Skip to main content

Molecular-Level Composition and Reaction Modeling for Heavy Petroleum Complex System

  • Chapter
  • First Online:
Structure and Modeling of Complex Petroleum Mixtures

Part of the book series: Structure and Bonding ((STRUCTURE,volume 168))

Abstract

A new methodology for the molecule-based modeling of heavy petroleum mixtures has been developed. Molecules in the heavy feedstock have been described in terms of three essential structural attributes (cores, side chains, and inter-core linkages) and then statistically juxtaposed into a set of representative molecular compositions that can be constrained by a set of probability density functions (pdfs). In order to obtain the optimal molecular composition, an optimization loop was employed to minimize an objective function in terms of available measurements via adjusting the limited parameters of the pdfs. An example of resid feedstock containing 400,000 components was created using only O(30) parameters. To limit the kinetic model to a practical size, the reaction model was described in terms the reactions of the three constituent types and a set of irreducible molecules. Subsequent product property estimation was a straightforward juxtaposition of attributes. For example, a model for resid coking was built in terms of 2,839 attributes and equations but kept the full compositional details of the 400,000-molecule mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Froment GF (2005) Single event kinetic modeling of complex catalytic processes. Catal Rev Sci Eng 47(1):83–124

    Article  CAS  Google Scholar 

  2. Froment GF et al (2006) Alkylation on solid acids. Part 2. Single-event kinetic modeling. Ind Eng Chem Res 45:954–967

    Article  Google Scholar 

  3. Froment GF et al (1993) Single-event kinetics of catalytic cracking. Ind Eng Chem Res 32:2997–3005

    Article  Google Scholar 

  4. Evans MG, Polanyi M (1938) Inertia and driving force of chemical reactions. Trans Faraday Soc 31:11

    Article  Google Scholar 

  5. Quann RJ, Jaffe SB (1992) Structure oriented lumping. Describing the chemistry of complex hydrocarbon mixtures. Ind Eng Chem Res 31(11):2483–2497

    Article  CAS  Google Scholar 

  6. Quann RJ, Jaffe SB (1996) Building useful models of complex reaction systems in petroleum refining. Chem Eng Sci 51(10):1615

    Article  CAS  Google Scholar 

  7. Jaffe SB, Freund H, Olmstead WN (2005) Ind Eng Chem Res 44:9840

    Article  CAS  Google Scholar 

  8. Peng B, Towler G (Supervisor) (1999) Molecular modelling of petroleum processes. Ph.D Dissertation, University of Manchester Institute of Science and Technology, Manchester, pp 22–41

    Google Scholar 

  9. Hu S, Zhu XX (2001) Appl Therm Eng 21:1331

    Article  CAS  Google Scholar 

  10. Mi Saine Aye M, Zhang N (2005) Chem Eng Sci 60:6702

    Article  Google Scholar 

  11. Gomez-Prado J, Zhang N, Theodoropoulos C (2008) Energy 33:974

    Article  CAS  Google Scholar 

  12. Wu Y, Zhang N (2009) Chem Eng Trans 18:749–754

    Google Scholar 

  13. Wei W (2004) The interface of chemical engineering and it in kinetics models. Doctoral Dissertation, Rutgers University

    Google Scholar 

  14. Hudebine D, Verstraete JJ (2004) Chem Eng Sci 59:4755

    Article  CAS  Google Scholar 

  15. Hudebine D, Verstraete J, Chapus T (2009) Oil Gas Sci Technol 66:461–477

    Article  Google Scholar 

  16. Verstraete JJ, Schnongs P, Dulot H, Hudebine D (2010) Chem Eng Sci 65:304

    Article  CAS  Google Scholar 

  17. de Oliveira LP, Vazquez AT, Verstraete JJ, Kolb M (2013) Energy Fuel 27:3622

    Article  Google Scholar 

  18. Broadbelt LJ, Stark SM, Klein MT (1996) Comput Chem Eng 20(2):113–129

    Article  CAS  Google Scholar 

  19. Joshi PV (1998) Molecular and mechanistic modeling of complex process chemistries. Ph.D Dissertation, University of Delaware

    Google Scholar 

  20. Gang H (2001) Integrated chemical engineering tools for the building, solution, and delivery of detailed kinetic models and their industrial applications. Doctoral Dissertation, University of Delaware

    Google Scholar 

  21. Bennett C (2010) User-controlled kinetic network generation with INGen. Doctoral Dissertation, Rutgers University

    Google Scholar 

  22. Watson BA, Klein MT, Harding RH (1996) Mechanistic modeling of n-heptane cracking on HZSM-5. Ind Eng Chem Res 35:1506–1516

    Article  CAS  Google Scholar 

  23. Watson BA, Klein MT, Harding RH (1997) Catalytic cracking of alkylbenzenes: modeling the reaction pathways and mechanisms. Appl Catal A Gen 160:13–39

    Article  CAS  Google Scholar 

  24. Watson BA, Klein MT, Harding RH (1997) Mechanistic modeling of n-hexadecane cracking on rare earth Y. Energy Fuels 11:354–363

    Article  CAS  Google Scholar 

  25. Watson BA, Klein MT, Harding RH (1997) Mechanistic modeling of a 1-phenyloctane/n-hexadecane mixture on rare earth Y zeolite. Ind Eng Chem Res 36:2954–2963

    Article  CAS  Google Scholar 

  26. Watson BA, Klein MT, Harding RH (1997) Catalytic cracking of alkylcyclohexanes: modeling the reaction pathways and mechanisms. Int J Chem Kinet 29(7):545–560

