Skip to main content

Induced Pluripotent Stem Cells in Disease Modelling and Regeneration

  • Chapter
  • First Online:
Cell Biology and Translational Medicine, Volume 5

Part of the book series: Advances in Experimental Medicine and Biology ((CBTMED,volume 1144))

Abstract

The reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) has raised extreme hope among both scientists and society by means of development of personalized and regenerative medicine. The field of stem cell research has been accelerating with a drastic speed afterwards and many iPSC lines has been produced for understanding the mechanisms of many debilitating diseases which arise in a variety of organ systems. In this review article we try to focus on the current research regarding the use of iPSCs in both disease modeling and regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CF:

Cystic Fibrosis

CM:

Cardiomyocyte

CRISPR/Cas9:

Clustered Regularly Interspaced Palindromic Repeats/Cas9

FH:

Familial Hypercholesterolemia

hiPSC:

Human Induced Pluripotent Stem Cells

iPSCs:

Induced Pluripotent Stem Cells

LQTS:

Long QT Syndrome

MHC:

Major Histocompatibility Complex

MI:

Myocardial Infarction

WHO:

World Health Organization

ZFN:

Zinc Finger Nuclease

References

  • Asai A, Aihara E, Watson C, Mourya R, Mizuochi T, Shivakumar P, Phelan K, Mayhew C, Helmrath M, Takebe T, Wells J, Bezerra JA (2017) Paracrine signals regulate human liver organoid maturation from induced pluripotent stem cells. Development 144(6):1056–1064. https://doi.org/10.1242/dev.142794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Battrawy I, Lan H, Cyganek L, Zhao Z, Li X, Buljubasic F, Lang S, Yucel G, Sattler K, Zimmermann WH, Utikal J, Wieland T, Ravens U, Borggrefe M, Zhou XB, Akin I (2018) Modeling short QT syndrome using human-induced pluripotent stem cell-derived cardiomyocytes. J Am Heart Assoc 7(7). https://doi.org/10.1161/JAHA.117.007394

  • Funakoshi S, Miki K, Takaki T, Okubo C, Hatani T, Chonabayashi K, Nishikawa M, Takei I, Oishi A, Naritam M, Hoshijima M, Kimura T, Yamanaka S, Yoshida Y (2016) Enhanced engraftment, proliferation, and therapeutic potential in heart using optimized human iPSC-derived cardiomyocytes. Sci Rep 6:19111. https://doi.org/10.1038/srep19111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelinas R, El Khoury N, Chaix MA, Beauchamp C, Alikashani A, Ethier N, Boucher G, Villeneuve L, Robb L, Latour F, Mondesert B, Rivard R, Goyette P, Talajic M, Fiset C, Rioux JD (2017) Characterization of a human induced pluripotent stem cell-derived cardiomyocyte model for the study of variant pathogenicity: validation of a KCNJ2 mutation. Circ Cardiovasc Genet 10(5). https://doi.org/10.1161/CIRCGENETICS.117.001755

  • Hayano M, Makiyama T, Kamakura T, Watanabe H, Sasaki K, Funakoshi S, Wuriyanghai Y, Nishiuchi S, Harita T, Yamamoto Y, Kohjitani H, Hirose S, Yokoi F, Chen J, Baba O, Horie T, Chonabayashi K, Ohno S, Toyoda F, Yoshida Y, Ono K, Horie M, Kimura T (2017) Development of a patient-derived induced pluripotent stem cell model for the investigation of SCN5A-D1275N-related cardiac sodium channelopathy. Circ J 81(12):1783–1791. https://doi.org/10.1253/circj.CJ-17-0064

    Article  PubMed  Google Scholar 

  • Herron TJ, Rocha AM, Campbell KF, Ponce-Balbuena D, Willis BC, Guerrero-Serna G, Liu Q, Klos M, Musa H, Zarzoso M, Bizy A, Furness J, Anumonwo J, Mironov S, Jalife J (2016) Extracellular matrix-mediated maturation of human pluripotent stem cell-derived cardiac monolayer structure and electrophysiological function. Circ Arrhythm Electrophysiol 9(4):e003638. https://doi.org/10.1161/CIRCEP.113.003638

