, Chen JX (2007) Influence of aluminium and cadmium stresses on mineral nutrition and root exudates in two barley cultivars. Pedosphere 17:505–512. doi:10.1016/S1002-0160(07)60060-5

    Article  CAS  Google Scholar 

  • Guo TR, Yao PC, Zhang ZD, Wang JJ, Wang M (2012) Involvement of antioxidative defense system in rice seedlings exposed to aluminium toxicity and phosphorus deficiency. Ric Sci 19:207–212. doi:10.1016/S1672-6308(12)60042-0

    Article  Google Scholar 

  • Gupta N, Gaurav SS, Kumar A (2013) Molecular basis of aluminium toxicity in plants: a review. Am J Plant Sci 4:21–37

    Article  Google Scholar 

  • Hajiboland R (2011) Effect of micronutrients deficiencies on plant stress responses. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer, New York

    Google Scholar 

  • Haling RE, Simpson RJ, Culvenor RA, Lambers H, Richardson AE (2011) Effect of soil acidity, soil strength and macropores on root growth and morphology of perennial grass species differing in acid-soil resistance. Plant Cell Environ 34:444–456. doi:10.1111/j.1365-3040.2010.02254.x

    Article  Google Scholar 

  • Heidarabadi MD, Ghanati F, Fujiwara T (2011) Interaction between boron and aluminium and their effects on phenolic metabolism of Linum usitatissimum L. roots. Plant Physiol Biochem 49(12):1377–1383. doi:10.1016/j.plaphy.2011.09.008 Epub 21 Sept 2011

    Article  CAS  Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant and Soil 237:173–195

    Article  CAS  Google Scholar 

  • Hodson MJ, Evans DE (1995) Aluminium/silicon interactions in higher plants. J Exp Bot 46:161–171

    Article  CAS  Google Scholar 

  • Horst WJ (1995) The role of the apoplast in aluminium toxicity and resistance of higher plants: a review. Z Pflanzenernähr Bodenkd 158:419–428

    Article  CAS  Google Scholar 

  • Horst WJ, Wagner A, Marschner H (1982) Mucilage protects root meristems from aluminium injury. Z Pflanzenphysiol 109:95–103

    Article  Google Scholar 

  • Hossain AKMZ, Hossain MA, Koyama H, Hara T (2004) Effects of aluminium and boron supply on growth of seedlings among 15 cultivars of wheat (Triticum aestivum L.) grown in Bangladesh. Soil Sci Plant Nutr 50:189–195

    Article  CAS  Google Scholar 

  • Huang JW, Shaff JE, Grunes DL, Kochian LV (1992) Aluminium effects on calcium fluxes at the root apex of aluminium-tolerant and aluminium sensitive wheat cultivars. Plant Physiol 98:230–237

    Article  CAS  Google Scholar 

  • Huang J, Zhang Y, Peng JS, Zhong C, Yi HY, Ow DW, Gong JM (2012) Fission yeast HMT1 lowers seed cadmium through phytochelatin-dependent vacuolar sequestration in Arabidopsis. Plant Physiol 158:1779–1788. doi:10.1104/pp.111.192872

    Article  CAS  Google Scholar 

  • Huang W, Yang X, Yao S, Lwin OT, He H, Wang A, Li C, He L (2014) Reactive oxygen species burst induced by aluminium stress triggers mitochondria-dependent programmed cell death in peanut root tip cells. Plant Physiol Biochem 82:76–84. doi:10.1016/j.plaphy.2014.03.037

    Article  CAS  Google Scholar 

  • Ikeda H, Tadano T (1993) Ultrastructural changes of the root tip cells in barley induced by a comparatively low concentration of aluminium. Soil Sci Plant Nutr 39:109–117. doi:10.1080/00380768.1993.10416980

    Article  CAS  Google Scholar 

  • Jarvis SC, Hatch DJ (1986) The effects of low concentrations of aluminium on the growth and uptake of nitrate-N by white clover. Plant and Soil 95:43–55

    Article  CAS  Google Scholar 

  • Jerzykiewicz J (2001) Aluminium effect on nitrate assimilation in cucumber (Cucumis sativus L.) roots. Acta Physiol Plant 23:213–219. doi:10.1007/s11738-001-0011-3

    Article  CAS  Google Scholar 

  • Kidd PS, Llugany M, Poschenrieder C, Gunsé B, Barceló J (2001) The role of root exudates in aluminium resistance and silicon-induced ameliotarion of aluminium toxicity in three varieties of maize (Zea mays L.). J Exp Bot 52:1339–1352