    Article  CAS  Google Scholar 

  27. Klein MT et al (2005) Molecular modeling in heavy hydrocarbon conversions. CRC, Boca Raton. ISBN 978-0-8247-5851-6

    Book  Google Scholar 

  28. Trauth DM (1993) Structure of complex mixtures through characterization, reaction, and modeling. Ph.D Dissertation, University of Delaware

    Google Scholar 

  29. Campbell DM (1998) Stochastic modeling of structure and reaction in hydrocarbon conversion. Doctoral Dissertation, University of Delaware

    Google Scholar 

  30. Hou Z (2011) Ph.D Dissertation, Rutgers University, New Jersey

    Google Scholar 

  31. Pyl SP, Hou Z, Van Geem KM, Reyniers MF, Marin GB, Klein MT (2011) Ind Eng Chem Res 50:10850

    Article  CAS  Google Scholar 

  32. Zhang L, Hou Z, Horton SR, Klein MT, Shi Q, Zhao S, Xu C (2014) Molecular representation of petroleum vacuum resid. Energy Fuel 28:1736–1749

    Article  CAS  Google Scholar 

  33. Horton SR, Hou Z, Moreno BM, Bennett CA, Klein MT (2013) Molecule-based modeling of heavy oil. Sci China Chem 56:840–847

    Article  CAS  Google Scholar 

  34. Horton SR, Zhang L, Hou Z, Bennett CA, Klein MT et al (2015) Molecular-level kinetic modeling of resid pyrolysis. Ind Eng Chem Res 54(16):4226–4235

    Article  CAS  Google Scholar 

  35. Boduszynski MM (1988) Energy Fuel 2:597

    Article  CAS  Google Scholar 

  36. Kendrick E (1963) Anal Chem 35(13):2146–2154

    Article  CAS  Google Scholar 

  37. Hughey CA et al (2002) Org Geochem 33:743–759

    Article  CAS  Google Scholar 

  38. Qian K, Edwards KE et al (2007) Energy Fuel 21:1042

    Article  CAS  Google Scholar 

  39. Smith DF, Rahimi P, Teclemariam A, Rodgers RP, Marshall AG (2008) Energy Fuel 22:3118

    Article  CAS  Google Scholar 

  40. Zhang L, Xu Z, Shi Q, Sun X, Zhang N, Zhang Y, Chung KH, Xu C, Zhao S (2012) Energy Fuel 26:5795

    Article  CAS  Google Scholar 

  41. Zhang T, Zhang L, Zhou Y, Wei Q, Chung KH, Zhao S, Xu C, Shi Q (2013) Energy Fuel 27:2952

    Article  CAS  Google Scholar 

  42. Shi Q, Hou D, Chung KH, Xu C, Zhao S, Zhang Y (2010) Energy Fuel 24:2545

    Article  CAS  Google Scholar 

  43. Shi Q, Pan N, Liu P, Chung KH, Zhao S, Zhang Y, Xu C (2010) Energy Fuel 24:3014

    Article  CAS  Google Scholar 

  44. Podgorski DC, Corilo YE, Nyadong L, Lobodin VV, Robbins WK, McKenna AM, Marshall AG, Rodgers RP (2013) Energy Fuel 27(3):1268–1276

    Article  CAS  Google Scholar 

  45. McKenna AM, Donald LJ, Fitzsimmons JE, Juyal P, Spicer V, Standing KG, Marshall AG, Rodgers RP (2013) Energy Fuel 27(3):1246–1256

    Article  CAS  Google Scholar 

  46. McKenna AM, Blakney GT, Xian F, Glaser PB, Rodgers RP, Marshall AG (2010) Energy Fuel 24:2939

    Article  CAS  Google Scholar 

  47. McKenna AM, Purcell JM, Rodgers RP, Marshall AG (2010) Energy Fuel 24:2929

    Article  CAS  Google Scholar 

  48. McKenna AM, Marshall AG, Rodgers RP (2013) Energy Fuel 27(3):1257–1267

    Article  CAS  Google Scholar 

  49. Qian K, Edwards KE, Mennito AS, Freund H, Saeger RB, Hickey KJ, Francisco MA, Yung C, Chawla B, Wu C, Kushnerick JD, Olmstead WN (2012) Determination of structural building blocks in heavy petroleum systems by collision-induced dissociation Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 84:4544–4551

    Article  CAS  Google Scholar 

  50. Marshall AG, Rodgers RP (2004) Petroleomics: the next grand challenge for chemical analysis. Acc Chem Res 37:53–59

    Article  CAS  Google Scholar 

  51. Benson SW (1968) Thermochemical kinetics. Wiley, New York, Chap. 2

    Google Scholar 

  52. Hukkerikar AS et al (2012) Fluid Phase Equilib 321:25–43

    Article  CAS  Google Scholar 

  53. Zhang ZG, Guo S, Zhao S, Yan G, Song L, Chen L (2008) Energy Fuel 23:374

    Article  Google Scholar 

  54. Su Y, Artok L, Murata S, Nomura M (1998) Energy Fuel 12:1265

    Article  CAS  Google Scholar 

  55. Vanderzande C (1998) Lattice models of polymers, Cambridge lecture notes in physics 11. Cambridge University Press, Cambridge

    Book  Google Scholar 

  56. Grant DM, Pugmire RJ (1989) Energy Fuel 3(2):175–186

    Article  CAS  Google Scholar 

  57. Peng PA, Fu J, Sheng G, Morales-Izquierdo A, Lown EM, Strausz OP (1999) Energy Fuel 13:266

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hou, Z. et al. (2015). Molecular-Level Composition and Reaction Modeling for Heavy Petroleum Complex System. In: Xu, C., Shi, Q. (eds) Structure and Modeling of Complex Petroleum Mixtures. Structure and Bonding, vol 168. Springer, Cham. https://doi.org/10.1007/430_2015_184

Download citation

Publish with us

Policies and ethics