Skip to main content

Diamond Nanowires: A Recent Success Story for Biosensing

  • Chapter
  • First Online:
Carbon-Based Nanosensor Technology

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 17))

Abstract

Carbon-based nanostructures have been of both fundamental and technological interest over the last decades, because their special characteristics were found to differ markedly from their corresponding bulk states in physical and chemical performance. A vast majority of work has been devoted to carbon nanotubes (CNTs). This is not only related to their unique mechanical and electrical properties, but also to the advances in synthetic methods that allow CNTs to be produced in large quantities with reasonably controllable morphologies. While much less studied than CNTs, diamond nanowires, the diamond analogues of CNTs, hold promise for several important applications. Diamond nanowires display several advantages such as chemical inertness, mechanical strength, high thermal and electrical conductivity, together with proven biocompatibility and ease to functionalize their surface. The unique physicochemical properties of diamond nanowires have generated wide interest for their use as fillers in nanocomposites, as light detectors and emitters, as substrates for nanoelectronic devices and as electrochemical sensors. The present chapter is focused on the promising synthetic routes and potential applications of diamond nanowires and related nanostructures in electrochemical sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Szunerits S, Boukherroub R (2008) Different strategies for chemical functionalization of diamond surfaces. J Solid State Electrochem 12:1205–1218

    Article  CAS  Google Scholar 

  2. Yu Y, Wu L, Zhi J (2014) Diamond nanowires: fabrication, structure, properties, and applications. Angew Chem Int Ed 53:14326–14351

    Article  CAS  Google Scholar 

  3. Yang W, Tarinac KR, Ringer SP, Thordarson P, Gooding JJ, Braet F (2010) Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew Chem Int Ed 49:2114–2138

    Article  CAS  Google Scholar 

  4. Coffinier Y, Szunerits S, Drobecq H, Melnyk O, Boukherroub R (2012) Nanoscale 4:231

    Article  CAS  PubMed  Google Scholar 

  5. Gao F, Lewes-Malandrakis G, Wolfer MT, Muller-Sebert W, Gentile P, Aradilla D, Schubert T, Nebel CE (2015) Diam Relat Mater 51:1–6

    Article  Google Scholar 

  6. Marcon L, Spriet C, Coffinier Y, Galopin E, Rosnoblet C, Szunerits S, Heliot L, Angrand P-O, Boukherroub R (2010) Cell adhesion properties on chemically micropatterned boron-doped diamond surfaces. Langmuir 26:15065–15069

    Article  CAS  PubMed  Google Scholar 

  7. Luo D, Wu L, Zhi J (2009) Fabricaiton of boron-doepd diamond nanorod forst electrodes and their application in nonenzymatic amperometric glucose sensing. ACS Nano 3:2121

    Article  CAS  PubMed  Google Scholar 

  8. Smirnov W, Kriele A, Yang N, Nebel CF (2009) Aligned diaond nano-wires: fabricaiton and characterisation for advanced applications in bio and electrocehmistry. Diam Relat Mater 19(2):186–189

    Google Scholar 

  9. Subramanian P, Foord J, Steinmueller D, Coffinier Y, Boukherroub R, Szunerits S (2013) Diamond nanowires decorated with metallic nanoparticles: a novel electrical interface for the immobilization of histidinylated biomolecules. Electrochim Acta 110:4–8

    Article  CAS  Google Scholar 

  10. Subramanian P, Mazurenko I, Zaitsev V, Coffinier Y, Boukherroub R, Szunerits S (2014) Diamond nanowires modified with poly[3-(pyrrolyl)carboxylic acid] for the immobilization of histidine-tagged peptides. Analyst 139:4343–4349

    Article  CAS  PubMed  Google Scholar 

  11. Subramanian P, Motorina A, Yeap WS, Haenen K, Coffinier Y, Zaitsev V, Niedziolka-Jonsson J, Boukherroub R, Szunerits S (2014) Impedimetric immunosensor based on diamond nanowires decorated with nickel nanoparticles. Analyst 139:1726–1731

    Article  CAS  PubMed  Google Scholar 

  12. Szunerits S, Coffinier Y, Galopin E, Brenner J, Boukherroub R (2010) Electrochem Commun 12:438

    Article  CAS  Google Scholar 

  13. Wang Q, Subramanian P, Li M, Yeap WS, Haenen K, Coffinier Y, Boukherroub R, Szunerits S (2013) Non-enzymatic glucose sensing on long and short diamond nanowires electrodes. Electrochem Commun 34:286–290

    Article  CAS  Google Scholar 

  14. Wang Q, Vasilescu A, P Subramanian VA, Andrei V, Coffinier Y, Li M, Boukherroub R, Szunerits S (2013) Simultaneous electrochemical detection of tryptophan and tyrosine using boron-doped diamond and diamond nanowires electrodes. Electrochem Commun 35:84–87

