Skip to main content

Comparison of the Cr–Cr Quadruple and Quintuple Bonding Mechanisms

  • Chapter
  • First Online:
The Chemical Bond II

Part of the book series: Structure and Bonding ((STRUCTURE,volume 170))

Abstract

A molecular orbital analysis of model unbridged complexes with Cr–Cr formal bond orders four and five is presented, based on density functional calculations. The orbital and symmetry analysis discloses a special type of δ bonding in the case of the [Cr2L4]2+ complexes that induces a significant bond shortening going from quadruple CrII–CrII to quintuple CrI–CrI bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cotton FA, Murillo CA, Walton RA (2005) Multiple bonds between metal atoms, 3rd edn. Clarendon, Oxford

    Book  Google Scholar 

  2. Nguyen T, Sutton AD, Brynda M, Fettinger JC, Long GJ, Power PP (2005) Synthesis of a stable compound with fivefold bonding between two chromium(I) centers. Science 310:844–847

    Article  CAS  Google Scholar 

  3. Noor A, Kempe R (2015) M5M – Key compounds of the research field metal–metal quintuple bonding. Inorg Chim Acta 424:75–82

    Article  CAS  Google Scholar 

  4. Nair AK, Harisomahajula NVS, Tsai Y-C (2015) The lengths of the metal-to-metal quintuple bonds and reactivity thereof. Inorg Chim Acta 424:51–62

    Article  CAS  Google Scholar 

  5. McGrady JE (2013) Metal–metal bonding. In: Reedijk J, Poeppelmeier K (eds) Comprehensive inorganic chemistry II, vol 9. Elsevier, Amsterdam, pp 321–340

    Chapter  Google Scholar 

  6. Lewis GN (1916) The atom and the molecule. J Am Chem Soc 38:762–785

    Article  CAS  Google Scholar 

  7. Mulliken R (1972) Spectroscopy, molecular orbitals, and chemical bonding. In: Nobel lectures, chemistry 1963–1970. Elsevier, Amsterdam, pp 131–160

    Google Scholar 

  8. Hund F (1931) Zur Frage der chemischen Bindung. Z Phys 73:1–30

    Article  Google Scholar 

  9. Figgis BN, Martin RL (1956) Magnetic studies with copper(II) salts. Part I. Anomalous paramagnetism and δ-bonding in anhydrous and hydrated copper(II) acetates. J Chem Soc 3837–3846

    Google Scholar 

  10. Niekerk JNV, Schoening FRL, Wet JFD (1953) The structure of crystalline chromous acetate revealing paired chromium atoms. Acta Crystallogr 6:501–504

    Article  Google Scholar 

  11. Niekerk JNV, Schoening FRL (1953) X-Ray evidence for metal-to-metal bonds in cupric and chromous acetate. Nature 171:36–37

    Article  Google Scholar 

  12. Bertrand JA, Cotton FA, Dollase WA (1963) The metal–metal bonded polynuclear complex anion in CsReCl4. J Am Chem Soc 85:1349–1350

    Article  CAS  Google Scholar 

  13. Kuznetsov VG, Koz'min PA (1963) A study of the structure of (PyH)HReCl4. Zh Strukt Khim (Russ J Struct Chem) 4:49–55

    Article  Google Scholar 

  14. Cotton FA, Curtis NF, Harris CB, Johnson BFG, Lippard SJ, Mague JT, Robinson WR, Wood JS (1964) Mononuclear and polynuclear chemistry of rhenium(III): its pronounced homophilicity. Science 145:1305–1307

    Article  CAS  Google Scholar 

  15. Falvello LR, Foxman BM, Murillo CA (2014) Fitting the pieces of the puzzle: the delta bond. Inorg Chem 53:9441–9456

    Article  CAS  Google Scholar 

  16. Allen FH (2002) The Cambridge structural database: a quarter of a million crystal structures and rising. Acta Crystallogr B 58:380–388

    Article  Google Scholar 

  17. Schreiner PR, Chernish LV, Gunchenko PA, Tikhonchuk EY, Hausmann H, Serafin M, Schlecht S, Dahl JEP, Carlson RMK, Fokin AA (2011) Overcoming lability of extremely long alkane carbon-carbon bonds through dispersion forces. Nature 477:308–311

    Article  CAS  Google Scholar 

  18. Noor A, Bauer T, Todorova TK, Weber B, Gagliardi L, Kempe R (2013) The ligand-based quintuple bond-shortening concept and some of its limitations. Chem Eur J 19:9825–9832

    Article  CAS  Google Scholar 

  19. Losada J, Alvarez S, Novoa JJ, Mota F, Hoffmann R, Silvestre J (1990) The large range of Cr-Cr quadruple bond distances: structural and theoretical analysis. J Am Chem Soc 112:8998–9000

    Article  CAS  Google Scholar 

  20. Mota F, Novoa JJ, Losada J, Alvarez S, Hoffmann R, Silvestre J (1993) Pyramidality and metal–metal multiple bonding: structural correlations and theoretical study. J Am Chem Soc 115:6216–6229

    Article  CAS  Google Scholar 

  21. Mingos DMP, Zhenyang L (1989) Non-bonding orbitals in co-ordination, hydrocarbon and cluster compounds. Struct Bond 71:1–56

    Article  CAS  Google Scholar 

  22. Mingos DMP, Zhenyang L (1990) Hybridization schemes for co-ordination and organometallic compounds. Struct Bond 72:73–111

    Article  CAS  Google Scholar 

  23. Hall MB (1987) Problems in the theoretical description of metal–metal multiple bonds or how I learned to hate the electron correlation problem. Polyhedron 6:679–684

    Article  CAS  Google Scholar 

  24. Falceto A, Theopold KH, Alvarez S (2015) Cr–Cr quintuple bonds: ligand topology and interplay between metal–metal and metal–ligand bonding. Inorg Chem, in press, doi: 10.1021/acs.inorgchem.5b02059

    Google Scholar 

  25. Brynda M, Gagliardi L, Roos BD (2009) Analysing the chromium–chromium multiple bonds using multiconfigurational quantum chemistry. Chem Phys Lett 471:1–10

    Article  CAS  Google Scholar 

  26. Roos BD, Borin AC, Gagliardi L (2007) Reaching the maximum multiplicity of the covalent chemical bond. Angew Chem Int Ed 46:1469–1472

    Article  CAS  Google Scholar 

  27. Aullón G, Alvarez S (2009) Oxidation states, atomic charges and orbital populations in transition metal complexes. Theor Chem Acc 123:67–73

    Article  Google Scholar 

  28. Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2010) Gaussian09, B.1st edn. Gaussian, Wallingford

    Google Scholar 

  29. Schaefer A, Huber C, Ahlrichs R (1994) Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 100:5829–5835

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish Ministerio de Economía y Competitividad (MINECO, project CTQ2011-23862-C02-01). A. F. thanks MINECO for a Ph.D. grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Alvarez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Falceto, A., Alvarez, S. (2015). Comparison of the Cr–Cr Quadruple and Quintuple Bonding Mechanisms. In: Mingos, D. (eds) The Chemical Bond II. Structure and Bonding, vol 170. Springer, Cham. https://doi.org/10.1007/430_2015_191

Download citation

Publish with us

Policies and ethics