    Article  CAS  PubMed  Google Scholar 

  • Hinson JT, Chopra A, Nafissi N, Polacheck WJ, Benson CC, Swist S, Gorham J, Yang L, Schafer S, Sheng CC, Haghighi A, Homsy J, Hubner N, Church G, Cook SA, Linke WA, Chen CS, Seidman JG, Seidman CE (2015) Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy. Science 349(6251):982–986. https://doi.org/10.1126/science.aaa5458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hohwieler M, Illing A, Hermann PC, Mayer T, Stockmann M, Perkhofer L, Eiseler T, Antony JS, Müller M, Renz S, Kuo CC, Lin Q, Sendler M, Breunig M, Kleiderman SM, Lechel A, Zenker M, Leichsenring M, Rosendahl J, Zenke M, Sainz B Jr, Mayerle J, Costa IG, Seufferlein T, Kormann M, Wagner M, Liebau S, Kleger A (2017) Human pluripotent stem cell-derived acinar/ductal organoids generate human pancreas upon orthotopic transplantation and allow disease modelling. Gut 66:473–486. https://doi.org/10.1136/gutjnl-2016-312423

    Article  CAS  PubMed  Google Scholar 

  • Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, Zhao T, Ye J, Yang W, Liu K, Ge J, Xu J, Hang Q, Zhao Y, Deng H (2013) Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341(6146):651–654. https://doi.org/10.1126/science.1239278

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Wan J, Guo Y, Zhu S, Wang Y, Wang L, Guo Q, Lu Y, Wang Z (2017) Transcriptome analysis of induced pluripotent stem cell (iPSC)-derived pancreatic beta-like cell differentiation. Cell Transplant 26(8):1380–1391. https://doi.org/10.1177/0963689717720281

    Article  PubMed  PubMed Central  Google Scholar 

  • Huangfu D, Osafune K, Maehr R, Guo W, Eijkelenboom A, Chen S, Muhlestein W, Melton DA (2008) Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 26(11):1269–1275. https://doi.org/10.1038/nbt.1502

    Article  CAS  PubMed  Google Scholar 

  • Iglesias-Garcia O, Baumgartner S, Macri-Pellizzeri L, Rodriguez-Madoz JR, Abizanda G, Guruceaga E, Albiasu E, Corbacho D, Benavides-Vallve C, Soriano-Navarro M, Gonzalez-Granero S, Gavira JJ, Krausgrill B, Rodriguez-Manero M, Garcıa-Verdugo JM, Ortiz-de-Solorzano C, Halbach M, Hescheler J, Pelacho B, Prosper F (2015) Neuregulin-1beta induces mature ventricular cardiac differentiation from induced pluripotent stem cells contributing to cardiac tissue repair. Stem Cells Dev 24(4):484–496. https://doi.org/10.1089/scd.2014.0211

    Article  CAS  PubMed  Google Scholar 

  • Iseoka H, Miyagawa S, Fukushima S, Saito A, Masuda S, Yajima S, Ito E, Sougawa N, Takeda M, Harada A, Lee JK, Sawa Y (2018) Pivotal role of non-cardiomyocytes in electromechanical and therapeutic potential of induced pluripotent stem cell-derived engineered cardiac tissue. Tissue Eng Part A 24(3–4):287–300. https://doi.org/10.1089/ten.TEA.2016.0535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawatou M, Masumoto H, Fukushima H, Morinaga G, Sakata R, Ashihara T, Yamashita JK (2017) Modelling Torsade de Pointes arrhythmias in vitro in 3D human iPS cell-engineered heart tissue. Nat Commun 8(1):1078. https://doi.org/10.1038/s41467-017-01125-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Hoffman JP, Alpaugh RK, Rhim AD, Reichert M, Stanger BZ, Furth EE, Sepulveda AR, Yuan CX, Won KJ, Donahue G, Sands J, Gumbs AA, Zaret KS (2013) An iPSC line from human pancreatic ductal adenocarcinoma undergoes early to invasive stages of pancreatic cancer progression. Cell Rep 3(6):2088–2099. https://doi.org/10.1016/j.celrep.2013.05.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitano K, Schwartz DM, Zhou H, Gilpin SE, Wojtkiewicz GR, Ren X, Sommer CA, Capilla AV, Mathisen DJ, Goldstein AM, Mostoslavsky G, Ott HC (2017) Bioengineering of functional human induced pluripotent stem cell-derived intestinal grafts. Nat Commun 8(1):765. https://doi.org/10.1038/s41467-017-00779-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konagaya S, Iwata H (2016) Reproducible preparation of spheroids of pancreatic hormone positive cells from human iPS cells: an in vitro study. Biochim Biophys Acta 1860(9):2008–2016. https://doi.org/10.1016/j.bbagen.2016.05.012