    Article  Google Scholar 

  15. Wei M, Terashima C, Lv M, Fujishima A, Gu Z-Z (2009) Boron-doped diamond nanograss array for electrochemical sensors. Chem Commun 24:3624

    Article  Google Scholar 

  16. Yang N, Uetsuka H, Osawa E, Nebel CE (2008) Vertically aligned diamond nanowires for DNA sensing. Angew Chem Int Ed 47:5183

    Article  CAS  Google Scholar 

  17. Shenderova OA, Brenner D, Ruoff RS (2003) Would diamond nanorods be stronger than fullerene nanotubes? Nano Lett 3:805–809

    Article  CAS  Google Scholar 

  18. Derjaguin BV, Fedoseev DV, Lukyanovich VM, Spitzin BV, Ryabov VA, Lavrentyev AV (1968) Filamentary diamond crystals. J Cryst Growth 2:380–384

    Article  Google Scholar 

  19. Shiomi H (1997) Reacgive ion ethcing of diamond in O2 and CF4 plamsa and fabrication of porous diamond for field emitter cathods. Jpn J Appl Phys 36:7745

    Article  CAS  Google Scholar 

  20. Baik E-S, Baik Y-J, Jeaon D (2000) Aligned diamond nanowhiskers. J Mater Res 15:923

    Article  CAS  Google Scholar 

  21. Masuda H, Yanagishita T, Yasui K, Nishio K, Yagi I, RAo N, Fujishima A (2001) Synthesis of well-aligned diamond nanocylinders. Adv Mater 13:247

    Article  CAS  Google Scholar 

  22. Okuyama S, Matsushita SI, Fujishima A (2002) Periodic submicrocylinder diamond surfaces using two-dimensional fine particle arrays. Langmuir 18:8282–8287

    Article  CAS  Google Scholar 

  23. Ando Y, Nishibayashi Y, Sawabe A (2004) ‘Nano-rods’ of single crystalline diamond. Diam Relat Mater 13:633

    Article  CAS  Google Scholar 

  24. Sun LT, Gond J, Zhu DZ, Zhu ZY, He S (2004) Diamond nanorids from carbon nanotubes. Adv Mater 16:1849–1853

    Article  CAS  Google Scholar 

  25. Zou YS, Yang T, Zhang WJ, Chong YM, He B, Bello I, Lee ST (2008) Fabrication of diamond nanopillar and their arrays. Appl Phys Lett 92:053105

    Article  Google Scholar 

  26. Yang N, Uetsuka H, Osawa E, Nebel CE (2008) Vertically aligned nanowires from boron-doped diamond. Nano Lett 8:3572–3576

    Article  CAS  PubMed  Google Scholar 

  27. Nebel CE, Yang N, Uetsuka H, Osawa E, Tokuda N, Williams O (2009) Diamond nano-wires, a new approach towards next generation electrochemical gene sensor platforms. Diam Relat Mater 18:910

    Article  CAS  Google Scholar 

  28. Hausmann BJM, Khan M, Zhang Y, Bainec TM, Martinick K, McCutcheon M, Hemmer P, Loncar M (2010) Fabricaiton of diamond nanowires for quantum information processing applicaitons. Diam Relat Mater 19:621–629

    Article  CAS  Google Scholar 

  29. Coffinier Y, Galopin E, Szunerits S, Boukherroub R (2010) J Mater Chem 20:10671

    Article  CAS  Google Scholar 

  30. Ando Y, Nishibayashi Y, Kobashi K, Hirao T, Oura K (2002) Smooth and hihg-rate reactive ion etching of diamond. Diam Relat Mater 11:824

    Article  CAS  Google Scholar 

  31. Baik E-S, Baik Y-J, Lee SW, Jeaon D (2000) Thin Solid Films 377–378:295

    Article  Google Scholar 

  32. Leech PW, Reeves GH, Holland AS (2001) Reactive ion etching of diamond in CF4, O2, O2 and Ar mixtures. J Mater Sci 36:3453–3459

    Article  CAS  Google Scholar 

  33. Matsuda H, Watanabe M, Yasui K, Tryk D, Rao T, Fujishima A (2000) Adv Mater 12:444

    Article  Google Scholar 

  34. Terashima C, Arihara K, Okazaki S, Shichi TA, Tryk D, Shirafuji T, Saito N, Takai O, Fujishima A (2011) Fabrication of vertically aligned diamond whislers from highly boron-doped diamond by oxygen plasma etching. ACS Appl Mater Interfaces 3:177–182

    Article  CAS  PubMed  Google Scholar 

  35. Leech PW, Reeves GH, Holland AS, Shanks F (2002) Ioan beam etching of CVD diamond films in Ar, Ar/O2 and Ar/CF4 gas mixtures. Diam Relat Mater 11:833–836

    Article  CAS  Google Scholar 

  36. Yang Y, Wang X, Ren C, VXie J, Lu P, Wang W (1999) Diamond surface micromachining technology. Diam Relat Mater 8:1834

