Skip to main content

Weber’s Red-Edge Effect that Changed the Paradigm in Photophysics and Photochemistry

  • Chapter
  • First Online:
Perspectives on Fluorescence

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 17))

Abstract

Weber’s red-edge effect is formulated as follows: “In rigid and highly viscous environments the excited-state energy transfer producing depolarization of fluorescence emission in concentrated dye solutions stops to be observed when fluorescence is excited at the red (long wavelength) edge of absorption spectrum.” After its discovery, it led to finding of a number of new wavelength-selective effects in spectral shifts, quenching, anisotropy and lifetimes, and also in different excited-state reactions forming a new vision of structural disorder and molecular dynamics in condensed media. These effects were consistently explained based on a new paradigm that accounts for statistical distribution of fluorescence emitters on their interaction energy with the environment leading to static or dynamic inhomogeneous broadening of spectra and to directional excited-state energy homo-transfer. These phenomena can be modulated by the energy of the excitation quanta. Their description, optimal conditions for their observation, information that they carry, and overview of their different applications are the subject of this chapter.

Another area in which the interpretation of the data of fluorescence in terms of molecular properties is lacking is that of the red-edge effects . . . . Investigation of this spectral region is often important in biological samples because it offers the best possibilities of detecting compositional heterogeneities.

G. Weber (1997) Methods Enzymol. 278, 13.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weber G (1960) Fluorescence-polarization spectrum and electronic-energy transfer in tyrosine, tryptophan and related compounds. Biochem J 75(2):335

    Article  CAS  Google Scholar 

  2. Anderson SR, Weber G (1969) Fluorescence polarization of the complexes of 1-anilino-8-naphthalenesulfonate with bovine serum albumin. Evidence for preferential orientation of the ligand. Biochemistry 8(1):371–377

    Article  CAS  Google Scholar 

  3. Weber G, Shinitzky M (1970) Failure of energy transfer between identical aromatic molecules on excitation at the long wave edge of the absorption spectrum. Proc Natl Acad Sci USA 65(4):823–830

    Article  CAS  Google Scholar 

  4. Gaviola E, Pringsheim P (1924) Über den Einfluß der Konzentration auf die Polarisation der Fluoreszenz von Farbstofflösungen. Z Physik 24:24–36

    Article  CAS  Google Scholar 

  5. Förster T (1948) Zwischenmolekulare energiewanderung und fluoreszenz. Ann Physik 437(1‐2):55–75

    Article  Google Scholar 

  6. Vavilov VI, Galanin MD (1949) Emission and absorption of light in the system of inductively coupled molecules. Dokl Akad Nauk USSR 67:811–818

    CAS  Google Scholar 

  7. Weber G (1954) Dependence of the polarization of the fluorescence on the concentration. Trans Faraday Soc 50:552–555

    Article  CAS  Google Scholar 

  8. Terenin AN (1967) Photonics of dye molecules. Nauka, Leningrad

    Google Scholar 

  9. Birks JB (1975) Organic molecular photophysics. Wiley, New York

    Google Scholar 

  10. Turro NJ (1991) Modern molecular photochemistry. University Science Books, Sausalito, CA

    Google Scholar 

  11. Turro NJ, Ramamurthy V, Scaiano JC (2009) Principles of molecular photochemistry: an introduction. University Science Books, Sausalito, CA

    Google Scholar 

  12. Kasha M (1950) Characterization of electronic transitions in complex molecules. Disc Faraday Soc 9:14–19

    Article  Google Scholar 

  13. Lamola AA, Turro NJ (1969) Energy transfer and organic photochemistry, vol 14. Interscience Publishers, New York

    Google Scholar 

  14. Galley WC, Purkey RM (1970) Role of heterogeneity of the solvation site in electronic spectra in solution. Proc Natl Acad Sci USA 67(3):1116–1121

    Article  CAS  Google Scholar 

  15. Rubinov A, Tomin V (1970) Bathochromic luminescence in solutions of organic dyes at low temperatures. Opt Spektrosk USSR 29(6):578

    Google Scholar 

  16. Milton JG, Purkey RM, Galley WC (1978) Kinetics of solvent reorientation in hydroxylated solvents from exciting-wavelength dependence of chromophore emission-spectra. J Chem Phys 68(12):5396–5404

    Article  CAS  Google Scholar 

  17. Rudik K, Pikulik L (1971) Effect of exciting light on fluorescence spectra of phthalimide solutions. Opt Spektrosk USSR 30(2):147

