Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AIM,volume 956))

  • 8379 Accesses

Abstract

Sympathetic nervous system over-activity is closely linked with elevation of systemic blood pressure. Both animal and human studies suggest renal sympathetic nerves play an important role in this respect. Historically, modulation of sympathetic activity has been used to treat hypertension. More recently, catheter based renal sympathetic denervation was introduced for the management of treatment resistant hypertension. Sound physiological principles and surgical precedent underpin renal denervation as a therapy for treatment of resistant hypertension. Encouraging results of early studies led to a widespread adoption of the procedure for management of this condition. Subsequently a sham controlled randomised controlled study failed to confirm the benefit of renal denervation leading to a halt in its use in most countries in the world. However, critical analysis of the sham-controlled study indicates a number of flaws. A number of lessons have been learnt from this and other studies which need to be applied in future trials to ascertain the actual role of renal denervation in the management of treatment resistant hypertension before further implementation. This chapter deals with all these issues in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abboud FM (1974) Effects of sodium, angiotensin, and steroids on vascular reactivity in man. Fed Proc 33:143–149

    CAS  PubMed  Google Scholar 

  • Azizi M, Sapoval M, Gosse P, Monge M, Bobrie G, Delsart P et al (2015) Optimum and stepped care standardised antihypertensive treatment with or without renal denervation for resistant hypertension (DENERHTN): a multicentre, open-label, randomised controlled trial. The Lancet 385(9981):1957–1965

    Article  Google Scholar 

  • Bhatt DL, Kandzari DE, O’Neill WW, D’Agostino R, Flack JM, Katzen BT et al (2014) A controlled trial of renal denervation for resistant hypertension. N Engl J Med 370(15):1393–1401

    Article  CAS  PubMed  Google Scholar 

  • Böhm M, Mahfoud F, Ukena C, Hoppe UC, Narkiewicz K, Negoita M et al (2015) First report of the global SYMPLICITY registry on the effect of renal artery denervation in patients with uncontrolled hypertension. Hypertension 65(4):766–774

    Article  PubMed  Google Scholar 

  • Brinton T, Anderson T, Zhang J, Gertner M (2011) Ultrasound mediated renal sympathetic denervation. Circulation 124:A12272 (Abstract)

    Google Scholar 

  • Chapleau MW, Hajduczok G, Abboud FM (1988) Mechanisms of resetting of arterial baroreceptors: an overview. Am J Med Sci 295:327–334

    Article  CAS  PubMed  Google Scholar 

  • Cullen-McEwen LA, Kett MM, Dowling J, Anderson WP, Bertram JF (2003) Nephron number, renal function, and arterial pressure in aged GDNF heterozygous mice. Hypertension 41:335–340

    Article  CAS  PubMed  Google Scholar 

  • Dahal K, Kunwar S, Rijal J, Alqatahni F, Panta R, Ishak N et al (2015) The effects of aldosterone antagonists in patients with resistant hypertension: a meta-analysis of randomized and nonrandomized studies. Am J Hypertens 28(11):1376–1385

    Article  PubMed  Google Scholar 

  • Davis MI, Filion KB, Zhang D, Eisenberg MJ, Afilalo J, Schiffrin EL et al (2013) Effectiveness of renal denervation therapy for resistant hypertension: a systematic review and meta-analysis. J Am Coll Cardiol 62(3):231–241

    Article  PubMed  Google Scholar 

  • DiBona GF, Kopp UC (1995) Neural control of renal function: role in human hypertension. In: Laragh JH, Brenner BM (eds) Hypertension: pathophysiology, diagnosis, and management, 2nd edn. Raven, New York, pp 1349–1358

    Google Scholar 

  • DiBona GF, Kopp UC (1997) Neural control of renal function. Physiol Rev 77:75–197

    CAS  PubMed  Google Scholar 

  • DiBona GF, Sawin LL (1999) Functional significance of the pattern of renal sympathetic nerve activation. Am J Physiol 277:R346–R353