    CAS  Google Scholar 

  • Kimatu JN (2015) Correlating aluminium toxicity, heterosis and epigenetic mechanisms in maize yield improvement in acid soils. Biotechnol Mol Biol Rev 10:12–18. doi:10.5897/BMBR2014-0234

    Article  CAS  Google Scholar 

  • Kimatu JN, Diarso M, Song C, Agboola RS, Pang J (2011) DNA cytosine methylation alterations associated with aluminium toxicity and low pH in Sorghum bicolor. Afr J Agric Res 6:4579–4593. doi:10.5897/AJAR11.954

    Article  Google Scholar 

  • Kochian L (1995) Cellular mechanisms toxicity in plants. Annu Rev Plant Physiol Plant Mol Biol 46:237–260

    Article  CAS  Google Scholar 

  • Kopittke PM, Menzies NW, Blamey FPC (2005) Rhizotoxicity of aluminate and polycationic aluminium at high pH. Plant and Soil 266:177–186. doi:10.1007/s11104-005-2229-0

    Article  Google Scholar 

  • Kopittke PM, Blamey FPC, Menzies NW (2008) Toxicities of soluble Al, Cu, and La include ruptures to rhizodermal and root cortical cells of cowpea. Plant and Soil 303:217–227. doi:10.1007/s11104-007-9500-5

    Article  CAS  Google Scholar 

  • Lazarević B, Horvat T, Poljak M (2014) Effect of acid aluminous soil on photosynthetic parameters of potato (Solanum tuberosum L.). Potato Res 57:33–46. doi:10.1007/s11540-014-9251-7

    Article  CAS  Google Scholar 

  • Lee SE, Yim HK, Lim MN, Yoon IS, Kim JH, Hwang YS (2015) Abscisic acid prevents the coalescence of protein storage vacuoles by upregulating expression of a tonoplast intrinsic protein gene in barley aleurone. J Exp Bot 66(5):1191–1203. doi:10.1093/jxb/eru467

    Article  CAS  Google Scholar 

  • Liao H, Wan H, Shaff J, Wang X, Yan X, Kochian LV (2006) Phosphorus and aluminium interactions in soybean in relation to aluminium tolerance. Exudation of specific organic acids from different regions of the intact. Plant Physiol 141:674–684. doi:10.1104/pp.105.076497.674

    Article  CAS  Google Scholar 

  • Ligaba A, Maron L, Shaff J, Kochian L, Piñeros M (2012) Maize ZmALMT2 is a root anion transporter that mediates constitutive root malate efflux. Plant Cell Environ 35:1185–1200. doi:10.1111/j.1365-3040.2011.02479.x

    Article  CAS  Google Scholar 

  • Liu K, Luan S (2001) Internal aluminium block of plant inward K(+) channels. Plant Cell 13:1453–1465

    Article  CAS  Google Scholar 

  • Liu Q, Yang JL, He LS, Li YY, Zheng SJ (2008) Effect of aluminium on cell wall, plasma membrane, antioxidants and root elongation in triticale. Biol Plant 52:87–92. doi:10.1007/s10535-008-0014-7

    Article  CAS  Google Scholar 

  • Ma JF, Ryan PR (2010) Understanding how plants cope with acid soils. Funct Plant Biol 37:1–4

    Article  Google Scholar 

  • Manavalan LP, Guttikonda SK, Tran LSP, Nguyan HT (2009) Physiological and molecular approaches to improve drought resistance in soybean. Plant Cell Physiol 50:1260–1276. doi:10.1093/pcp/pcp082

    Article  CAS  Google Scholar 

  • Matsumoto H (2000) Cell biology of aluminium toxicity and tolerance in higher plants. Int Rev Cytol 200:1–47. doi:10.1016/S0074-7696(00)00001-2

    Article  CAS  Google Scholar 

  • Matsumoto H, Motoda H (2012) Aluminium toxicity recovery processes in root apices. Possible association with oxidative stress. Plant Sci 185–186:1–8. doi:10.1016/j.plantsci.2011.07.019

    Article  CAS  Google Scholar 

  • Matsumoto H, Yamaya T (1986) Inhibition of potassium and regulation of membrane-associated Mg2+-ATPase activity of pea roots by aluminium. Soil Sci Plant Nutr 32:179–188. doi:10.1080/00380768.1986.10557495