    Google Scholar 

  18. Gulis I, Komyak A (1977) Peculiarities of inductive-resonance energy transfer in the conditions of organic molecule electronic levels inhomogeneous broadening. J Appl Spectrosc 27(5):841–845

    Article  CAS  Google Scholar 

  19. Pavlovich V (1976) Dependence of the spectra of excitation of dipole molecule solutions on the recording wavelength. J Appl Spectrosc 25(3):1141–1147

    Article  Google Scholar 

  20. Azumi T, Itoh KI, Shiraishi H (1976) Shift of emission band upon the excitation at the long wavelength absorption edge. III. Temperature dependence of the shift and correlation with the time dependent spectral shift. J Chem Phys 65(7):2550–2555

    Google Scholar 

  21. Nemkovich N, Matseyko V, Tomin V (1980) Intermolecular up-relaxation in phthalimide solutions at excitation by frequency tuned dye laser. Opt Spektrosk USSR 49(2):274–283

    CAS  Google Scholar 

  22. Rubinov AN, Tomin VI, Bushuk BA (1982) Kinetic spectroscopy of orientational states of solvated dye molecules in polar solutions. J Luminescence 26:377–391

    Article  CAS  Google Scholar 

  23. Gakamsky D, Nemkovich N, Rubinov A (1992) Wavelength-dependent rotation of dye molecules in a polar solution. J Fluorescence 2(2):81–92

    Article  CAS  Google Scholar 

  24. Nemkovich N, Rubinov A (1995) Spectral inhomogeneity and wavelength-dependent rotation of probe molecules in membranes. J Fluorescence 5(3):285–294

    Article  CAS  Google Scholar 

  25. Nemkovich N, Rubinov A, Tomin V (1981) Kinetics of luminescence spectra of rigid dye solutions due to directed electronic energy transfer. J Luminescence 23(3):349–361

    Article  CAS  Google Scholar 

  26. Rubinov A, Zen'kevich E, Nemkovich N, Tomin V (1982) Directed energy transfer due to orientational broadening of energy levels in photosynthetic pigment solutions. J Luminescence 26(4):367–376

    Article  CAS  Google Scholar 

  27. Macgregor RB, Weber G (1981) Fluorophores in polar media: spectral effects of the Langevin distribution of electrostatic interactions. Ann N Y Acad Sci 366(1):140–154

    Article  CAS  Google Scholar 

  28. Mazurenko YT (1983) Statistics of solvation and solvatochromy. Opt Spektrosk USSR 55(3):471–478

    CAS  Google Scholar 

  29. Gorbatsevich S, Gulis I, Komyak A (1982) Molecular distribution function over the 0-0 transition frequencies in polar solutions. J Appl Spectrosc 36(3):332–337

    Article  Google Scholar 

  30. Demchenko AP (1982) On the nanosecond mobility in proteins. Edge excitation fluorescence red shift of protein-bound 2-(p-toluidinylnaphthalene)-6-sulfonate. Biophys Chem 15:101–109

    Article  CAS  Google Scholar 

  31. Demchenko AP (1986) Ultraviolet spectroscopy of proteins. Springer Verlag, Berlin-Heidelberg-New York

    Book  Google Scholar 

  32. Demchenko AP, Shcherbatska NV (1985) Nanosecond dynamics of charged fluorescent probes at the polar interface of a membrane phospholipid bilayer. Biophys Chem 22:131–143

    Article  CAS  Google Scholar 

  33. Demchenko AP, Ladokhin AS (1988) Red-Edge-Excitation Fluorescence Spectroscopy of Indole and Tryptophan. Eur Biophys J 15(6):369–379

    Article  CAS  Google Scholar 

  34. Demchenko AP (1991) Fluorescence and dynamics in proteins. In: Lakowicz JR (ed) Topics in fluorescence spectroscopy, vol 3. Plenum, New York, pp 61–111

    Google Scholar 

  35. Demchenko AP (2002) The red-edge effects: 30 years of exploration. Luminescence 17(1):19–42

    Article  CAS  Google Scholar 

  36. Mulkherjee S, Chattopadhyay A (1995) Wavelength-selective fluorescence as a novel tool to study organization and dynamics in complex biological systems. J Fluorescence 5:237–246

    Article  Google Scholar 

  37. Chattopadhyay A, Haldar S (2014) Dynamic insight into protein structure using red edge excitation shift. Ac Chem Res 47(1):12–19