    Article  CAS  PubMed  Google Scholar 

  • Kondo Y, Toyoda T, Inagaki N, Osafune K (2018) iPSC technology-based regenerative therapy for diabetes. J Diabetes Investig 9(2):234–243. https://doi.org/10.1111/jdi.12702

    Article  PubMed  Google Scholar 

  • Koui Y, Kido T, Ito T, Oyama H, Chen SW, Katou Y, Shirahige K, Miyajima A (2017) An in vitro human liver model by iPSC-derived parenchymal and non-parenchymal cells. Stem Cell Rep 9(2):490–498. https://doi.org/10.1016/j.stemcr.2017.06.010

    Article  CAS  Google Scholar 

  • Kuramoto Y, Naito AT, Tojo H, Sakai T, Ito M, Shibamoto M, Nakagawaa A, Higoa T, Okadaa K, Yamaguchid T, Lee JK, Miyagawaf S, Sawaf Y, Sakataa Y, Komuro I (2018) Generation of Fabry cardiomyopathy model for drug screening using induced pluripotent stem cell-derived cardiomyocytes from a female Fabry patient. J Mol Cell Cardiol 121:256–265. https://doi.org/10.1016/j.yjmcc.2018.07.246

    Article  CAS  PubMed  Google Scholar 

  • Li J, Minami I, Shiozaki M, Yu L, Yajima S, Miyagawa S, Shiba Y, Morone N, Fukushima S, Yoshioka M, Li S, Qiao J, Li X, Wang L, Kotera H, Nakatsuji N, Sawa Y, Chen Y, Liu L (2017) Human pluripotent stem cell-derived cardiac tissue-like constructs for repairing the infarcted myocardium. Stem Cell Rep 9(5):1546–1559. https://doi.org/10.1016/j.stemcr.2017.09.007

    Article  CAS  Google Scholar 

  • Lorvellec M, Scottoni F, Crowley C, Fiadeiro R, Maghsoudlou P, Pellegata AF, Mazzacuva F, Gjinovci A, Lyne AM, Zulini J, Little D, Mosaku O, Kelly D, De-Coppi P, Gissen P (2017) Mouse decellularised liver scaffold improves human embryonic and induced pluripotent stem cells differentiation into hepatocyte-like cells. PLoS One 12(12):e0189586. https://doi.org/10.1371/journal.pone.0189586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu HR, Hortigon-Vinagre MP, Zamora V, Kopljar I, De Bondt A, Gallacher DJ, Smith G (2017) Application of optical action potentials in human induced pluripotent stem cells-derived cardiomyocytes to predict drug-induced cardiac arrhythmias. J Pharmacol Toxicol Methods 87:53–67. https://doi.org/10.1016/j.vascn.2017.05.001

    Article  CAS  PubMed  Google Scholar 

  • Mehta A, Ramachandra CJA, Singh P, Chitre A, Lua CH, Mura M, Crotti L, Wong P, Schwartz PJ, Gnecchi M, Shim W (2018) Identification of a targeted and testable antiarrhythmic therapy for long-QT syndrome type 2 using a patient-specific cellular model. Eur Heart J 39(16):1446–1455. https://doi.org/10.1093/eurheartj/ehx394

    Article  CAS  PubMed  Google Scholar 

  • Mihara Y, Matsuura K, Sakamoto Y, Okano T, Kokudo N, Shimizu T (2017) Production of pancreatic progenitor cells from human induced pluripotent stem cells using a three-dimensional suspension bioreactor system. J Tissue Eng Regen Med 11(11):3193–3201. https://doi.org/10.1002/term.2228