    Article  CAS  Google Scholar 

  • Matsumoto H, Morimura S, Takahashi E (1977) Binding of aluminium to DNA of DNP in pea root nuclei. Plant Cell Physiol 18:987–993

    CAS  Google Scholar 

  • Meriño-Gergichevich C, Alberdi M, Ivanov AG, Reyes-Diaz M (2010) Al3+–Ca2+ interaction in plants growing in acid soils: Al-phytotoxicity response to calcareous amendments. J Soil Sci Plant Nutr 10:217–243

    Google Scholar 

  • Milla MAR, Butler E, Huete AR, Wilson CF, Anderson O, Gustafson JP (2002) Expressed sequence tag-based gene expression analysis under aluminium stress in rye. Plant Physiol 130:1706–1716

    Article  CAS  Google Scholar 

  • Nezames CD, Sjogren CA, Barajas JF, Larsen PB (2012) The Arabidopsis cell cycle checkpoint regulators TANMEI/ALT2 and ATR mediate the active process of aluminium-dependent root growth inhibition. Plant Cell 24:608–621. doi:10.1105/tpc.112.095596 Epub 17 Feb 2012

    Article  CAS  Google Scholar 

  • Osawa H, Endo I, Hara Y, Matsushima Y, Tange T (2011) Transient proliferation of proanthocyanidin-accumulating cells on the epidermal apex contributes to highly aluminium-resistant root elongation in camphor tree. Plant Physiol 155(1):433–446. doi:10.1104/pp.110.166967

    Article  CAS  Google Scholar 

  • Ownby JD (1993) Mechanisms of reaction of hematoxylin with aluminium-treated wheat roots. Physiol Plant 87:371–380

    Article  CAS  Google Scholar 

  • Palmgren MG, Harper JF (1999) Pumping with plant P-type ATPases. J Exp Bot 50:883–893

    Article  CAS  Google Scholar 

  • Pal’ove-Balang P, Mistrik I (2007) Impact of low pH and aluminium on nitrogen uptake and metabolism in roots of Lotus japonicus. Biologia 62:715–719. doi:10.2478/s11756-007-0133-1

    Article  CAS  Google Scholar 

  • Pal’ove-Balang P, ÄŒiamporová M, Zelinová V, Pavlovkin J, Gurinová E, Mistrík I (2012) Cellular responses of two Latin-American cultivars of Lotus corniculatus to low pH and Al stress. Cent Eur J Biol 7:1046–1054. doi:10.2478/s11535-012-0098-0

    Article  CAS  Google Scholar 

  • Panda SK, Matsumoto H (2007) Molecular physiology of aluminium toxicity and tolerance in plants. Bot Rev 73:326–347. doi:10.1663/0006-8101(2007)73[326:MPOATA]2.0.CO;2

    Article  Google Scholar 

  • Panda SK, Yamamoto Y, Kondo H, Matsumoto H (2008) Mitochondrial alterations related to programmed cell death in tobacco cells under aluminium stress. C R Biol 331:597–610. doi:10.1016/j.crvi.2008.04.008

    Article  CAS  Google Scholar 

  • Pécsváradi AZ, Nagy Z, Varga A, Vashegyi A, Labádi I, Galbács G, Zsoldos F (2009) Chloroplastic glutamine synthetase is activated by direct binding of aluminium. Physiol Plant 135:43–50

    Article  Google Scholar 

  • Pina RG, Cervantes C (1996) Microbial interactions with aluminium. Biometals 9:311–316

    Article  CAS  Google Scholar 

  • Pontigo S, Ribera A, Gianfreda L, de la Luz MM, Nikolic M, Cartes P (2015) Silicon in vascular plants: uptake, transport and its influence on mineral stress under acidic conditions. Planta 242:23–37. doi:10.1007/s00425-015-2333-1

    Article  CAS  Google Scholar 

  • Poschenrieder C, Gunsé B, Corrales I, Barceló J (2008) A glance into aluminium toxicity and resistance in plants. Sci Total Environ 400:356–368. doi:10.1016/j.scitotenv.2008.06.003

    Article  CAS  Google Scholar 

  • Prabagar S, Hodson MJ, Evans DE (2011) Silicon amelioration of aluminium toxicity and cell death in suspension cultures of Norway spruce (Picea abies (L.) Karst). Environ Exp Bot 70:266–276. doi:10.1016/j.envexpbot.2010.10.001