    Article  CAS  Google Scholar 

  38. Demchenko AP (1986) Fluorescence analysis of protein dynamics. Essays Biochem 22:120–157

    CAS  Google Scholar 

  39. Lakowicz JR (2000) On spectral relaxation in proteins. Photochem Photobiol 72:421–437

    Article  CAS  Google Scholar 

  40. Haldar S, Chaudhuri A, Chattopadhyay A (2011) Organization and dynamics of membrane probes and proteins utilizing the red edge excitation shift. J Phys Chem B 115:5693–5706

    Article  CAS  Google Scholar 

  41. Raghuraman H, Kelkar DA, Chattopadhyay A (2005) Novel insights into protein structure and dynamics utilizing the red edge excitation shift approach. In: Reviews in fluorescence 2005. Springer, New York, pp 199–222

    Google Scholar 

  42. Chattopadhyay A, Haldar S (2013) Dynamic insight into protein structure utilizing red edge excitation shift. Acc Chem Res 47(1):12–19

    Article  CAS  Google Scholar 

  43. Chattopadhyay A (2003) Exploring membrane organization and dynamics by the wavelength-selective fluorescence approach. Chem Phys Lipids 122(1-2):3–17

    Article  CAS  Google Scholar 

  44. Hu Z, Margulis CJ (2007) Room-temperature ionic liquids: slow dynamics, viscosity, and the red edge effect. Acc Chem Res 40(11):1097–1105

    Article  CAS  Google Scholar 

  45. Nemkovich NA, Rubinov AN, Tomin VI (1991) Inhomogeneous broadening of electronic spectra of dye molecules in solutions. In: Lakowicz JR (ed) Topics in fluorescence spectroscopy, vol 2. Plenum, New York, pp 367–428

    Chapter  Google Scholar 

  46. Bushuk B, Rubinov A, Stupak A (1987) Inhomogeneous broadening of spectra of dye solutions due to intermolecular hydrogen bonding. J Appl Spectrosc 47(6):1251–1254

    Article  Google Scholar 

  47. Gafert J, Friedrich J, Vanderkooi JM, Fidy J (1995) Structural changes and internal fields in proteins: a hole-burning Stark effect study of horseradish peroxidase. J Phys Chem 99(15):5223–5227

    Article  CAS  Google Scholar 

  48. Logovinsky V, Kaposi A, Vanderkooi J (1993) Native and denatured Zn cytochrome c studied by fluorescence line narrowing spectroscopy. Biochim Biophys Acta 1161(2):149–160

    Article  CAS  Google Scholar 

  49. Schomacker K, Champion P (1986) Investigations of spectral broadening mechanisms in biomolecules: cytochrome-c. J Chem Phys 84(10):5314–5325

    Article  CAS  Google Scholar 

  50. Klán P, Wirz J (2009) Photochemistry of organic compounds: from concepts to practice. Wiley, New York

    Book  Google Scholar 

  51. Rätsep M, Pajusalu M, Freiberg A (2009) Wavelength-dependent electron–phonon coupling in impurity glasses. Chem Phys Lett 479(1):140–143

    Article  CAS  Google Scholar 

  52. Jankowiak R, Reppert M, Zazubovich V, Pieper Jr, Reinot T (2011) Site selective and single complex laser-based spectroscopies: a window on excited state electronic structure, excitation energy transfer, and electron–phonon coupling of selected photosynthetic complexes. Chem Rev 111(8):4546–4598

    Google Scholar 

  53. Reppert M, Naibo V, Jankowiak R (2010) Accurate modeling of fluorescence line narrowing difference spectra: Direct measurement of the single-site fluorescence spectrum. J Chem Phys 133(1):014506

    Article  CAS  Google Scholar 

  54. Tomin V, Rubinov A (1981) Spectroscopy of inhomogeneous configurational broadening in dye solutions. J Appl Spectrosc 35(2):855–865

    Article  Google Scholar 

  55. Personov R, Al'Shits E, Bykovskaya L-A (1972) The effect of fine structure appearance in laser-excited fluorescence spectra of organic compounds in solid solutions. Optics Communs 6(2):169–173

    Article  CAS  Google Scholar 

  56. Wagie HE, Geissinger P (2012) Hole-burning spectroscopy as a probe of nano-environments and processes in biomolecules: a review. Appl Spectrosc 66(6):609–627

    CAS  Google Scholar 

  57. Rebane L, Gorokhovskii A, Kikas J (1982) Low-temperature spectroscopy of organic molecules in solids by photochemical hole burning. Appl Phys B 29(4):235–250