    CAS  PubMed  Google Scholar 

  • Dorr O, Liebetrau C, Mollmann H, Gaede L, Troidl C, Rixe J et al (2014) Soluble fms-like tyrosine kinase-1 and endothelial adhesion molecules (intercellular cell adhesion molecule-1 and vascular cell adhesion molecule-1) as predictive markers for blood pressure reduction after renal sympathetic denervation. Hypertension 63(5):984–990

    Article  PubMed  Google Scholar 

  • Esler M (2000) The sympathetic system and hypertension. Am J Hypertens 13:99S–105S

    Article  CAS  PubMed  Google Scholar 

  • Esler M, Jennings G, Korner P, Blombery P, Sacharias N, Leonard P (1984a) Measurement of total and organ-specific norepinephrine kinetics in humans. Am J Physiol 247:E21–E28

    CAS  PubMed  Google Scholar 

  • Esler M, Jennings G, Leonard P, Sacharias N, Burke F, Johns J et al (1984b) Contribution of individual organs to total noradrenaline release in humans. Acta Physiol Scand Suppl 527:11–16

    CAS  PubMed  Google Scholar 

  • Esler M, Lambert G, Brunner-La Rocca HP, Vaddadi G, Kaye D (2003) Sympathetic nerve activity and neurotransmitter release in humans: translation from pathophysiology into clinical practice. Acta Physiol Scand 177(3):275–284

    Article  CAS  PubMed  Google Scholar 

  • Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE, Böhm M (2010) Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. The Lancet 376(9756):1903–9

    Article  Google Scholar 

  • Freis ED (1990) Origins and development of antihypertensive treatment. In: Laragh JH, Brenner BM (eds) Hypertension: pathophysiology, diagnosis, and management, 2nd edn. Raven, New York, pp 2093–2094

    Google Scholar 

  • Freis ED (1995) Historical development of antihypertensive treatment. In: Laragh JH, Brenner BM (eds) Hypertension: pathophysiology, diagnosis, and management, 2nd edn. Raven, New York, pp 2741–2751

    Google Scholar 

  • Gattone VH, Evan AP, Overhage JM, Severs WB (1990) Developing renal innervation in the spontaneously hypertensive rat: evidence for a role of the sympathetic nervous system in renal damage. J Hypertens 8:423–428

    Article  PubMed  Google Scholar 

  • Grassi G, Giannattasio C, Failla M, Pesenti A, Peretti G, Marinoni E et al (1995) Sympathetic modulation of radial artery compliance in congestive heart failure. Hypertension 26(2):348–354

    Article  CAS  PubMed  Google Scholar 

  • Grassi G, Colombo M, Seravalle G, Spaziani D, Mancia G (1998) Dissociation between muscle and skin sympathetic nerve activity in essential hypertension, obesity, and congestive heart failure. Hypertension 31(1):64–67

    Article  CAS  PubMed  Google Scholar 

  • Grisk O, Rose H-J, Lorenz G, Rettig R (2002) Sympathetic – renal interaction in chronic arterial pressure control. Am J Physiol Regul Integr Comp Physiol 283:R441–R450

    Article  CAS  PubMed  Google Scholar 

  • Guo GB, Thames MD, Abboud FM (1983) Arterial baroreflexes in renal hypertensive rabbits. Selectivity and redundancy of baroreceptor influence on heart rate, vascular resistance, and lumbar sympathetic nerve activity. Circ Res 53:223–234

    Article  CAS  PubMed  Google Scholar 

  • Hameed MA, Tebbit L, Jacques N, Thomas M, Dasgupta I (2016) Non-adherence to antihypertensive medication is very common among resistant hypertensives: results of a directly observed therapy clinic. J Hum Hypertens 30(2):83–9

    Article  CAS  PubMed  Google Scholar 

  • Head RJ (1989) Hypernoradrenergic innervation: its relationship to functional and hyperplastic changes in the vasculature of the spontaneously hypertensive rat. Blood Vessels 26:1–20