    Article  CAS  Google Scholar 

  • Purcino AAC, Carvalho Alves VM, Parentoni SN, Belele ChL, Loguercio LL (2003) Aluminium effects on nitrogen uptake and nitrogen assimilating enzymes in maize genotypes with contrasting tolerance to aluminium toxicity. J Plant Nutr 21(1):31–61. doi:10.1081/PLN-120016496

    Article  Google Scholar 

  • Qifu MA, Rengel Z, Kuo J (2002) Aluminium toxicity in rye (Secale cereale): root growth and dynamics of cytoplasmic Ca2+ in intact root tips. Ann Bot 89:241–244

    Article  CAS  Google Scholar 

  • Rengel Z (1996) Tansley review no 89—uptake of aluminium by plant cells. New Phytol 134:389–406

    Article  CAS  Google Scholar 

  • Rengel Z, Elliott DC (1992) Aluminium inhibits net 45Ca2+ uptake by Amaranthus protoplasts. Biochem Physiol Pflanz 188:177–186

    Article  CAS  Google Scholar 

  • Rengel Z, Robinson DL (1989) Competitive Al3+ inhibition of net Mg2+ uptake by intact lolium multiflorum roots: I. Kinetics. Plant Physiol 91:1407–1413. doi:10.1104/pp.91.4.1407

    Article  CAS  Google Scholar 

  • Rengel Z, Zhang WH (2003) Role of dynamics of intracellular calcium in aluminium-toxicity syndrome. New Phytol 159:295–314. doi:10.1046/j.1469-8137.2003.00821.x

    Article  CAS  Google Scholar 

  • Rounds MA, Larsen PB (2008) Aluminium-dependent root-growth inhibition in Arabidopsis results from AtATR-regulated cell-cycle arrest. Curr Biol 18:1495–1500. doi:10.1016/j.cub.2008.08.050

    Article  CAS  Google Scholar 

  • Rouphael Y, Cardarelli M, Colla G (2015) Role of arbuscular mycorrhizal fungi in alleviating the adverse effects of acidity and aluminium toxicity in zucchini squash. Sci Hortic 188:97–105. doi:10.1016/j.scienta.2015.03.031

    Article  CAS  Google Scholar 

  • Rufty TW Jr, MacKown CT, Lazof DB, Carter TE (1995) Effects of aluminium on nitrate uptake and assimilation. Plant Cell Environ 18(11):1325–1331

    Article  CAS  Google Scholar 

  • Ryan PR, Ditomaso JM, Kochian LV (1993) Aluminium toxicity in roots: an investigation of spatial sensitivity and the role of the root cap. J Exp Bot 44:437–446. doi:10.1093/jxb/44.2.437

    Article  CAS  Google Scholar 

  • Samac DA, Tesfaye M (2003) Plant improvement for tolerance to aluminium in acid soils—a review. Plant Cell Tiss Org Cult 75:189–207. doi:10.1023/A:1025843829545

    Article  CAS  Google Scholar 

  • Sampson M, Clarkson D, Davies DD (1965) DNA synthesis in aluminium-treated roots of barley. Science 148:1476–1477

    Article  CAS  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminium-activated malate transporter. Plant J 37:645–653. doi:10.1111/j.1365-313X.2003.01991.x

    Article  CAS  Google Scholar 

  • Scheffer-Basso SM, Prior BC (2015) Aluminium toxicity in roots of legume seedlings assessed by topological analysis. Acta Sci Agron 37:61–68. doi:10.4025/actasciagron.v37i1.18362

    Article  Google Scholar 

  • Schier GA, McQuattie CJ (2000) Effect of water stress on aluminium toxicity in pitch pine seedlings. J Plant Nutr 23:637–647

    Article  CAS  Google Scholar 

  • Schmohl N, Horst WJ (2000) Cell wall pectin content modulates aluminium sensitivity of Zea mays (L.) cells grown in suspension culture. Plant Cell Environ 23:735–742. doi:10.1046/j.1365-3040.2000.00591.x

    Article  CAS  Google Scholar 

  • Scholl LV, Keltjens WG, Hoffland E, Breemen NV (2005) Effect of ectomycorrhizal colonization on the uptake of Ca, Mg, and Al by Pinus sylvestris under aluminium toxicity. For Ecol Manage 215:352–360. doi:10.1016/j.foreco.2005.05.025