    Article  Google Scholar 

  58. Murakami H, Kinoshita S, Hirata Y, Okada T, Mataga N (1992) Transient hole‐burning and time-resolved fluorescence spectra of dye molecules in solution: Evidence for ground‐state relaxation and hole‐filling effect. J Chem Phys 97(11):7881–7888

    Article  CAS  Google Scholar 

  59. Jankowiak R, Hayes J, Small G (1993) Spectral hole-burning spectroscopy in amorphous molecular solids and proteins. Chem Rev 93(4):1471–1502

    Article  CAS  Google Scholar 

  60. Demchenko AP (2008) Site-selective red-edge effects. Chapter 4. In: Methods in enzymology, vol 450. Academic, New York, pp 59–78

    Google Scholar 

  61. Ware WR, Lee SK, Brant GJ, Chow PP (1971) Nanosecond time‐resolved emission spectroscopy: spectral shifts due to solvent‐excited solute relaxation. J Chem Phys 54(11):4729–4737

    Article  CAS  Google Scholar 

  62. Bakhshiev NG, Mazurenko YT, Piterskaya IV (1966) On the emission decay in various regions of molecule luminescence spectra in viscous solutions. Opt Spektrosk USSR 21(5):550–554

    CAS  Google Scholar 

  63. Mazurenko YT, Bakhshiev NG (1970) The influence of orientational dipolar relaxation on spectral, temporal and polarization properties of luminescence in solutions. Opt Spektrosk USSR 28:905–913

    CAS  Google Scholar 

  64. Brand L, Gohlike JR (1971) Nanosecond time-resolved fluorescence of a protein-dye complex BSA+TNS. J Biol Chem 246:2317–2324

    CAS  Google Scholar 

  65. Yang M, Richert R (2001) Observation of heterogeneity in the nanosecond dynamics of a liquid. J Chem Phys 115(6):2676–2680

    Article  CAS  Google Scholar 

  66. Richert R (2002) Heterogeneous dynamics in liquids: fluctuations in space and time. J Phys Condensed Matter 14(23):R703

    Article  CAS  Google Scholar 

  67. Maroncelli M (1993) The dynamics of solvation in polar liquids. J Mol Liquids 57:1–37

    Article  CAS  Google Scholar 

  68. Fee RS, Milsom JA, Maroncelli M (1991) Inhomogeneous decay kinetics and apparent solvent relaxation at low temperatures. J Phys Chem 95(13):5170–5181

    Article  CAS  Google Scholar 

  69. Nemkovich N, Rubinov A (1996) Spectral and spatial heterogeneity of fluorescent probes in membranes. J Appl Spectrosc 63(4):522–529

    Article  Google Scholar 

  70. Vincent M, Gallay J, Demchenko AP (1995) Solvent relaxation around the excited state of indole: analysis of fluorescence lifetime distributions and time-dependent spectral shifts. J Phys Chem 99:34931–34941

    Google Scholar 

  71. Richert R (2001) Spectral diffusion in liquids with fluctuating solvent responses: dynamical heterogeneity and rate exchange. J Chem Phys 115(3):1429–1434

    Article  CAS  Google Scholar 

  72. Lëvshin L, Struganova I, Toleutaev B (1988) Dynamics of inhomogeneous broadening of fluorescence spectra of dye solutions. J Appl Spectrosc 49(1):695–699

    Article  Google Scholar 

  73. Voropay E, Koyava V, Saechnikov V, Sarjevsky A (1980) Some effects in inhomogeneous level broadening at excitation energy transfer conditions. J Appl Spectrosc 32:457–463

    Article  Google Scholar 

  74. Kovalenko S, Schanz R, Hennig H, Ernsting N (2001) Cooling dynamics of an optically excited molecular probe in solution from femtosecond broadband transient absorption spectroscopy. J Chem Phys 115(7):3256–3273

    Article  CAS  Google Scholar 

  75. Demchenko AP, Ladokhin AS (1988) Temperature-dependent shift of fluorescence spectra without conformational changes in protein; studies of dipole relaxation in the melittin molecule. Biochim Biophys Acta 955(3):352–360

    Article  CAS  Google Scholar 

  76. Clark J, Miller P, Rumbles G (1998) Red edge photophysics of ethanolic rhodamine 101 and the observation of laser cooling in the condensed phase. J Phys Chem A 102(24):4428–4437

    Article  CAS  Google Scholar 

  77. Jameson DM, Ross JA (2010) Fluorescence polarization/anisotropy in diagnostics and imaging. Chem Rev 110(5):2685–2708

    Article  CAS  Google Scholar 

  78. Mazurenko YT, Bakhshiev N, Piterskaya I (1968) Spectral dependence of the degree of rotational depolarization of the fluorescence of complex molecules in viscous solutions. Opt Spektrosk USSR 25:46

    Google Scholar 

  79. Gakamsky DM, Goldin AA, Petrov EP, Rubinov AN (1992) Fluorescence decay time distribution for polar dye solutions with time-dependent fluorescent shift. Biophys Chem 44(1):47–60

    Article  Google Scholar 

  80. Gakamskii D, Nemkovich N, Rubinov A (1991) Molecular relaxation and rotation of dye molecules in polar solvents (A review). J Applied Spectrosc 54(2):99–111

    Article  Google Scholar 

  81. Kinoshita S, Itoh H, Murakami H, Miyasaka H, Okada T, Mataga N (1990) Solvent relaxation effect on transient hole-burning spectra of organic dyes. Chem Phys Lett 166(2):123–127

    Article  CAS  Google Scholar 

  82. Huang J, Ridsdale A, Wang J, Friedman JM (1997) Kinetic hole burning, hole filling, and conformational relaxation in heme proteins: direct evidence for the functional significance of a hierarchy of dynamical processes. Biochemistry 36(47):14353–14365

    Article  CAS  Google Scholar 

  83. Demchenko AP (1994) Protein fluorescence, dynamics and function: exploration of analogy between electronically excited and biocatalytic transition states. Biochim Biophys Acta 1209:149–164

    Article  Google Scholar 

  84. Maroncelli M, McInnis J, Fleming GR (1989) Polar solvent dynamics and electron transfer reactions. Science 243:1674–1681

    Article  CAS  Google Scholar 

  85. Bader AN, Pivovarenko VG, Demchenko AP, Ariese F, Gooijer C (2004) Influence of redistribution of electron density on the excited state and ground state proton transfer rates of 3-hydroxyflavone and its derivatives studied by Spol’skii spectroscopy. J Phys Chem B 108(29):10589–10595

    Article  CAS  Google Scholar 

  86. Marcus R, Sutin N (1985) Electron transfer in chemistry and biology. Biochim Biophys Acta 811:265–322

    Article  CAS  Google Scholar 

  87. Demchenko AP, Tang K-C, Chou P-T (2013) Excited-state proton coupled charge transfer modulated by molecular structure and media polarization. Chem Soc Rev 42(3):1379–1408

    Article  CAS  Google Scholar 

  88. Demchenko AP (1992) Does biocatalysis involve inhomogeneous kinetics? FEBS Lett 310(3):211–215

    Article  CAS  Google Scholar 

  89. Demchenko AP, Sytnik AI (1991) Site-selectivity in excited-state reactions in solutions. J Phys Chem 95:10518–10524

    Article  CAS  Google Scholar 

  90. Demchenko AP, Sytnik AI (1991) Solvent reorganizational red-edge effect in intramolecular electron transfer. Proc Natl Acad Sci USA 88(20):9311–9314

    Article  CAS  Google Scholar 

  91. Letrun R, Vauthey E (2014) Excitation wavelength dependence of the dynamics of bimolecular photoinduced electron transfer reactions. J Phys Chem Lett 5(10):1685–1690

    Article  CAS  Google Scholar 

  92. Tomin V, Heldt J (2003) The red-edge effects in Laurdan solutions. Z Naturforschung A 58(2–3):109–117

    CAS  Google Scholar 

  93. Al-Hassan KA, Rettig W (1986) Free volume sensing fluorescent probes. Chem Phys Lett 126(3–4):273–279

    Article  CAS  Google Scholar 

  94. Braun D, Rettig W (1997) Excitation energy dependence of the kinetics of charge-transfer formation. Chem Phys Lett 268(1–2):110–116

    Article  CAS  Google Scholar 

  95. Wallace-Williams SE, Møller S, Goldbeck RA, Hanson KM, Lewis JW, Lee WA, Kliger DS (1993) Excited-state s-cis rotamers produced by extreme red edge excitation of all-trans-1, 4-diphenyl-1, 3-butadiene. J Phys Chem 97(38):9587–9592

    Article  CAS  Google Scholar 

  96. Schweke D, Baumgarten H, Haas Y, Rettig W, Dick B (2005) Charge-transfer-type fluorescence of 4-(1 H-Pyrrol-1-yl) benzonitrile (PBN) and N-phenylpyrrole (PP) in cryogenic matrixes: evidence for direct excitation of the CT band. J Phys Chem A 109(4):576–585

    Article  CAS  Google Scholar 

  97. Al‐Hassan KA (1988) Edge‐excitation red shift of the fluorescence of flexible solute molecules in a poly (methyl methacrylate) polymer matrix. J Polym Sci B Polym Phys 26(8):1727–1733

    Article  Google Scholar 

  98. Józefowicz M, Heldt JR, Bajorek A, Pączkowski J (2008) Red-edge and inhomogeneous broadening effects of the electronic spectra of ethyl 5-(4-aminophenyl)-3-amino-2, 4-dicyanobenzoate. J Photochem Photobiol A: Chem 196(1):38–43

    Article  CAS  Google Scholar 

  99. Tomin V, Hubisz K (2006) Instantaneous emission spectra and molecular rotation of n-dimethylaminobenzonitrile fluorescing in the long-wavelength spectral range. Opt Spektrosk USSR 100(1):65–74

    Article  CAS  Google Scholar 

  100. Tomin V, Wlodarkiewicz A (2013) The influence of temperature on red-edge excitation effects in liquid solutions of N,N′-dimethylaminobenzonitrile. Opt Spektrosk USSR 115(1):86–93

    Article  CAS  Google Scholar 

  101. Bader AN, Pivovarenko VG, Demchenko AP, Ariese F, Gooijer C (2004) Excited state and ground state proton transfer rates of 3-hydroxyflavone and its derivatives studied by Shpol'skii spectroscopy: the influence of redistribution of electron density. J Phys Chem B 108(29):10589–10595

    Article  CAS  Google Scholar 

  102. Tomin VI, Demchenko AP, Chou P-T (2015) Thermodynamic vs. kinetic control of excited-state proton transfer reactions. J Photochem Photobiol C: Photochem Rev 22:1–18

    Article  CAS  Google Scholar 

  103. Klymchenko AS, Demchenko AP (2003) Multiparametric probing of intermolecular interactions with fluorescent dye exhibiting excited state intramolecular proton transfer. Phys Chem Chem Phys 5(3):461–468

    Article  CAS  Google Scholar 

  104. Ghosh D, Batuta S, Das S, Begum NA, Mandal D (2015) Proton transfer dynamics of 4′-N,N-dimethylamino-3-hydroxyflavone observed in hydrogen-bonding solvents and aqueous micelles. J Phys Chem B 119(17):5650–5661

    Article  CAS  Google Scholar 

  105. Ercelen S, Klymchenko AS, Demchenko AP (2003) Novel two-color fluorescence probe with extreme specificity to bovine serum albumin. FEBS Lett 538(1):25–28

    Article  CAS  Google Scholar 

  106. Demchenko AP, Ercelen S, Klymchenko AS (2002) Site-selective red-edge spectroscopy of disordered materials and microheterogeneous systems: polymers, phospholipid membranes and proteins. SPIE Int Soc Optics Photonics 4938. doi:10.1117/12.486641

  107. Suda K, Terazima M, Kimura Y (2012) Excitation wavelength dependence of photo-induced intramolecular proton transfer reaction of 4′-N, N-diethylamino-3-hydroxyflavone in various liquids. Chem Phys Lett 531:70–74

    Article  CAS  Google Scholar 

  108. Suda K, Terazima M, Sato H, Kimura Y (2013) Excitation wavelength dependence of excited state intramolecular proton transfer reaction of 4′-N,N-diethylamino-3-hydroxyflavone in room temperature ionic liquids studied by optical Kerr gate fluorescence measurement. J Phys Chem B 117(41):12567–12582

    Article  CAS  Google Scholar 

  109. Nemkovich N, Kruchenok J, Rubinov A, Pivovarenko V, Baumann W (2001) Site selectivity in excited-state intramolecular proton transfer in flavonols. J Photochem Photobiol A Chem 139(1):53–62

    Article  CAS  Google Scholar 

  110. Tomin V, Jaworski R (2013) Modulation of the proton transfer rate by excitation photons. Opt Spektrosk USSR 114(5):729–736

    Article  CAS  Google Scholar 

  111. Nicolet O, Banerji N, Pages S, Vauthey E (2005) Effect of the excitation wavelength on the ultrafast charge recombination dynamics of donor-acceptor complexes in polar solvents. J Phys Chem A 109(37):8236–8245

    Article  CAS  Google Scholar 

  112. Engelkamp H, Hatzakis NS, Hofkens J, De Schryver FC, Nolte R, Rowan AE (2006) Do enzymes sleep and work? Chem Communs 9:935

    Article  CAS  Google Scholar 

  113. Koyava V, Popechits V (1979) Directed energy transfer in solid polar dye mixtures. J Appl Spectrosc 31(6):1484–1488

    Article  Google Scholar 

  114. Koyava V, Popechits V, Sarzhevskii A (1980) Concentration depolarization of fluorescence in systems with nonuniformly broadened electronic levels. J Appl Spectrosc 32(6):597–602

    Article  Google Scholar 

  115. Demchenko AP (2013) Nanoparticles and nanocomposites for fluorescence sensing and imaging. Meth Appl Fluorescence 1(2):022001

    Article  CAS  Google Scholar 

  116. Jameson DM, Croney JC (2003) Fluorescence polarization: past, present and future. Comb Chem High Throughput Screen 6(3):167–176

    Article  CAS  Google Scholar 

  117. Moens PD, Helms MK, Jameson DM (2004) Detection of tryptophan to tryptophan energy transfer in proteins. Protein J 23(1):79–83

    Article  CAS  Google Scholar 

  118. Squire A, Verveer PJ, Rocks O, Bastiaens PI (2004) Red-edge anisotropy microscopy enables dynamic imaging of homo-FRET between green fluorescent proteins in cells. J Struct Biol 147(1):62–69

    Article  CAS  Google Scholar 

  119. Berberan-Santos MN, Pouget J, Valeur B, Canceill J, Jullien L, Lehn JM (1993) Multichromophoric cyclodextrins. 2. Inhomogeneous spectral broadening and directed energy hopping. J Phys Chem 97(44):11376–11379

    Google Scholar 

  120. Berberan-Santos MN, Canceill J, Gratton E, Jullien L, Lehn J-M, So P, Sutin J, Valeur B (1996) Multichromophoric cyclodextrins. 3. Investigation of dynamics of energy hopping by frequency-domain fluorometry. J Phys Chem 100(1):15–20

    Google Scholar 

  121. Monshouwer R, Visschers RW, van Mourik F, Freiberg A, van Grondelle R (1995) Low-temperature absorption and site-selected fluorescence of the light-harvesting antenna of Rhodopseudomonas viridis. Evidence for heterogeneity. Biochim Biophys Acta 1229(3):373–380

    Article  Google Scholar 

  122. Harriman A (2015) Artificial light-harvesting arrays for solar energy conversion. Chem Communs 51(59):11745–11756

    Article  CAS  Google Scholar 

  123. Andrews DL (2008) Energy harvesting: a review of the interplay between structure and mechanism. J Nanophotonics 2(1):022502–022525

    Google Scholar 

  124. Joly D, Delgado JL, Atienza C, Martın N (2015) Light-harvesting materials for organic electronics. Photonics Nanophotonic Struct Mat 2:311

    Google Scholar 

  125. Thiessen A, Vogelsang J, Adachi T, Steiner F, Bout DV, Lupton JM (2013) Unraveling the chromophoric disorder of poly (3-hexylthiophene). Proc Natl Acad Sci USA 110(38):E3550–E3556

    Article  CAS  Google Scholar 

  126. Xiao L, Xu Y, Yan M, Galipeau D, Peng X, Yan X (2010) Excitation-dependent fluorescence of triphenylamine-substituted tridentate pyridyl ruthenium complexes. J Phys Chem A 114(34):9090–9097

    Article  CAS  Google Scholar 

  127. Józefowicz M, Heldt JR (2011) Excitation-wavelength dependent fluorescence of ethyl 5-(4-aminophenyl)-3-amino-2, 4-dicyanobenzoate. J Fluorescence 21(1):239–245

    Article  CAS  Google Scholar 

  128. Demchenko AP, Yesylevskyy SO (2011) Interfacial behavior of fluorescent dyes. In: Advanced fluorescence reporters in chemistry and biology III. Springer, Heidelberg, pp 3–62

    Google Scholar 

  129. Sharma VK, Sahare PD, Rastogi RC, Ghoshal SK, Mohan D (2003) Excited state characteristics of acridine dyes: acriflavine and acridine orange. Spectrochim Acta A 59(8):1799–1804

    Google Scholar 

  130. Mehata M, Joshi H, Tripathi H (2001) Edge excitation red shift and charge transfer study of 6-methoxyquinoline in polymer matrices. J Luminescence 93(4):275–280

    Article  CAS  Google Scholar 

  131. Valeur B, Berberan-Santos MN (2012) Molecular fluorescence: principles and applications. Wiley, New York

    Book  Google Scholar 

  132. Berberan-Santos M, Bodunov E, Valeur B (2005) Mathematical functions for the analysis of luminescence decays with underlying distributions 1. Kohlrausch decay function (stretched exponential). Chem Phys 315(1):171–182

    Google Scholar 

  133. Edholm O, Blomberg C (2000) Stretched exponentials and barrier distributions. Chem Phys 252(1-2):221–225

    Article  CAS  Google Scholar 

  134. Datta A, Mandal D, Pal SK, Bhattacharyya K (1997) Intramolecular charge transfer processes in confined systems. Nile Red in reverse micelles. J Phys Chem B 101:10221–10225

    Article  CAS  Google Scholar 

  135. Tintu R, Nampoori V, Radhakrishnan P, Unnikrishnan N, Thomas S (2012) Cluster size and excitation wavelength dependent photoluminescence behavior of nano colloidal Ge-Se-Sb-Ga chalcogenide glass solutions. J Optoelectronics Adv Mat 14(11):918

    CAS  Google Scholar 

  136. Kawazoe T, Kobayashi K, Ohtsu M (2005) Optical nanofountain: a biomimetic device that concentrates optical energy in a nanometric region. Appl Phys Lett 86(10):103102

    Article  CAS  Google Scholar 

  137. Demchenko AP, Dekaliuk MO (2013) Novel fluorescent carbonic nanomaterials for sensing and imaging. Meth Appl Fluorescence 1(4):042001

    Article  CAS  Google Scholar 

  138. Ghosh S, Chizhik AM, Karedla N, Dekaliuk MO, Gregor I, Schuhmann H, Seibt M, Bodensiek K, Schaap IA, Schulz O (2014) Photoluminescence of carbon nanodots: dipole emission centers and electron–phonon coupling. Nano Lett 14(10):5656–5661

    Article  CAS  Google Scholar 

  139. Cushing SK, Li M, Huang F, Wu N (2013) Origin of strong excitation wavelength dependent fluorescence of graphene oxide. ACS Nano 8(1):1002–1013

    Article  CAS  Google Scholar 

  140. Scharnagl C, Reif M, Friedrich J (2005) Stability of proteins: temperature, pressure and the role of the solvent. Biochim Biophys Acta 1749(2):187–213

    Article  CAS  Google Scholar 

  141. Richert R, Elschner A, Bassler H (1986) Experimental-study of nonexponential relaxation processes in random organic-solids. Z Phys Chem Neue Folge 149:63–75

    Article  CAS  Google Scholar 

  142. Demchenko A (1997) Breaks in Arrhenius plots for enzyme reactions: the switches between different protein dynamics regimes? Comments Mol Cell Biophys 9:87–112

    CAS  Google Scholar 

  143. Moerner W, Kador L (1989) Optical detection and spectroscopy of single molecules in a solid. Phys Rev Lett 62(21):2535

    Article  CAS  Google Scholar 

  144. Ambrose W, Moerner W (1991) Fluorescence spectroscopy and spectral diffusion of single impurity molecules in a crystal. Nature 349:225–227

    Article  CAS  Google Scholar 

  145. Moerner WE (2007) New directions in single-molecule imaging and analysis. Proc Natl Acad Sci USA 104(31):12596–12602

    Article  CAS  Google Scholar 

  146. Tinnefeld P, Herten D-P, Sauer M (2001) Photophysical dynamics of single molecules studied by spectrally-resolved fluorescence lifetime imaging microscopy (SFLIM). J Phys Chem A 105(34):7989–8003

    Article  CAS  Google Scholar 

  147. Xie XS, Trautman JK (1998) Optical studies of single molecules at room temperature. Ann Rev Phys Chem 49(1):441–480

    Article  CAS  Google Scholar 

  148. Deniz AA, Mukhopadhyay S, Lemke EA (2008) Single-molecule biophysics: at the interface of biology, physics and chemistry. J Royal Soc Interface 5(18):15–45

    Article  CAS  Google Scholar 

  149. Hohlbein J, Gryte K, Heilemann M, Kapanidis AN (2010) Surfing on a new wave of single-molecule fluorescence methods. Phys Biol 7(3):031001

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander P. Demchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Demchenko, A.P. (2016). Weber’s Red-Edge Effect that Changed the Paradigm in Photophysics and Photochemistry. In: Jameson, D. (eds) Perspectives on Fluorescence. Springer Series on Fluorescence, vol 17. Springer, Cham. https://doi.org/10.1007/4243_2016_14

Download citation

Publish with us

Policies and ethics