Skip to main content

Summary

Autologous tubular tissues as small caliber vascular prostheses were created in vivo using tissue engineering. We named them “Biotubes”. The six kinds of polymeric rods made of polyethylene (PE), poly-fluoroacetate (PFA), poly-methyl methacrylate (PMMA), segmented poly-urethane (PU), polyvinyl chloride (PVC) and silicone (Si) as a mold were embedded in the dorsal skin of six of New Zealand White rabbits. Biotubes were formed after 1 month by fibrous tissue encapsulation around the polymeric implant except PFA. None of the Biotubes were ruptured when a hydrostatic pressure was applied up to 200 mmHg. The wall thickness of the Biotubes ranged from 50 to 200 µm depending on the implant materials in the order PFA<PVC<PMMA <PU<PE. The tissue mostly consisted of fibroblasts and collagen-rich extracellular matrices. The tissue created by Si rod was relatively firm and inelastic and the one created by PMMA was relatively soft. For PMMA, PE and PVC the stiffness parameter (β value; one of the indexes for compliance) of the Biotubes was similar to those of the human coronary, femoral and carotid arteries, respectively. Biotubes, autologous tubular tissues, can be applied for use as small caliber vessels and are ideal prostheses because of avoidance of immunological rejection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott WM, Megerman J, Hasson JE, L’Italien G, Warnock DF (1987) Effect of compliance mismatch on vascular graft patency. J Vasc Surg 5:376–382

    Article  PubMed  CAS  Google Scholar 

  • Asahara T, Isner JM (2002) Endothelial progenitor cells for vascular regeneration. J Hematother Stem Cell Res 11:171–178

    Article  PubMed  Google Scholar 

  • Campbell JH, Efendy JE, Campbell GR (1999) Novel vascular graft grown within recipient’s own peritoneal cavity. Circ Res 85:1173–1178

    PubMed  CAS  Google Scholar 

  • Hallin RW, Sweetman WR (1976) The sparks’ mandril graft. A seven year follow-up of mandril grafts placed by Charles H. Sparks and his associates. Am J Surg 132:221–223

    Article  PubMed  CAS  Google Scholar 

  • Hayashi K, Handa H, Nagasawa S, Okumura A, Moritake K, (1980) Stiffness and elastic behavior of human intecranial and extracranial arteries. J Biomec 13:175–184

    Article  CAS  Google Scholar 

  • Hayashi K, Nakamura T (1985) Material test system for the evaluation of mechanical properties of biomaterials. J Biomed Mater Res 19:133–144

    Article  PubMed  CAS  Google Scholar 

  • Hibino N, Shin’oka T, Kurosawa H (2003) Long-term histologic findings in pulmonary srteries reconstruction with autologous pericardium. N Engl J Med 348:865–867

    Article  PubMed  Google Scholar 

  • Ishibashi K, Matsuda T (1994) Reconstruction of a hybrid vascular grafs hierarchically layered with three cell types. ASAIO J 40:M284–M290

    Article  PubMed  CAS  Google Scholar 

  • Isner JM, Kaka C, Kawamoto A, Asahara T (2001) Bone marrow as a source of endothelial cells for natural and iatrogenic vascular repair. Ann NY Avad Sci 953:75–84

    Article  CAS  Google Scholar 

  • Kaushal S, Amiel GE, Guleserian KJ, Shapira OM, Perry T, Sutherland FW, Rabkin E, Moran AM, Schoen FJ, Atala A, Soker S, Brischoff J, Mayer JE Jr (2001) Fabrication small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat Med 7:1035–1040

    Article  PubMed  CAS  Google Scholar 

  • Kinley CE, Marble AE (1980) Compliance: a continuing problem with vascular grafts. J Cardiovasc Surg 21:163–170

    CAS  Google Scholar 

  • Kott I, Peirce EC II, Mitty HA, Geller SA, Jacobson JH II (1973) The tissue tube as a vascular prosthesis. Arch Surg 106:206–207

    PubMed  CAS  Google Scholar 

  • Matsuda T, Miwa H (1995) A hybrid vascular model biomimicking the hierarchic structure of arterial wall: neointimal stability and neoarterial regeneration process under arterial circulation. J Thorac Cardiovasc Surg 110:988–997