    Article  Google Scholar 

  • Shamsi IH, Wei K, Jilani G, Zhang G (2007) Interactions of cadmium and aluminium toxicity in their effect on growth and physiological parameters in soybean. J Zhejiang Univ Sci B 8:181–188. doi:10.1631/jzus.2007.B0181

    Article  CAS  Google Scholar 

  • Silva IR, Smyth TJ, Moxley DF, Carter TE, Allen NS, Rufty TW (2000) Aluminium accumulation at nuclei of cells in the root tip. Fluorescence detection using lumogallion and confocal laser scanning microscopy. Plant Physiol 123:543–552. doi:10.1104/pp.123.2.543

    Article  CAS  Google Scholar 

  • Silva IR, Ferrufino A, Sanzonowicz C, Smyth TJ, Israel DW, Carter TE Jr (2005) Interactions between magnesium, calcium, and aluminium on soybean root elongation. Rev Bras Ciênc Solo 29:747–754. doi:10.1590/S0100-06832005000500010

    Article  Google Scholar 

  • Silva S, Pinto-Carnide O, Martins-Lopes P, Matos M, Guedes-Pint H, Santos C (2010) Differential aluminium changes on nutrient accumulation and root differentiation in an Al sensitive vs. tolerant wheat. Environ Exp Bot 68:91–98. doi:10.1016/j.envexpbot.2009.10.005

    Article  CAS  Google Scholar 

  • Simões CC, Melo JO, Magalhaes JV, Guimarães CT (2012) Genetic and molecular mechanisms of aluminium tolerance in plants. Genet Mol Res 11:1949–1957. doi:10.4238/2012.July.19.14

    Article  CAS  Google Scholar 

  • Singh VP, Tripathi DK, Kumar D, Chauhan DK (2011) Influence of exogenous silicon addition on aluminium tolerance in rice seedlings. Biol Trace Elem Res 144:1260–1274

    Article  CAS  Google Scholar 

  • Singh S, Verma A, Dubey VK (2012) Effectivity of anti-oxidative enzymatic system on diminishing the oxidative stress induced by aluminium in chickpea (Cicer arietinum L.) seedlings. Braz J Plant Physiol 24:47–54. doi:10.1590/S1677-04202012000100007

    Article  CAS  Google Scholar 

  • Sivaguru M, Fujiwara T, Samaj J, Baluska F, Yang ZM, Osawa H, Maeda T, Mori T, Volkmann D, Matsumoto H (2000) Aluminium-induced 1→3-β-D-glucan inhibits cell-to-cell trafficking of molecules through plasmodesmata. A new mechanism of aluminium toxicity in plants. Plant Physiol 124:991–1005

    Article  CAS  Google Scholar 

  • Slugeňová K, Ditmarová Ľ, Kurjak D, Váľka J (2011) Drought and aluminium as stress factors in Norway spruce (Picea abies [L.] Karst) seedlings. J For Sci 57:547–554

    Article  Google Scholar 

  • Sun Q, Bin SRF, Zhao XQ, Chen RF, Dong XY (2008) Phosphorus enhances Al resistance in Al-resistant Lespedeza bicolor but not in Al-sensitive L. cuneata under relatively high Al stress. Ann Bot 102:795–804. doi:10.1093/aob/mcn166

    Article  CAS  Google Scholar 

  • Tamás L, Huttová J, Mistrík I, Simonovicová M, Siroká B (2006) Aluminium-induced drought and oxidative stress in barley roots. J Plant Physiol 163:781–784. doi:10.1016/j.jplph.2005.08.012

    Article  CAS  Google Scholar 

  • Tan K, Keltjens WG (1990) Interaction between aluminium and phosphorus in sorghum plants. Plant and Soil 23:15–23. doi:10.1007/BF00010927

    Article  Google Scholar 

  • Tan K, Keltjens WG (1995) Analysis of acid-soil stress in sorghum genotypes with emphasis on aluminium and magnesium interactions. Plant and Soil 171:147–150

    Article  CAS  Google Scholar 

  • Taylor GJ (1988) Mechanisms of aluminium tolerance in Triticum aestivum (wheat). V. Nitrogen nutrition, plant-induced pH and tolerance to aluminium: correlation without causality? Can J Bot 66:694–699

    Article  CAS  Google Scholar 

  • Taylor WK, MacFie SM (1994) Modelling the potential for B amelioration of aluminium toxicity using the Weibull function. Can J Bot 72:1187–1196

    Article  CAS  Google Scholar 

  • Tesfaye M, Temple SJ, Allan DL, Vance CP, Samac DA (2001) Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminium. Plant Physiol 127:1836–1844. doi:10.1104/pp.010376

    Article  CAS  Google Scholar 

  • Too EJ, Carlsson AS, Onkware AO, Were BA, Geleta M, Bryngelsson T, Gudu S (2014) Cell membrane integrity, callose accumulation, and root growth in aluminium-stressed sorghum seedlings. Biol Plant 58:768–772. doi:10.1007/s10535-014-0455-0

    Article  CAS  Google Scholar 

  • Vardar F, Ar E, Gözük N (2006) Effects of aluminium on in vitro root growth and seed germination of tobacco (Nicotiana tabacum L.). Adv Food Sci 28:85–88

    CAS  Google Scholar 

  • Wahyudi I, Handayanto E (2015) The potential of legume tree prunings as organic matters for improving phosphorus availability in an acid soil. J Degrad Min Lands Manage 2:259–266. doi:10.15243/jdmlm.2014.022.259

    Article  Google Scholar 

  • Wang Y, Stass A, Horst WJ (2004) Apoplastic binding of aluminium is involved in silicon-induced amelioration of aluminium toxicity in maize. Plant Physiol 136:3762–3770. doi:10.1104/pp.104.045005

    Article  CAS  Google Scholar 

  • Wang J, Raman H, Zhang G, Mendham N, Zhou M (2006) Aluminium tolerance in barley (Hordeum vulgare L.): physiological mechanisms, genetics and screening methods. J Zhejiang Univ Sci B 7:769–787. doi:10.1631/jzus.2006.B0769

    Article  CAS  Google Scholar 

  • Wang TZ, Tian QY, Wang BL, Zhao MG, Zhang WH (2014) Genome variations account for different response to three mineral elements between Medicago truncatula ecotypes Jemalong A17 and R108. BMC Plant Biol 14:1–11. doi:10.1186/1471-2229-14-122

    Article  CAS  Google Scholar 

  • Wang W, Zhao XQ, Chen RF, Dong XY, Lan P, Ma JF, Shen RF (2015) Altered cell wall properties are responsible for ammonium-reduced aluminium accumulation in rice roots. Plant Cell Environ 38:1382–1390. doi:10.1111/pce.12490

    Article  CAS  Google Scholar 

  • Watanabe T, Jansen J, Osaki M (2006) Al–Fe interactions and growth enhancement in Melastoma Malabathricum and Miscanthus sinensis dominating acid sulphate soils. Plant Cell Environ 29:2124–2132

    Article  CAS  Google Scholar 

  • Watanabe T, Misawa S, Hiradate S, Osaki M (2008) Root mucilage enhances aluminium accumulation in Melastoma malabathricum, an aluminium accumulator. Plant Signal Behav 3:603–605. doi:10.1111/j.1469-8137.2008.02397.x

    Article  CAS  Google Scholar 

  • White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92:487–511

    Article  CAS  Google Scholar 

  • Whitmore AP, Whalley WR, Bird NR, Watts CW, Gregory AS (2011) Estimating soil strength in the rooting zone of wheat. Plant and Soil 339:363–375. doi:10.1007/s11104-010-0588-7

    Article  CAS  Google Scholar 

  • Wu FB, Zhang GP (2002) Genotypic variation in kernel heavy metal concentrations in barley and as affected by soil factors. J Plant Nutr 25(6):1163–1173. doi:10.1081/PLN-120004380

    Article  CAS  Google Scholar 

  • Xia J, Yamaji N, Kasai T, Ma JF (2010) Plasma membrane-localized transporter for aluminium in rice. Proc Natl Acad Sci U S A 107:18381–18385. doi:10.1073/pnas.1004949107

    Article  Google Scholar 

  • Yamamoto Y, Kobayashi Y, Matsumoto H (2001) Lipid peroxidation is an early symptom triggered by aluminium, but not the primary cause of elongation inhibition in pea roots. Plant Physiol 125:199–208. doi:10.1104/pp.125.1.199

    Article  CAS  Google Scholar 

  • Yang YH, Gu HJ, Fan WY, Bilkisu A (2004) Effects of boron on aluminium toxicity on seedlings of two soybean cultivars. Water Air Soil Pollut 154:239–248

    Article  CAS  Google Scholar 

  • Yang JL, Li YY, Zhang YJ, Zhang SS, Wu YR, Wu P, Zheng SJ (2008) Cell Wall polysaccharides are specifically involved in the exclusion of aluminium from the rice root apex. Plant Physiol 146:602–611. doi:10.1104/pp.107.111989

    Article  CAS  Google Scholar 

  • Yang ZB, Eticha D, Rotter B, Rao IM, Horst WJ (2011) Physiological and molecular analysis of polythylene glycol-induced reduction of aluminium accumulation in the root tips of common bean (Phaseolus vulgaris). New Phytol 192:99–113. doi:10.1111/j.1469-8137.2011.03784.x

    Article  CAS  Google Scholar 

  • Yu M, Goldbach HE (2007) Influence of boron on Al absorption and Ca release of root border cells of pea (Pisum sativum). In: Xu F, Goldbach HE, Brown PH, Bell RW, Fujiwara T, Hunt CD, Goldberg S, Shi L (eds), Advances in plant and animal boron nutrition. Proceedings of the 3rd international symposium on all aspects of plant and animal boron nutrition, pp 63–68. ISBN: 978-1-4020-5381-8

    Google Scholar 

  • Zhang WH, Rengel Z (1999) Aluminium induces an increase in cytoplasmic calcium in intact wheat root apical cells. Aust J Plant Physiol 26:401–409

    CAS  Google Scholar 

  • Zhang H, Jiang Z, Qin R, Zhang H, Zou J, Jiang W, Liu D (2014) Accumulation and cellular toxicity of aluminium in seedling of Pinus massoniana. BMC Plant Biol 14:1–16. doi:10.1186/s12870-014-0264-9

    Article  CAS  Google Scholar 

  • Zhang YK, Zhu DF, Zhang YP, Chen HZ, Xiang J, Lin XQ (2015) Low pH-induced changes of antioxidant enzyme and ATPase activities in the roots of rice (Oryza sativa L.) seedlings. PLoS One 10:1–12. doi:10.1371/journal.pone.0116971

    Article  CAS  Google Scholar 

  • Zhao Z, Ma JF, Sato K, Takeda K (2003) Differential Al resistance and citrate secretion in barley (Hordeum vulgare L.). Planta 217:794–800. doi:10.1007/s00425-003-1043-2

    Article  CAS  Google Scholar 

  • Zheng SJ (2010) Crop production on acidic soils: overcoming aluminium toxicity and phosphorus deficiency. Ann Bot 106:183–184. doi:10.1093/aob/mcq134

    Article  Google Scholar 

  • Zheng SJ, Yang JL, He YF, Yu XH, Zhang L, You JF, Shen RF, Matsumoto H (2005) Immobilization of aluminium with phosphorus in roots is associated with high aluminium resistance in buckwheat. Plant Physiol 138:297–303. doi:10.1104/pp.105.059667

    Article  CAS  Google Scholar 

  • Zheng L, Lan P, Shen RF, Li WF (2014) Proteomics of aluminium tolerance in plants. Proteomics 14:566–578. doi:10.1002/pmic.201300252

    Article  CAS  Google Scholar 

  • Zhou XX, Yang LT, Qi YP, Guo P, Chen LS (2015) Mechanisms on boron-induced alleviation of aluminium-toxicity in Citrus grandis seedlings at a transcriptional level revealed by cDNA-AFLP analysis. PLoS One 10(3):e0115485. doi:10.1371/journal.pone.0115485

    Article  CAS  Google Scholar 

  • Zhu XF, Shi YZ, Lei GJ, Fry SC, Zhang BC, Zhou YH et al (2012) XTH31, encoding an in vitro XEH/XET-active enzyme, regulates aluminium sensitivity by modulating in vivo XET action, cell wall xyloglucan content, and aluminium binding capacity in Arabidopsis. Plant Cell 24:4731–4747. doi:10.1105/tpc.112.106039

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Nosalewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Siecińska, J., Nosalewicz, A. (2016). Aluminium Toxicity to Plants as Influenced by the Properties of the Root Growth Environment Affected by Other Co-Stressors: A Review. In: de Voogt, P. (eds) Reviews of Environmental Contamination and Toxicology Volume 243. Reviews of Environmental Contamination and Toxicology, vol 243. Springer, Cham. https://doi.org/10.1007/398_2016_15

Download citation

Publish with us

Policies and ethics