Skip to main content

Summary

Rubisco is an inefficient enzyme; this inefficiency is greatest when CO2 availability at the site of Rubisco is low. We hypothesise that the selection pressure for a more efficient Rubisco will be greatest in species growing under CO2 limited conditions, particularly when low light levels reduce the cost effectiveness of a carbon concentrating mechanism. We determined the specificity factor for four marine diatoms, Thalassiosira antarctica, Skeletonema costatum, Chaetoceros socialis, and Thalassiosira hyalina adapted to the arctic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersson I, Taylor TC (2003) Structural framework for catalysis and regulation in ribulose-1,5-bisphosphate carboxylase/oxygenase. Arch Biochem Biophys 414:130–140

    Article  PubMed  CAS  Google Scholar 

  • Badger MR, Andrews JT, Whitney SM, Ludwig M, Yellowlees DC, Leggat W, Price GD (1998) The diversity and co-evolution of Rubisco, plastid, pyrenoid, and chloroplast-based CO2-concentrating mechanisms in algae. Can J Bot 76:1043–1071

    Article  Google Scholar 

  • de Baar HJW (1994) von Liebig’s Law of the Minimum and Plankton Ecology (1899–1991) Prog Oceanog 33:347–386

    Article  Google Scholar 

  • Field CB, Behrenfeld J, Randerson JT, Falkowski PG (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240

    Article  PubMed  CAS  Google Scholar 

  • Guillard RRL, Hellebust JA (1971) Growth and production of extracellular substances by two strains of Phaeocystis pouchetii. J Phycol 7:330–338

    Article  CAS  Google Scholar 

  • Hobson LA, Morris WJ, Guest KP (1988) Varying photoperiod, ribulose-l,5-bisphosphate carboxylase and CO2 uptake in Thalassiosira fluviatilis. Plant Physiol 79:833–837

    Google Scholar 

  • Hwang S-R, Tabita FR (1991) Cotranscription, deduced primary structure and expression of the chloroplast-encoded rbcL and rbcS genes of the marine diatom Cylindrotheca sp. Strain N1. J Biol Chem 266:6271–6279

    PubMed  CAS  Google Scholar 

  • Jordan DB, Ogren WL (1981) Species variation in the specificity of ribulose bisphosphate carboxylase/oxygenase. Nature 291:513–515

    Article  CAS  Google Scholar 

  • Kane HJ, Viil J, Entsch B, Paul K, Morell MK, Andrews TJ (1994) An improved method for measuring the CO2/O2 specificity of Ribulose bisphosphate Carboxylase Oxygenase. Aust J Pl Physiol 21:449–461

    Article  CAS  Google Scholar 

  • Kristiansen S, Farbrot T, Wheeler PA (1994) Nitrogen cycling in the Barents Sea-Seasonal dynamics of new and regenerated production in the marginal ice zone. Limnol Oceanogr 39:1630–1642

    CAS  Google Scholar 

  • Laing WA, Ogren WL, Hageman RH (1974) Regulation of soybean net photosynthetic CO2 fixation by the interaction of CO2, O2 and ribulose-l,5-bisphosphate carboxylase. Plant Physiol 54:678–685

    Article  PubMed  CAS  Google Scholar 

  • Ogren WL, Bowes G (1971) Ribulose diphosphate carboxylase regulates soybean photorespiration. Nature New Biol 230:159–160

    PubMed  CAS  Google Scholar 

  • Parry MAJ, Keys AJ, Gutteridge S (1989) Variation in the specificity factor of C3 higher plant Rubiscos determined by the total consumption of ribulose-P2. J Exp Bot 40:317–320

    Article  CAS  Google Scholar 

  • Parry MAJ, Delgado E, Vadell J, Keys AJ, Lawlor DW, Medrano H (1993) water stress and the diurnal activity of ribulose-l,5-bisphosphate carboxylase in field grown Nicotiana tabacum genotypes selected for survival at low CO2 concentrations. Plant Physiol Biochem 31:113–120

    CAS  Google Scholar 

  • Parry MAJ, Andralojc PJ, Mitchell RAC, Madgwick PJ, Keys AJ (2003) Manipulation of Rubisco: the amount, activity, function and regulation. J Exp Bot 54:1321–1333

    Article  PubMed  CAS  Google Scholar 

  • Thomas S, Pahlow M, Wolf-Gladrow DA (2001) Model of the carbon concentrating mechanism in chloroplasts of eukaryotic algae. J Theor Biol 208:295–313

    Article  CAS  Google Scholar 

  • Tortell PD (2000) Evolutionary and ecological perspectives on carbon acquisition in phytoplankton. Limmol Oceanogr 45:744–750

    Article  CAS  Google Scholar 

  • Uemura K, Anwaruzzaman K, Miyachi S, Yokota A (1997) Ribulose-l,5-bisphosphate carboxylase/oxygenase from thermophilic red algae with a strong specificity for CO2 fixation. Biochem Biophys Res Comm 233:568–571

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Tokyo

About this paper

Cite this paper

Haslam, R.P. et al. (2005). Specificity of diatom Rubisco. In: Omasa, K., Nouchi, I., De Kok, L.J. (eds) Plant Responses to Air Pollution and Global Change. Springer, Tokyo. https://doi.org/10.1007/4-431-31014-2_18

Download citation

Publish with us

Policies and ethics