    PubMed  CAS  Google Scholar 

  • Miwa H, Matsuda T (1994) An integrated approach to the design and engineering of hybrid arterial prosthesis. J Vasc Surg 19:658–667

    PubMed  CAS  Google Scholar 

  • Nakayama Y, Ishibashi-Ueda H, Takamizawa K (2004) In vivo Tissue-engineered Small Caliber Arterial Graft Prosthesis Consisting of Autologous Tissue (Biotube). Cell Transplantation (in press)

    Google Scholar 

  • Nishikawa S (1997) Embryonic stem cells as a source of hematopic and vascular endothelial cells in vitro. J Albergy Clin Immunol 100:S102–S104

    Article  CAS  Google Scholar 

  • Peirce EC II (1953) Autologous tissue tubes for aortic grafts in dogs. Surgery 33:648–657

    PubMed  Google Scholar 

  • Pevec WC, Darling RC, L’Italien GJ, Abbott WM (1992) Femoropopliteal reconstruction with knitted, non velelour Dacron versus expanded polytetrafluoroethylene. J Vasc Surg 16:60–65

    Article  PubMed  CAS  Google Scholar 

  • Seifalian AM, Salacinski HJ, Tiwari A, Edwards A, Bowald S, Hamilton G (2003) In vivo biostability of a poly (carbonate-urea) urethane graft. Biomaterials 24:2549–2557

    Article  PubMed  CAS  Google Scholar 

  • Shin’oka T, Shum-Tim D, Ma PX, Tanel RE, Isogai N, Langer R, Vacanti JP, Mayer JE (1998) Creation of viable pulmonary artery autografts through tissue engineering. J Thorac Cardiovasc Surg 115:536–545, discussion:545–546

    Article  CAS  Google Scholar 

  • Shin’oka T, Imai Y, Ikada Y (2001) Transplantation of a tissue engineered pulmonary artery. N Engl J Med 344:532–533

    Article  PubMed  CAS  Google Scholar 

  • Shirota T, He H, Yasui H, Matsuda T (2003) Human endothelial progenitor cell-seeded hybrid graft: proliferative and antithrombogenic potentials in vitro and fabricated processing. Tissue Eng 9:127–136

    Article  PubMed  CAS  Google Scholar 

  • Sonoda H, Takamizawa K, Nakayama Y, Yasui H, Matsuda T (2003) Coaxial double-tubular compliant arterial graft prosthesis: time-dependent morphogenesis and compliance changes after implantation. J Biomed Mater Res 65A:170–181

    Article  CAS  Google Scholar 

  • Sparks CH (1972) Silicone mandril method of femororopopliteal artery bypass. Clinical experience and surgical technics. Am J Surg 124:244–249

    Article  PubMed  CAS  Google Scholar 

  • Stewart SF, Lyman DJ (1992) Effects of a vascular graft/natural artery compliance mismatch on pulsatile flow. J Biomech 25:297–310

    Article  PubMed  CAS  Google Scholar 

  • Takamizawa K, Hayashi K (1987) Stain energy density function and uniform strain hypothsis for arterial mechanics. J Biomech 20:7–17

    Article  PubMed  CAS  Google Scholar 

  • Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishikawa S, Yurugi T, Naito M, Nakao K, Nishikawa S (2000) Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408:92–96

    Article  PubMed  CAS  Google Scholar 

  • Zdrahala RJ, Zdrahala IJ (1999) Biomedical applications of polyurethanes: a review of past promises, present realities, and a vibrant future. J Biomater Appl 14:67–90

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Ishibashi-Ueda, H., Nakayama, Y. (2005). Biotube Technology for a Novel Tissue-Engineered Blood Vessels. In: Mori, H., Matsuda, H. (eds) Cardiovascular Regeneration Therapies Using Tissue Engineering Approaches. Springer, Tokyo. https://doi.org/10.1007/4-431-27378-6_8

Download citation

  • DOI: https://doi.org/10.1007/4-431-27378-6_8

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-23925-3

  • Online ISBN: 978-4-431-27378-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics