Skip to main content

Assessing the Sustainability of Polymer Products

  • Chapter
  • First Online:
Polymers - Opportunities and Risks II

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 12))

Abstract

Sustainability of products is related to Life Cycle Thinking and Assessment. It is widely understood that environmentally preferable products cannot be simply defined by “Recyclable,” “natural,” “renewable resource based,” “biodegradable,” “chlorine free,” “reusable,” or “organic.” It is the product’s complete life cycle that must be environmentally preferable. Misconceptions still exist, particular on plastics. But looking closer there is no environmentally good or bad material, there are only good or bad applications of a material. This means consistent rules for sustainability assessment on a life cycle basis are important. Standard approaches already used in industry practice and can be complemented with further aspects. Tools are established, databases exist, and experts are have already formed networks. Further improving polymers for more sustainable products is hence a process that has already started, by consistently combining existing life cycle approaches, tools, and databases. Herein are summarized misconceptions, rules, standard approaches and needed additions, tools, databases, and experts related to the Sustainability of polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The functional unit specifies the function of the product system being studied and its efficiency. It serves as a reference for the established environmental impacts.

  2. 2.

    Unit processes allow the partitioning of inputs and outputs to each process step. Unit processes may consist of one or several processes up to a whole production site.

  3. 3.

    Society of Environmental Toxicology and Chemistry.

  4. 4.

    Troposphere: Lower part of the atmosphere up to about a height of 10 km.

  5. 5.

    Gases with a strong absorption band in the range of infrared (IR) light are called greenhouse gases [43]. Water steam and carbon dioxide are typical examples.

References

  1. Brundtland GH (1989) Our common future: the world commission on environment and development. Oxford University Press, New York

    Google Scholar 

  2. Baitz M, Kreißig J, Byrne E, Makishi E, Kupfer T, Frees N, Bey N, Hansen MS, Hansen A, Bosch T, Borghi V, Watson J, Miranda, M (2004) Life cycle assessment of PVC and of principal competing materials, commissioned by the European Commission

    Google Scholar 

  3. Eyerer P et al (1996) Ganzheitliche Bilanzierung - Werkzeug zum Planen und Wirtschaften in Kreisläufen. Springer, Heidelberg

    Book  Google Scholar 

  4. Florin H, Schuckert M (1997) Life Cycle Engineering of plastic parts in the automotive industry, IKP University of Stuttgart, 15th Polymer Colloquium Stuttgart, Germany

    Google Scholar 

  5. Baitz M, Hoffmann R, Russ M (2002) Life Cycyle Engineering im Automobilbau, Stand des Wissens, neue Erkenntnisse und künfitige Anforderungen, Umweltwissenschaften und Schadstofforschung, Beitragsserien: Automobilemissionen, Ecomed, 14 (2)

    Google Scholar 

  6. Schuckert M (1996) Ganzheitliche Bilanzierung vom Bauteil zum System am Beispiel von Verkehrsträgern. Dissertation, Universität Stuttgart

    Google Scholar 

  7. Schuckert M, Betz M, Gediga J, Florin H, Eyerer P (1997) Material and process ptimization for eco-designed automotive parts. Presentation at SAE Conference, Detroit, MI, USA

    Google Scholar 

  8. Baitz M, Kreißig J (1997) Ganzheitliche Bilanzierung Von Fenstern Und Fassaden im Auftrag des Verband der Fenster und Fassadenhersteller e.V. Institut für Kunststoffprüfung und Kunststoffkunde (IKP)

    Google Scholar 

  9. Jungbluth N (2009) Umweltfolgen des Nahrungsmittelkonsums: Beurteilung von Produktmerkmalen auf Grundlage einer modularen Ökobilanz. PhD thesis, ETH, Zürich. ISBN 3-89825-045-8

    Google Scholar 

  10. Deimling S (2008) Auswertung von Studien zur ökologischen Betrachtung von nachwachsenden Rohstoffen bei einer stofflichen Nutzung, PE International GmbH

    Google Scholar 

  11. IKP University of Stuttgart (2001–2003) FTP Kreislaufführung flüssigkeitstragender Polymerbauteile, funded by BMBF (LCA of Polymertanks)

    Google Scholar 

  12. Kreißig J, Baitz M et al (2003) PVC recovery options environmental and economic system analysis. Publicly available report, PE Europe GmbH

    Google Scholar 

  13. Fischer M, Kupfer T (2003) Die Ökobilanz und ihre Verwendung in Umweltmanagementsystemen – Beispiel: Recycling von PUR-Schaumdosen, 4. Merseburger Symposium “Kreislauffähigkeit von Werkstoffen”, Merseburg, 23 September 2003

    Google Scholar 

  14. Kupfer T, Shibasaki M, Baitz M, Eyerer P (2002) Innovative recycling concept for PE-HD gasoline tanks of automotives – an LCA case study. 5th International Conference on EcoBalance, Tsukuba

    Google Scholar 

  15. Baitz M, Wolf M-A (2001) Sustainable product development on basis of the life cycle analysis of materials: plastics and metals? Synergy or competition? Sustainable metals Workshop, University of Applied Sciences, Hamburg (Arnim von Gleich)

    Google Scholar 

  16. PE Europe GmbH and IKP University of Stuttgart (2000–2003) ADSM active disassembly using smart materials, Funded by the European Union

    Google Scholar 

  17. EN ISO 14040 (1997) Environmental management – Life cycle assessment – Principles and framework

    Google Scholar 

  18. EN ISO 14041 (1998) Environmental management – Life cycle assessment – Goal and scope definition and life cycle inventory analysis

    Google Scholar 

  19. EN ISO 14042 (2000) Environmental management – Life cycle assessment – Life cycle impact assessment

    Google Scholar 

  20. EN ISO 14043 (2000) Environmental management – Life cycle assessment – Life cycle interpretation

    Google Scholar 

  21. Kreißig J, Baitz M, Betz M, Eyerer P, Kümmel J, Reinhardt H-W (1997) Leitfaden zur Erstellung von Sachbilanzen in Betrieben der Steine-Erden-Industrie

    Google Scholar 

  22. Kreißig J, Baitz M, Betz M, Eyerer P, Kümmel J, Reinhardt H-W (1999) LCA of construction materials, impact assessment and interpretation in the construction materials industry. University of Stuttgart, Stuttgart, Germany

    Google Scholar 

  23. Eyerer P, Reinhardt HW (Hrsg) (2000) Ökologische Bilanzierung von Baustoffen und Gebäuden – Wege zu einer ganzheitlichen Betrachtung. Birkhäuser, Zürich

    Google Scholar 

  24. Heijungs R, Guinée J, Huppes G, Lankreijer RM, Udo de Haes HA, Wegener Sleeswijk A, Ansems AMM, Eggels PG, van Duin R, de Goede HP (1992) Environmental life cycle assessment of products. Guide and backgrounds. Centre of Environmental Science (CML), Leiden University, Leiden (EP and AP)

    Google Scholar 

  25. Guinée J et al (2001) Life cycle assessment an operational guide to the ISO standards. CML, Leiden, The Netherlands

    Google Scholar 

  26. Declaration of Appeldorn on LCIA of non-ferrous metals. International Expert Panel, Appeldorn (2004)

    Google Scholar 

  27. Centre of Environmental Science – Leiden University (CML) (2001) Characterisation and normalisation factors. Leiden, The Netherlands

    Google Scholar 

  28. Baitz M (2002) Die Bedeutung der funktionsbasierten Charakterisierung von Flächeninanspruchnahmen in industriellen Prozessketten – ein Beitrag zur Ganzheitlichen Bilanzierung. Shaker, Aachen. Univ Diss, Stuttgart

    Google Scholar 

  29. Köllner T (2001) Land use in product life cycles and its consequences for ecosystem quality. Dissertation, Universität St. Gallen Hochschule für Wirtschafts-, Rechts- und Sozialwissenschaften (HSG). Dissertations-Nr. 2519

    Google Scholar 

  30. Gabriel R, Schneider K, Stichling J, Hesselbach J (2001) Simulation and optimization of metal cutting processes in the automobile industry att – automotive and transportation technology congress and exhibition. SAE International, Barcelona 01ATT-451

    Google Scholar 

  31. Gabriel R (2002) Modeling and simulation of metal cutting processes – optimization of technical properties, costs and ecological burdens by the use of secenario calculations. Technical Paper 2002, SME – Society of Manufacturing Engineers

    Google Scholar 

  32. Gabriel R (2004) Optimierung der Metallzerspanung am Beispiel unterschiedlicher Schmierkonzepte – ein Beitrag zur Ganzheitlichen Bilanzierung. Dissertation, Universität Stuttgart, Shaker, Aachen, ISBN 3-8322-2389-4

    Google Scholar 

  33. Harsch M et al (1998) Life-cycle simulation of automotive painting processes. Total life-cycle conference, SAE International, Graz, Austria, 1–3 Dezember 1998

    Google Scholar 

  34. Harsch M, Finkbeiner M, Piwowarczyk D, Saur K, Eyerer P (1998) Vergleich von Automobillackierkonzepten weltweit – zukünftige Entwicklungen, DFO-Automobil-Tagung, Weimar, 29–30 September 1998

    Google Scholar 

  35. Antonsson A-B, Carlson H (1995) The basis for a method to integrate work environment in life cycle assessment. J Cleaner Prod 3(4):215–220

    Article  Google Scholar 

  36. Bengtsson G, Berglund R (1996) Life cycle assessment including the working environment: summary of method and case studies. IVF-skript 95859

    Google Scholar 

  37. Schmidt A, Bruun-Poulsen P, Andresen J, Floe T, Poulsen KE (2000) Integration of the working environment in life cycle assessment (LCA) : a new methodology. Danish EPA, Copenhagen (Guidelines from the Danish Environmental Protection Agency)

    Google Scholar 

  38. Wolf M-A, Baitz M, Kupfer T (2002) Process-level life cycle working time (LCWT) inventories as basis for the social extension of LCA/LCE. 12th SETAC Europe Annual Meeting, Congress Centre Vienna, Austria, 12–16 May 2002

    Google Scholar 

  39. Wolf M-A, Kupfer T Baitz M (2001) Life cycle sustainability – R&D of bio-source based polymers. Fifth conference on ecomaterials, HI, USA, November 2001

    Google Scholar 

  40. IKP, PE (1992–2002) GaBi 4 software system and databases for life cycle engineering. Copyright, TM Stuttgart, Echterdingen

    Google Scholar 

  41. European Commission – DG Joint Research Centre – Institute for Environment and Sustainability. European platform on LCA. http://lct.jrc.ec.europa.eu/eplca

  42. European Commission – DG Joint Research Centre – Institute for Environment and Sustainability. The international reference life cycle data system (ILCD) data network. http://lct.jrc.ec.europa.eu/eplca/deliverables/the-international-reference-life-cycle-data-system-ilcd-data-network

  43. Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Xiaosu D (eds) (2001) IPCC third assessment report: climate change 2001: the scientific basis. Cambridge University Press, Cambridge, UK GWP

    Google Scholar 

  44. Houghton JT, Meira Filho LG, Bruce J, Lee H, Callander BA, Haites E, Harris N, Maskell K (eds) (1994) Climate change 1994. Radiative forcing of climate change an an evaluation of the IPCC IS92 Emissions scenarios. Cambridge University Press, Cambridge GWP

    Google Scholar 

  45. Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K (eds) (1995) Climate change 1995. The science of climate change; contribution of WGI to the second assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge (GWP)

    Google Scholar 

  46. WMO (World Meteorological Organisation) (1992) Scientific assessment of ozone depletion: 1991. Global ozone research and monitoring project – Report no 25. Geneva (ODP)

    Google Scholar 

  47. WMO (World Meteorological Organisation) (1995) Scientific assessment of ozone depletion: 1994. Global ozone research and monitoring project – Report no 37. Geneva (ODP)

    Google Scholar 

  48. Solomon S, Albritton DL (1992) Time-dependant ozone depletion potentials for short- and long-term forecast. Nature 357:33–37 (ODP)

    Article  CAS  Google Scholar 

  49. Huijbregts M (1999) Life cycle impact assessment of acidifying and eutrophying air pollutants. Calculation of equivalency factors with RAINS-LCA. University of Amsterdam, The Netherlands. Forthcoming (EP&AP)

    Google Scholar 

  50. Hauschild M, Wenzel H (1998) Environmental assessment of products, vol 2, Scientific background. Chapman and Hall, London (EP&AP)

    Google Scholar 

  51. Jenkin ME, Hayman GD (1999) Photochemical ozone creation potentials for oxygenated volatile organic compounds: sensitivity to variations in kinetic and mechanistic parameters. Atmos Environ 33:1775–1293 POCP

    Article  Google Scholar 

  52. Derwent RG, Jenkin ME, Saunders SM, Pilling MJ (1998) Photochemical ozone creation potentials for organic compounds in Northwest Europe calculated with a master chemical mechanism. Atmos Environ 32:2429–2441 POCP

    Article  CAS  Google Scholar 

  53. Andersson-Sköld Y, Grennfelt P, Pleijel K (1992) Photochemical ozone creation potentials: a study of different concepts. J Air Waste Manage Assoc 42(9):1152–1158

    Article  Google Scholar 

  54. Carter WPL (1994) Development of ozone reactivity scales for volatile organic compounds. J Air Waste Manage Assoc 44:881–899

    CAS  Google Scholar 

  55. Carter WPL, Pierce JA, Luo D, Malkina IL (1995) Environmental chamber study of maximum incremental reactivities of volatile organic compounds. Atmos Environ 29(18):2499–2511 POCP

    Article  CAS  Google Scholar 

  56. Carter WPL (1997) Estimation of upper limit maximum incremental reactivities of VOCs. Report to California Air Resources Board Reactivity Research Advisory Committee. http://helium.ucr.edu/~carter/bycarter.htm (POCP)

  57. Huijbregts MAJ (1999a) Priority assessment of toxic substances in LCA. Development and application of the multi-media fate, exposure and effect model USES-LCA. IVAM environmental research, University of Amsterdam, Amsterdam (Tox)

    Google Scholar 

  58. Huijbregts MAJ (2000) Priority assessment of toxic substances in the frame of LCA. Time horizon dependency of toxicity potentials calculated with the multi-media fate, exposure and effects model USES-LCA. University of Amsterdam, Amsterdam, The Netherlands. http://www.leidenuniv.nl/interfac/cml/lca2/ (Tox)

  59. Huijbregts MAJ, Thissen U, Guinée JB, Jager T, van de Meent D, Ragas AMJ, Wegener Sleeswijk A, Reijnders L (2000) Priority assessment of toxic substances in life cycle assessment, I Calculation of toxicity potentials for 181 substances with the nested multi-media fate, exposure and effects model USES-LCA. Chemosphere 41:541–573 Tox

    Article  CAS  Google Scholar 

  60. Huijbregts MAJ, Guinée JB, Reijnders L (2001) Priority assessment of toxic substances in life cycle assessment, III Export of potential impact over time and space. Chemosphere 44(1):59–65 Tox

    Article  CAS  Google Scholar 

  61. Baitz M, Kreißig J, Betz M, Eyerer P, Kümmel J, Reinhardt H-W (1997) Life cycle assessment of building materials and structures in Germany, Institute for Polymer Testing and Polymer Science (IKP) and Institute for Construction Materials (IWB), University of Stuttgart, CIB Conference, Paris

    Google Scholar 

  62. Guinée JB (ed) (2001) Life cycle assessment an operational guide to the ISO standard, vol 1, 2, 3 (ADP)

    Google Scholar 

  63. WMO (World Meteorological Organisation) (1999) Scientific assessment of ozone depletion: 1998. Global ozone research and monitoring project – Report no 44. Geneva (ODP)

    Google Scholar 

  64. Carter WPL (1998) Summary of status of VOC reactivity estimates. University of California, CA (POCP)

    Google Scholar 

  65. Baitz M, Kupfer T (2000) Ressourcenschonende Herstellung von Polymerwerkstoffen am Beispiel Polyolefine, Institut für Kunststoffprüfung und Kunststoffkunde (IKP) on behalf of Umweltbundesamt, Stuttgart (unpublished)

    Google Scholar 

  66. Simonson M, Boldizar A, Tullin C, Stripple H, Sundquist JO (1998) The incorporation of fire considerations in the life-cycle assessment of polymeric composite materials: a preparatory study. SP Swedish National Testing and Research Institute, SP Report 1998:25, Boras 1998

    Google Scholar 

  67. Wolf M-A, Baitz M, Kupfer T (2002) Process-level life cycle working time (LCWT) inventories as basis for the social extension of LCA/LCE. Poster presentation at 12th SETAC Europe Annual Meeting, Congress Centre Vienna, Austria, 12–16 May 2002

    Google Scholar 

  68. Shibasaki M, Kupfer T, Wolf M-A, Eyerer P (2004) Recycling concept for contaminated plastic materials – a LCA case study. 6th international conference on ecobalance, Tsukuba, 2004

    Google Scholar 

  69. Kupfer T, Shibasaki M, Baitz M, Eyerer P (2002) Innovative recycling concept for PE-HD gasoline tanks of automotives – an LCA case study. 5th international conference on ecobalance, Tsukuba, 2002

    Google Scholar 

  70. Betz M, Gediga J, Florin H, Kreißig J, Saur K (1999) The green tire – application of the life cycle engineering approach during the design phase of new automotive materials. 4th international conference on ecomaterials, Gifu, November 1999

    Google Scholar 

  71. Eyerer P, Bohnacker A, Beddies H, Kreißig J, Pfleiderer I, Saur K, Schuckert M (1995) Life-cycle analysis of recycling methods. Vortrag R ’95, Recovery recycling re-integration, International Congress, Geneva, Switzerland, 1–2 February 1995

    Google Scholar 

  72. Schuckert M (1995) Life cycle analysis of plastic parts in the automotive industrie – present and future. Presentation, Autoplas ’95, World congress on plastics and rubber in automotive applications, Düsseldorf, Germany, 3–4 October 1995

    Google Scholar 

  73. Eyerer P, Dekorsy Th, Schuckert M, Pfleiderer I Developing a comprehensive balance of an automotive air intake manifold. German Plastics 83 (1993) 3, S16–19

    Google Scholar 

  74. Wolf MA, Eyerer P (2004) The life cycle accident assessment (LCAA) – emissions and casualties from non-normal operation and use. Presentation at sixth international conference on ecobalance, Tsukuba, Japan, October 25–27 2004

    Google Scholar 

  75. Bengtsson G, Berglund R et al (1996) Life cycle assessment including the working environment – summary of method and case studies. IVF-skript 95859

    Google Scholar 

  76. Antonsson A-B, Carlson H (1995) The basis for a method to integrate work environment in life cycle assessment. J Cleaner Prod 3(4):215–220

    Article  Google Scholar 

  77. Goedkoop M, Spriensma R (1999) The eco-indicator 99. Methodology report and annex, Pre Consultants, Amersfoort

    Google Scholar 

  78. Kreißig J et al (2003) PVC recovery options – environmental and economic system analysis, commisioned by Vinyl 2010

    Google Scholar 

  79. Klöpffer W (1996) Allocation rule for open-loop recycling in life cycle assessment – a review. Int J Life Cycle Assessment 1(1):27–31

    Article  Google Scholar 

  80. Kreißig J (1998) Ganzheitliche Bilanzierung von Fenstern und Fassaden, Forschungsbericht, Herausgeber: Verband der Fenster- und Fassadenhersteller e.V. (VFF), Frankfurt

    Google Scholar 

  81. Lindeijer EW (1994) Allocation recycling for integrated chain management: taking account of quality losses. In: Proceedings of the European workshop on allocation in LCA at Center of Environmental Science of Leiden University, SETAC, Brussels, February 1994

    Google Scholar 

  82. Ekvall T (1999) System expansion and allocation in life cycle assessment, Department of Technical Environmental Planning, Chalmers University of Technology, Göteborg, Sweden

    Google Scholar 

  83. Guinée JB et al (2002) Handbook on life cycle assessment. Kluwer Academic, London

    Google Scholar 

  84. Guinée JB et al (1996) LCA impact assessment of toxic releases; Generic modelling of fate, exposure and effect for ecosystems and human beings (no 1996/21) Centre of Environmental Science (CML) Leiden and National Institute of Public Health and Environmental Protection (RIVM), Bilthoven, May 1996

    Google Scholar 

  85. Heijungs R et al (1992) Environmental life cycle assessment of products, guide and backgrounds LCA. Centrum voor Milieukunde Leiden (CML)

    Google Scholar 

  86. IPCC (Intergovernmental Panel on Climatic Change) (Hrsg) (1996) Climate change 1995. The science of climate change. IPCC Secretariat, World Meteorological Organisation, MIT University Press, Cambridge

    Google Scholar 

  87. WMO (1995) Scientific assessment of ozone depletion 1994, WMO global ozone research and monitoring project – Report No 37, UNEP

    Google Scholar 

  88. Baitz M et al Die Lebensweganalyse als Basis für eine nachhaltigkeitsbasierte Zertifizierung econsense Schriftenreihe zu Nachhaltigkeit und CSR Band 1

    Google Scholar 

  89. IKP University of Stuttgart (2000–2004) Bio-source based recyclable poly(ester-co-amide)s and poly(ester-co-urethane)s for industrial foam applications (BIOFOAM), funded by the European Union

    Google Scholar 

  90. PE Europe GmbH and IKP University of Stuttgart (2003) LCA of PVC and of principal competing materials, funded by the European Union

    Google Scholar 

  91. IKP University of Stuttgart (2000–2003) Waste- and emission-saving production of powder ceramic parts, funded by BMBF

    Google Scholar 

  92. IKP University of Stuttgart (1999) Resource saving in the production of polymer materials, funded by the Ministry of Environment Germany

    Google Scholar 

  93. IKP University of Stuttgart (1994–1996) Development of a practical instrument for the technical, economical and environmental evaluation of new materials, having composite materials as example, BMBF

    Google Scholar 

  94. IKP University of Stuttgart (1994-1997) Life cycle engineering from lacquer process I and II, funded by BMBF/DLR/DFO

    Google Scholar 

  95. IKP University of Stuttgart (1992–1995) Life cycle engineering of powder varnish technique, comparison with other varnish technologies, funded by BMBF

    Google Scholar 

  96. PE Europe GmbH (2003) PVC recovery options environmental and economic system analysis, Commissioned by Vinyl 2010

    Google Scholar 

  97. PE Europe GmbH (2004) Materials and products from UK-sourced PVC-rich waste, Life cycle analysis for the recycling options

    Google Scholar 

  98. PE Europe GmbH and IKP University of Stuttgart (2003–2007) Partner in Netzwerk Lebenszyklusdaten (German Network on LCI data)

    Google Scholar 

  99. IKP University of Stuttgart (2003) Ökobilanz Getränkeverpackungen – Erweiterung um Szenarien für Getränke-Verbundkartons (LCA of beverage packings), SIM (Stiftung Initiative Mehrweg)

    Google Scholar 

  100. PE Europe GmbH and IKP University of Stuttgart (2001–2003) grEEEn Cost management system for greening electrical and electronic equipment, funded by the European Union

    Google Scholar 

  101. European Commission – DG Joint Research Centre – Institute for Environment and Sustainability: The international reference life cycle data system (ILCD) data network. http://lct.jrc.ec.europa.eu/eplca/deliverables/the-international-reference-life-cycle-data-system-ilcd-data-network

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marc-Andree Wolf or Johannes Kreissig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wolf, MA., Baitz, M., Kreissig, J. (2009). Assessing the Sustainability of Polymer Products. In: Eyerer, P., Weller, M., Hübner, C. (eds) Polymers - Opportunities and Risks II. The Handbook of Environmental Chemistry(), vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2009_10

Download citation

Publish with us

Policies and ethics