    Article  CAS  PubMed  Google Scholar 

  • Miller DC, Harmer SC, Poliandri A, Nobles M, Edwards EC, Ware JS, Sharp TV, McKay TR, Dunkel L, Lambiase PD, Tinker A (2017) Ajmaline blocks INa and IKr without eliciting differences between Brugada syndrome patient and control human pluripotent stem cell-derived cardiac clusters. Stem Cell Res 25:233–244. https://doi.org/10.1016/j.scr.2017.11.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millman JR, Xie C, Van Dervort A, Gurtler M, Pagliuca FW, Melton DA (2016) Generation of stem cell-derived beta-cells from patients with type 1 diabetes. Nat Commun 7:11463. https://doi.org/10.1038/ncomms11463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nie YZ, Zheng YW, Ogawa M, Miyagi E, Taniguchi H (2018) Human liver organoids generated with single donor-derived multiple cells rescue mice from acute liver failure. Stem Cell Res Ther 9(1):5. https://doi.org/10.1186/s13287-017-0749-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, Hong H, Nakagawa M, Tanabe K, Tezuka KI, Shibata T, Kunisada T, Takahashi M, Takahashi J, Saji H, Yamanaka S (2011) A more efficient method to generate integration-free human iPS cells. Nat Methods 5(5):409–412. https://doi.org/10.1038/nmeth.1591

    Article  CAS  Google Scholar 

  • Okita K, Yamakawa T, Matsumura Y, Sato Y, Amano N, Watanabe A, Goshima N, Yamanaka S (2013) An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells 31(3):458–466. https://doi.org/10.1002/stem.1293

    Article  CAS  PubMed  Google Scholar 

  • Ong J, Serra MP, Segal J, Cujba AM, Ng SS, Butler R, Millar V, Hatch S, Zimri S, Koike H, Chan K, Bonham A, Walk M, Voss T, Heaton N, Mitry R, Dhawan A, Ebner D, Danovi D, Nakauchi H, Rashid ST (2018) Imaging-based screen identifies laminin 411 as a physiologically relevant niche factor with importance for i-Hep applications. Stem Cell Rep 10(3):693–702. https://doi.org/10.1016/j.stemcr.2018.01.025

    Article  CAS  Google Scholar 

  • Onozato D, Yamashita M, Fukuyama R, Akagawa T, Kida Y, Koeda A, Hashita T, Iwao T, Matsunaga T (2018a) Efficient generation of Cynomolgus monkey induced pluripotent stem cell-derived intestinal organoids with pharmacokinetic functions. Stem Cells Dev 27(15):1033–1045. https://doi.org/10.1089/scd.2017.0216

    Article  CAS  PubMed  Google Scholar 

  • Onozato D, Yamashita M, Nakanishi A, Akagawa T, Kida Y, Ogawa I, Hashita T, Iwao T, Matsunaga T (2018b) Generation of intestinal organoids suitable for pharmacokinetic studies from human induced pluripotent stem cells. Drug Metab Dispos 46(9):dmd.118.080374. https://doi.org/10.1124/dmd.118.080374

    Article  CAS  Google Scholar 

  • Pagliuca FW, Millman JR, Gurtler M, Segel M, Van Dervort A, Ryu JH, Peterson QP, Greiner D, Melton DA (2014) Generation of functional human pancreatic beta cells in vitro. Cell 159(2):428–439. https://doi.org/10.1016/j.cell.2014.09.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramaswamy S, Tonnu N, Menon T, Lewis BM, Green KT, Wampler D, Monahan PE, Verma IM (2018) Autologous and heterologous cell therapy for hemophilia B toward functional restoration of factor IX. Cell Rep 23(5):1565–1580. https://doi.org/10.1016/j.celrep.2018.03.121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rashid T, Takebe T, Nakauchi H (2014) Novel strategies for liver therapy using stem cells. Gut 64(1):1–4. https://doi.org/10.1136/gutjnl-2014-307480

    Article  PubMed  Google Scholar 

  • Segeritz CP, Rashid ST, de Brito MC, Serra MP, Ordonez A, Morell CM, Kaserman JE, Madrigal P, Hannan NRF, Gatto L, Tan L, Wilson AA, Lilley K, Marciniak SJ, Gooptu B, Lomas DA, Vallier L (2018) hiPSC hepatocyte model demonstrates the role of unfolded protein response and inflammatory networks in alpha1-antitrypsin deficiency. J Hepatol 69:851–860. https://doi.org/10.1016/j.jhep.2018.05.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiba Y, Gomibuchi T, Seto T, Wada Y, Ichimura H, Tanaka Y, Ogasawara T, Okada K, Shiba N, Sakamoto K, Ido D, Shiina T, Ohkura M, Nakai J, Uno N, Kazuki Y, Oshimura M, Minami I, Ikeda U (2016) Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature 538(7625):388–391. https://doi.org/10.1038/nature19815

    Article  CAS  PubMed  Google Scholar 

  • Simsek S, Zhou T, Robinson CL, Tsai SY, Crespo M, Amin S, Lin X, Hon J, Evans T, Chen S (2016) Modeling cystic fibrosis using pluripotent stem cell-derived human pancreatic ductal epithelial cells. Stem Cells Transl Med 5(5):572–579. https://doi.org/10.5966/sctm.2015-0276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stadtfeld M, Hochedlinger K (2010) Induced pluripotency: history, mechanisms, and applications. Genes Dev 24(20):2239–2263. https://doi.org/10.1101/gad.1963910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K (2008) Induced pluripotent stem cells generated without viral integration. Science 322(5903):945–949. https://doi.org/10.1126/science.1162494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takagi C, Yagi H, Hieda M, Tajima K, Hibi T, Abe Y, Kitago M, Shinoda M, Itano O, Kitagawa Y (2017) Mesenchymal stem cells contribute to hepatic maturation of human induced pluripotent stem cells. Eur Surg Res 58(1–2):27–39. https://doi.org/10.1159/000448516

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. https://doi.org/10.1016/j.cell.2006.07.024

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872. https://doi.org/10.1016/j.cell.2007.11.019

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Sato S, Kurashima Y, Yamamoto T, Kurokawa S, Yuki Y, Takemura N, Uematsu S, Lai CY, Otsu M, Matsuno H, Osawa H, Mizushima T, Nishimura J, Hayashi M, Yamaguch T, Kiyono H (2018) A refined culture system for human induced pluripotent stem cell-derived intestinal epithelial organoids. Stem Cell Rep 10(1):314–328. https://doi.org/10.1016/j.stemcr.2017.11.004

    Article  CAS  Google Scholar 

  • Tester D, Ackerman MJ (2014) Genetics of long QT syndrome. Methodist Debakey Cardiovasc J 10(1):29–33

    Article  PubMed  PubMed Central  Google Scholar 

  • Tiburcy M, Hudson JE, Balfanz P, Schlick S, Meyer T, Chang Liao ML, Levent E, Raad F, Zeidler S, Wingender E, Riegler J, Wang M, Gold JD, Kehat I, Wettwer E, Ravens U, Dierickx P, van Laake LW, Goumans MJ, Khadjeh S, Toischer K, Hasenfuss G, Couture LA, Unger A, Linke WA, Araki T, Neel B, Keller G, Gepstein L, Wu JC, Zimmermann WH (2017) Defined engineered human myocardium with advanced maturation for applications in heart failure modeling and repair. Circulation 135(19):1832–1847. https://doi.org/10.1161/CIRCULATIONAHA.116.024145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veerman CC, Mengarelli I, Lodder EM, Kosmidis G, Bellin M, Zhang M, Dittmann S, Guan K, Wilde AAM, Schulze-Bahr E, Greber B, Bezzina CR, Verkerk AO (2017) Switch from fetal to adult SCN5A isoform in human induced pluripotent stem cell–derived cardiomyocytes unmasks the cellular phenotype of a conduction disease–causing mutation. J Am Heart Assoc Cardiovasc Cerebrovasc Dis 6(7):e005135. https://doi.org/10.1161/JAHA.116.005135

    Article  Google Scholar 

  • Vegas AJ, Veiseh O, Gurtler M, Millman JR, Pagliuca FW, Bader AR, Doloff JC, Li J, Chen M, Olejnik K, Tam HH, Jhunjhunwala S, Langan E, Aresta-Dasilva S, Gandham S, McGarrigle JJ, Bochenek MA, Hollister-Lock J, Oberholzer J, Greiner DL, Weir GC, Melton DA, Langer R, Anderson DG (2016) Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat Med 22(3):306–311. https://doi.org/10.1038/nm.4030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Jakus AE, Baptista PM, Soker S, Soto-Gutierrez A, Abecassis MM, Shah RN, Wertheim JA (2016) Functional maturation of induced pluripotent stem cell hepatocytes in extracellular matrix-a comparative analysis of bioartificial liver microenvironments. Stem Cells Transl Med 5(9):1257–1267. https://doi.org/10.5966/sctm.2015-0235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Raghavan A, Peters DT, Pashos EE, Rader DJ, Musunuru K (2018) Interrogation of the atherosclerosis-associated SORT1 (Sortilin 1) locus with primary human hepatocytes, induced pluripotent stem cell-hepatocytes, and locus-humanized mice. Arterioscler Thromb Vasc Biol 38(1):76–82. https://doi.org/10.1161/ATVBAHA.117.310103

    Article  CAS  PubMed  Google Scholar 

  • Watson CL, Mahe MM, Munera J, Howell JC, Sundaram N, Poling HM, Schweitzer JI, Vallance JE, Mayhew CN, Sun Y, Grabowski G, Finkbeiner SF, Spence JR, Shroyer NF, Wells JM, Helmrath MA (2014) An in vivo model of human small intestine using pluripotent stem cells. Nat Med 20(11):1310–1314. https://doi.org/10.1038/nm.3737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • World health statistics 2018: monitoring health for the SDGs, sustainable development goals. Geneva: World Health Organization; 2018. Licence: CC BY-NC-SA 3.0 IGO

    Google Scholar 

  • Yabe SG, Fukuda S, Takeda F, Nashiro K, Shimoda M, Okochi H (2017) Efficient generation of functional pancreatic beta-cells from human induced pluripotent stem cells. J Diabetes 9(2):168–179. https://doi.org/10.1111/1753-0407.12400

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Wang Y, Zhou T, Wong LY, Tian XY, Hong X, Lai WH, Au KW, Wei R, Liu Y (2017) Generation of human liver chimeric mice with hepatocytes from familial hypercholesterolemia induced pluripotent stem cells. Stem Cell Rep 8:605–618. https://doi.org/10.1016/j.stemcr.2017.01.027

    Article  CAS  Google Scholar 

  • Yoshida Y, Yamanaka S (2017) Induced pluripotent stem cells 10 years later: for cardiac applications. Circ Res 120(12):1958–1968. https://doi.org/10.1161/CIRCRESAHA.117.311080

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, Thomson JA (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324(5928):797–801. https://doi.org/10.1126/science.1172482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yusa K, Rashid ST, Strick-Marchand H, Varela I, Liu PQ, Paschon DE, Miranda E, Ordonez A, Hannan NR, Rouhani FJ (2011) Targeted gene correction of alpha1-antitrypsin deficiency in induced pluripotent stem cells. Nature 478:391–394. https://doi.org/10.1038/nature10424, https://doi.org/10.1074/jbc.R114.635995

  • Zhang J, Klos M, Wilson GF, Herman AM, Lian X, Raval KK, Barron MR, Hou L, Soerens AG, Yu J, Palecek SP, Lyons GE, Thomson JA, Herron TJ, Jalife J, Kamp TJ (2012) Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: the matrix sandwich method. Circ Res 111(9):1125–1136. https://doi.org/10.1161/CIRCRESAHA.112.273144

  • Zhu W, Zhao M, Mattapally S, Chen S, Zhang J (2018) CCND2 overexpression enhances the regenerative potency of human induced pluripotent stem cell–derived cardiomyocytes. Circ Res 122:88–96. https://doi.org/10.1161/circresaha.117.311504

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Zeynep Tokcaer-Keskin was supported by TUBITAK 114C043, ABAPKO project no 2017/01/12.

Many thanks to Dr. Emre Deniz and Kevser Tokcaer for critical reading. The authors apologize in advance for not including all relevant citations on the subject matter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeynep Tokcaer-Keskin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Talug, B., Tokcaer-Keskin, Z. (2018). Induced Pluripotent Stem Cells in Disease Modelling and Regeneration. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 5. Advances in Experimental Medicine and Biology(), vol 1144. Springer, Cham. https://doi.org/10.1007/5584_2018_290

Download citation

Publish with us

Policies and ethics