    Article  CAS  Google Scholar 

  37. Mandal S, Naud C, Williams OA, Bustarret E, Omnes F, Rodiere P, Meunier T, Saminadayar L, Christopher B (2010) Nanotechnology 21:195303

    Article  PubMed  Google Scholar 

  38. Wang X, Ocola lE, Divan RS, Sumant AV (2012) Nanopattering of ultrananocrystallien diamond nanowires. Nanotechnology 23:075301

    Article  PubMed  Google Scholar 

  39. Che G, Lakshmi BB, Fisher ER, Martin CR (1998) Nature 393:346

    Article  CAS  Google Scholar 

  40. Martin CR (1994) Science 266:1961

    Article  CAS  PubMed  Google Scholar 

  41. Masuda H, Watanaba M, Yasui K, Tryk D, Rao T, Fujishima A (2000) Fabrication of a nanostructured diamond honeycomb film. Adv Mater 12:444–447

    Article  CAS  Google Scholar 

  42. Okazaki S, Matsushita SI, Fujishima A (2002) Periodic submicrocylinder diamond surfaces using two-dimensional fine particle arrays. Langmuir 18:8282–8287

    Article  Google Scholar 

  43. Maria MD, Stoikou D, John P, Wilson JIB (2008) Unusual morphology of CVD diamond surface after RIE. Diam Relat Mater 17:1164–1168

    Article  Google Scholar 

  44. Vlasov IL, Lebedev OI, Ralchenko VG, Goovaerts E, Bertoni G, Can Tendeloo G, Konov V (2007) Hybrid diamond-graphite nanowires produced by microwave plasma chemical vapor deposition. Adv Mater 19:4058–4062

    Article  CAS  Google Scholar 

  45. Shang N, Papakonstantinou P, Wang P, Zakharov A, Palnitkar U, Lin IN, Chu M, Stamboulis A (2009) Self-assembled growth, microstructure, and field-emission high-performance of ultrathin diamond nanorods. ACS Nano 3:1032–1038

    Article  CAS  PubMed  Google Scholar 

  46. Hsu C-H, Cloutier SG, Palefsky S, Xu J (2010) Synthesis of diamond nanowires using atmopsheric-pressure chemical vapro deposition. Nano Lett 10:3272–3276

    Article  CAS  PubMed  Google Scholar 

  47. Hsu C-H, Xu J (2012) Diamond nanowire-a challange from extremes. Nanoscale 4:5293

    Article  CAS  PubMed  Google Scholar 

  48. Girard HA, Scorsone E, Saada S, Gesset C, Arnault JC, Perruchas S, Rousseau L, David S, Pichot V, Spitzer D, Berganzo P (2012) Electrostatic grafting of diamond nanoparticles towards 3D diamond nanostructures. Diam Relat Mater 23:83–87

    Article  CAS  Google Scholar 

  49. Peng KQ, Yan YJ, Gao SP, Zhu J (2002) Adv Mater 14:1164–1167

    Article  CAS  Google Scholar 

  50. Babinec TM, Hausmann BJM, Khan M, Zhang Y, Maze JR, Hemmer PR, Loncar M (2010) A diamond nanowire single-photon source. Nat Nanotechnol 5:195–199

    Article  CAS  PubMed  Google Scholar 

  51. Hébert C, Scorsone E, Bendali A, Kiran R, Cottance M, Girard HA, Degardin J, Dubus E, Lissorgues G, Rousseau L, Mailley P, Picaud S, Berganzo P (2014) Boron doped diamond biotechnology: from sensors to neuroninterfacs. Faraday Discuss 172:47–59

    Article  PubMed  Google Scholar 

  52. Szunerits S, Nebel CE, Hamers RJ (2014) Surface functionalization and biological applications of CVD diamond. MRS Bull 309:517–524

    Article  Google Scholar 

  53. Uetsuka H, Shin D, Tokuda N, Saeki K, Nebel CE (2007) Langmuir 23:3466–3472

    Article  CAS  PubMed  Google Scholar 

  54. Yang N, Smirnov W, Nebel CE (2013) Electrochem Commun 27:89

    Article  CAS  Google Scholar 

  55. Gao M, Huang S-C, Dai L, Wallace G, Gao R, Wang Z (2000) Angew Chem Int Ed 39:3664

    Article  CAS  Google Scholar 

  56. Babchenko O, Kromka A, Hruska K, Kalbacova M, Broz A, Vanecek M (2009) Fabricaiton of nano-structures diamond films for SAOS-2 cell cultivation. Phys Status Solidi A 206:2033–2037

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Szunerits .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Szunerits, S., Coffinier, Y., Boukherroub, R. (2017). Diamond Nanowires: A Recent Success Story for Biosensing. In: Kranz, C. (eds) Carbon-Based Nanosensor Technology. Springer Series on Chemical Sensors and Biosensors, vol 17. Springer, Cham. https://doi.org/10.1007/5346_2017_17

Download citation

Publish with us

Policies and ethics