    CAS  PubMed  Google Scholar 

  • Heran BS, Galm BP, Wright JM (2012) Blood pressure lowering efficacy of alpha blockers for primary hypertension. Cochrane Database Syst Rev 15(8):CD004643. doi:10.1002/14651858.CD004643.pub3

    Google Scholar 

  • Johansson M, Rundqvist B, Petersson M, Lambert G, Friberg P (2003) Regional norepinephrine spillover in response to angiotensin-converting enzyme inhibition in healthy subjects. J Hypertens 21:1371–1375

    Article  CAS  PubMed  Google Scholar 

  • Jung O, Gechter JL, Wunder C, Paulke A, Bartel C, Geiger H et al (2013) Resistant hypertension? Assessment of adherence by toxicological urine analysis. J Hypertens 31(4):766–774

    Article  CAS  PubMed  Google Scholar 

  • Kandzari DE, Bhatt DL, Brar S, Devireddy CM, Esler M, Fahy M et al (2015) Predictors of blood pressure response in the SYMPLICITY HTN-3 trial. Eur Heart J 36(4):219–227

    Article  PubMed  Google Scholar 

  • Kim JR, Kiefe CI, Liu K, Williams OD, Jacobs DR Jr, Oberman A (1999) Heart rate and subsequent blood pressure in young adults: the CARDIA study. Hypertension 33(2):640–646

    Article  CAS  PubMed  Google Scholar 

  • Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K et al (2009) Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. The Lancet 373(9671):1275–1281

    Article  Google Scholar 

  • Krum H, Schlaich MP, Sobotka PA, Böhm M, Mahfoud F, Rocha-Singh K et al (2014) Percutaneous renal denervation in patients with treatment-resistant hypertension: final 3-year report of the Symplicity HTN-1 study. The Lancet 383(9917):622–629

    Article  Google Scholar 

  • Lawson AJ, Shipman KE, George S, Dasgupta I (2016) A novel ‘dilute-and-shoot’ liquid chromatography-tandem mass spectrometry method for the screening of antihypertensive drugs in urine. J Anal Toxicol 40(1):17–27

    CAS  PubMed  Google Scholar 

  • Li Z, Mao HZ, Abboud FM, Chapleau MW (1996) Oxygen-derived free radicals contribute to baroreceptor dysfunction in atherosclerotic rabbits. Circ Res 79:802–811

    Article  CAS  PubMed  Google Scholar 

  • Lobo MD, de Belder MA, Cleveland T, Collier D, Dasgupta I, Deanfield J et al (2015a) Joint UK societies’ 2014 consensus statement on renal denervation for resistant hypertension. Heart 101:10–16. doi:10.1136/heartjnl-2014-307029

    Google Scholar 

  • Lobo M, Saxena M, Jain AJ, Walters D, Pincus M, Montarello J et al (2015b) 4a.09: safety and performance of the enlightn renal denervation system in patients with severe uncontrolled hypertension: 12 month results from the Enlightn Ii Study. J Hypertens 33(Suppl 1):e51

    Google Scholar 

  • Lyons RH, Moe GK, Neligh RM, Hoobler SW, Campbell KN, Berry RL et al (1947) The effects of blockade of the autonomic ganglia in man with tetraethylammonium; preliminary observations on its clinical application. Am J Med Sci 213:315–323

    Article  CAS  PubMed  Google Scholar 

  • Marcus R, Krause L, Weder AB, Dominguez-Meja A, Schork NJ, Julius S (1994) Sex-specific determinants of increased left ventricular mass in the Tecumseh Blood Pressure Study. Circulation 90(2):928–936

    Article  CAS  PubMed  Google Scholar 

  • Mark AL (1996) The sympathetic nervous system in hypertension: a potential long-term regulator of arterial pressure. J Hypertens Suppl 14(5):S159–65

    CAS  PubMed  Google Scholar 

  • Nash DT (1990) Alpha-adrenergic blockers: mechanism of action, blood pressure control, and effects of lipoprotein metabolism. Clin Cardiol 13:764–772

    Article  CAS  PubMed  Google Scholar 

  • Neuzil P, Whitbourn R, Starek Z, Esler M, Brinton T, Gertner M (2013) Optimized external focused ultrasound for renal sympathetic denervation – wave II trial. J Am Coll Cardiol 62(18_S1):B20–B20 (Abstract)

    Google Scholar 

  • O’Brien E, Parati G, Stergiou G, Asmar R, Beilin L, Bilo G et al (2013) European Society of Hypertension position paper on ambulatory blood pressure monitoring. J Hypertens 31(9):1731–1768

    Article  PubMed  Google Scholar 

  • Oates JA, Gillespie L Jr, Udenfiiend S, Sjoerdsma A (1960) Decarboxylase inhibition and blood pressure reduction by alpha-methyl-3,4-dihydroxy-DL-phenylalanine. Science 131:1890–1891

    Article  CAS  PubMed  Google Scholar 

  • Oparil S, Zaman MA, Calhoun DA (2003) Pathogenesis of hypertension. Ann Intern Med 139(9):761–776

    Article  CAS  PubMed  Google Scholar 

  • Ormiston J et al (2014) Non-invasive renal denervation using externally delivered focused ultrasound: early experience using Doppler-based image targeting and tracking for treatment. J Am Coll Cardiol 64/11(Suppl B): TCT–412. (Abstract)

    Google Scholar 

  • Paton WDM, Zaimis EJ (1948) Clinical potentialities of certain bisquaternary salts causing neuromuscular and ganglionic block. Nature 162:810

    Article  CAS  PubMed  Google Scholar 

  • Peet MM (1947) Results of bilateral supradiaphragmatic splanchnicectomy for arterial hypertension. N Engl J Med 236:270–276

    Article  CAS  PubMed  Google Scholar 

  • Prichard BN, Gillam PM (1964) Use of propranolol (Inderal) in treatment of hypertension. Br Med J 2:725–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosa J, Zelinka T, Petrak O, Strauch B, Somloova Z, Indra T et al (2014) Importance of thorough investigation of resistant hypertension before renal denervation: should compliance to treatment be evaluated systematically? J Hum Hypertens 28(11):684–688

    Article  CAS  PubMed  Google Scholar 

  • Rosa J, Widimský P, TouÅ¡ek P, Petrák O, Curila K, Waldauf P et al (2015) Randomized comparison of renal denervation versus intensified pharmacotherapy including spironolactone in true-resistant hypertension: six-month results from the Prague-15 study. Hypertension 65(2):407–413

    Article  CAS  PubMed  Google Scholar 

  • Sainio K, Suvanto P, Davies J, Wartiovaara J, Wartiovaara K, Saarma M et al (1997) Glial-cell-line-derived neurotrophic factor is required for bud initiation from ureteric epithelium. Development 124:4077–4087

    CAS  PubMed  Google Scholar 

  • Sakakura K, Ladich E, Cheng Q, Otsuka F, Yahagi K, Fowler DR et al (2014) Anatomic assessment of sympathetic peri-arterial renal nerves in man. J Am Coll Cardiol 64(7):635–643

    Article  PubMed  Google Scholar 

  • Schlaich MP, Sobotka PA, Krum H, Lambert E, Esler MD (2009) Renal sympathetic-nerve ablation for uncontrolled hypertension. N Engl J Med 361(9):932–934

    Article  CAS  PubMed  Google Scholar 

  • Scislo TJ, Augustyniak RA, O’Leary DS (1998) Differential arterial baroreflex regulation of renal, lumbar, and adrenal sympathetic nerve activity in the rat. Am J Physiol 275:R995–R1002

    CAS  PubMed  Google Scholar 

  • Sharp AS, Davies JE, Lobo MD, Bent CL, Mark PB, Burchell AE et al (2016) Renal artery sympathetic denervation: observations from the UK experience. Clin Res Cardiol:1–9. doi:10.1007/s00392-015-0959-4

    Google Scholar 

  • Smithwick RH, Thompson JE (1953) Splanchnicectomy for essential hypertension; results in 1,266 cases. JAMA 152:1501–1504

    Article  CAS  Google Scholar 

  • Stella A, Zancetti A (1991) Role of renal affarents. Physiological Reviews 71(3):659–682

    CAS  PubMed  Google Scholar 

  • Thomas P, Dasgupta I (2015) The role of the kidney and the sympathetic nervous system in hypertension. Paediatric Nephrology 30(4):549–60. doi:10.1007/s00467-014-2789-4

    Article  Google Scholar 

  • Tomaszewski M, White C, Patel P, Masca N, Damani R, Hepworth J et al (2014) High rates of non-adherence to antihypertensive treatment revealed by high-performance liquid chromatography-tandem mass spectrometry (HP LC-MS/MS) urine analysis. Heart 100:855–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vallbo AB, Hagbarth KE, Torebjork HE, Wallin BG (1979) Somatosensory, proprioceptive, and sympathetic activity in human peripheral nerves. Physiol Rev 59:919–957

    CAS  PubMed  Google Scholar 

  • Warren RE, Marshall T, Padfield PL, Chrubasik S (2010) Variability of office, 24-hour ambulatory, and self-monitored blood pressure measurements. Br J Gen Pract 60(578):675–680

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams B, MacDonald TM, Morant S, Webb DJ, Sever P, McInnes G et al (2015) Spironolactone versus placebo, bisoprolol, and doxazosin to determine the optimal treatment for drug-resistant hypertension (PATHWAY-2): a randomised, double-blind, crossover trial. The Lancet 386(10008):2059–2068

    Article  CAS  Google Scholar 

  • Worthley SG, Tsioufis CP, Worthley MI, Sinhal A, Chew DP, Meredith IT et al (2013) Safety and efficacy of a multi-electrode renal sympathetic denervation system in resistant hypertension: the EnligHTN I trial. Eur Heart J 34(28):2132–2140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worthley SG, Wilkins GT, Webster MW, Montarello JK, Antonis PR, Whitbourn RJ, et al (2015) Safety and performance of the next generation EnligHTNâ„¢ renal denervation system in patients with drug-resistant, uncontrolled hypertension: The EnligHTN III first-in-human multicentre study. Clin Trials Reg Sci Cardiol 8(8):4–10

    Google Scholar 

  • Xie PL, Chapleau MW, McDowell TS, Hajduczok G, Abboud FM (1990) Mechanism of decreased baroreceptor activity in chronic hypertensive rabbits. Role of endogenous prostanoids. J Clin Invest 86:625–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada Y, Miyajima E, Tochikubo O, Matsukawa T, Ishii M (1989) Age-related changes in muscle sympathetic nerve activity in essential hypertension. Hypertension 13(6 Pt 2):870–877

    Article  CAS  PubMed  Google Scholar 

  • Zazgornik J, Biesenbach G, Janko O, Gross C, Mair R, Brücke P et al (1998) Bilateral nephrectomy: the best, but often overlooked, treatment for refractory hypertension in hemodialysis patients. J Am Hypertens 11:1364–1370

    Article  CAS  Google Scholar 

  • Zuern CS, Eick C, Rizas KD, Bauer S, Langer H, Gawaz M et al (2013) Impaired cardiac baroreflex sensitivity predicts response to renal sympathetic denervation in patients with resistant hypertension. J Am Coll Cardiol 62(22):2124–30

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indranil Dasgupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Hameed, M.A., Dasgupta, I. (2016). Renal Denervation. In: Islam, M.S. (eds) Hypertension: from basic research to clinical practice. Advances in Experimental Medicine and Biology(), vol 956. Springer, Cham. https://doi.org/10.1007/5584_2016_148

Download citation

  • DOI: https://doi.org/10.1007/5584_2016_148

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44250-1

  • Online ISBN: 978-3-319-44251-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics