Skip to main content

Underneath the Pantanal Wetland: A Deep-Time History of Gondwana Assembly, Climate Change, and the Dawn of Metazoan Life

  • Chapter
  • First Online:
Dynamics of the Pantanal Wetland in South America

Abstract

Underneath the wetlands of the Brazilian Pantanal are hidden key ecological and geological events of the history of our planet. In this chapter we show that Precambrian rocks forming the hills and mountains surrounding the Pantanal floodplains record (a) the cyclic process of supercontinents assembling, (b) the origin of complex life forms on Earth, and (c) the past global climate changes. It further unveiled the most recent geochronological data and paleontological and tectonic discoveries for modeling the evolution of the Pantanal basement rocks. Various questions are also addressed, including the formation time of the Rodinia and Gondwana supercontinents, the triggering factor leading to animal skeleton biomineralization, and the “Snowball Earth Hypothesis.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almeida FFM (1967) Origem e evolução da Plataforma Brasileira. Bol do DNPM Rio de Janeiro

    Google Scholar 

  2. Tohver E, Trindade RIF, Solum JG et al (2010) Closing the Clymene ocean and bending a Brasiliano belt: evidence for the Cambrian formation of Gondwana, southeast Amazon craton. Geology 38(3):267–270

    Article  CAS  Google Scholar 

  3. Cordani UG et al (2010) The Rio Apa Craton in Mato Grosso do Sul (Brazil) and northern Paraguay: geochronological evolution, correlations and tectonic implications for Rodinia and Gondwana. Am J Sci 310:981–1023

    Article  CAS  Google Scholar 

  4. Amthor JE, Grotzinger JP, Schröder S et al (2003) Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in Oman. Geology 31:431–434

    Article  Google Scholar 

  5. Grotzinger JP et al (1995) Biostratigraphic and geochronologic constraints on early animal evolution. Science 270:598–604

    Article  CAS  Google Scholar 

  6. Cordani UG, Tassinari CCG, Rolim DR (2005) The basement of the Rio Apa Craton in Mato Grosso do Sul (Brazil) and northern Paraguay: a geochronological correlation with the tectonic provinces of the south-western Amazonian Craton. In: Abstracts of Gondwana 12, Mendoza, p 112

    Google Scholar 

  7. Alvarenga CJS, Trompette R (1993) Evolução Tectônica Brasiliana da Faixa Paraguai: a Estruturação da Região de Cuiabá. Rev Bras Geosci 23(1):18–30

    Google Scholar 

  8. Alvarenga CJS et al (2000) Paraguai and Araguaia belts. In: Cordani UG et al (eds) Tectonic evolution of South America. FINEP, Rio de Janeiro, pp 183–193

    Google Scholar 

  9. Campanha GAC, Warren LV, Boggiani PC et al (2010) Structural analysis of the Itapucumi Group in the Vallemi region, northern Paraguay: evidence of a new Brasiliano – Pan-African mobile belt. J S Am Earth Sci 30(1):1–11

    Article  Google Scholar 

  10. Kröner A, Cordani UG (2003) African, southern Indian and South American cratons were not part of the Rodinia supercontinent: evidence from field relationships and geochronology. Tectonophysics 375:325–352

    Article  Google Scholar 

  11. Araújo HJT, Santos Neto A, Trindade CAH et al (1982) Geologia. In: Projeto RADAMBRASIL, Folha SF 21, Campo Grande. Escala 1:1.00.000. Geologia, geomorfologia, pedologia, vegetação e uso potencial da terra. Rio de Janeiro, vol 28, pp 23–124

    Google Scholar 

  12. Tassinari CCG et al (1996) Geochronological systematics on basement rocks from the Rio Negro-Juruena Province (Amazon CRio Alegre Terrainon) and tectonic implications. Int Geol Rev 38:1161–1175

    Article  Google Scholar 

  13. Cordani UG, Teixeira W (2007) Proterozoic accretionary belts in the Amazonian Craton. In: Hatcher RD Jr et al (eds) The 4D framework of continental crust, vol 200. GSA Memoir, Boulder, pp 297–320

    Chapter  Google Scholar 

  14. Tohver E et al (2002) Paleogeography of the Amazon craton at 1,2 Ga: early Grenvillian collision with the Llano segment of Laurentia. Earth Planet Sci Lett 199:185–200

    Article  CAS  Google Scholar 

  15. Cohen KM et al (2014) The ICS International Chronostratigraphic Chart. Episodes 36:199–204

    Google Scholar 

  16. Cox GM, Halverson GP, Minarik WG et al (2013) Neoproterozoic iron formation: an evaluation of its temporal, environmental and tectonic significance. Chem Geol 362:232–249

    Article  CAS  Google Scholar 

  17. Halverson GP et al (2005) Towards a Neoproterozoic composite carbon isotope record. Geol Soc Am Bull 117:1181–1207

    Article  Google Scholar 

  18. Li ZX et al (2008) Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Res 160:179–210

    Article  CAS  Google Scholar 

  19. Tohver E, D’Agrella-Filho MS, Trindade RIF (2006) Paleomagnetic record of Africa and South America for the 1200–500 Ma interval, and evaluation of Rodinia and Gondwana assemblies. Precambrian Res 147:193–222

    Article  CAS  Google Scholar 

  20. Trindade RIF et al (2006) Paleomagnetism of early Cambrian Itabaiana mafic dikes (NE Brazil) and the final assembly of Gondwana. Earth Planet Sci Lett 244:361–377

    Article  Google Scholar 

  21. Kaufman AJ, Knoll AH, Narbonne GM (1997) Isotopes, ice ages and terminal Proterozoic earth history – an exemple from the Olenek Uplift, northeastern Sibéria. Precambrian Res 73:251–270

    Google Scholar 

  22. Kirschvink JL (1992) Late Proterozoic low-latitude global glaciation: the snowball Earth. In: Schopf JW, Klein C (eds) The Proterozoic biosphere – a multidisciplinary study. Cambridge University Press, Cambridge, pp 51–52

    Google Scholar 

  23. Hoffman PF (1999) The break-up of Rodinia, birth of Gondwana, true polar wander and the snowball Earth. J Afr Earth Sci 28:17–33

    Article  CAS  Google Scholar 

  24. Hoffman PF, Schrag DP (2002) The snowball Earth hypothesis: testing the limits of global change. Terra Nova 14(3):129–155

    Article  CAS  Google Scholar 

  25. Kaufman AJ, Knoll AH (1995) Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications. Precambrian Res 73:27–49

    Article  CAS  Google Scholar 

  26. Knoll AH (2000) Learning to tell Neoproterozoic time. Precambrian Res 100:3–20

    Article  CAS  Google Scholar 

  27. Riding R (2006) Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time. Sediment Geol 185:229–238

    Article  Google Scholar 

  28. Grey K, Walter MR, Calver CR (2003) Neoproterozoic biotic diversification: snowball Earth or aftermath of the Acraman impact? Geology 31:459–462

    Article  Google Scholar 

  29. Knoll AH, Carroll SB (1999) Early animal evolution: emerging views from comparative biology and geology. Science 284:2129–2137

    Article  CAS  Google Scholar 

  30. Tohver E et al (2005) Two stage tectonic history of the SW Amazon craton in the late Mesoproterozoic: identifying a cryptic suture zone. Precambrian Res 137:35–59

    Article  CAS  Google Scholar 

  31. Eyles N, Januszczak N (2004) ‘Zipper-rift’: a tectonic model for Neoproterozoic glaciations during the breakup of Rodinia after 750 Ma. Earth Sci Rev 65:1–73

    Article  Google Scholar 

  32. Trompette R (2000) Gondwana evolution: its assembly at around 600 Ma. C R Acad Sci Paris 330:305–315

    Google Scholar 

  33. Hoffman PF et al (1998) A Neoproterozoic snowball Earth. Science 81:1342–1346

    Article  Google Scholar 

  34. Campanha GAC, Boggiani PC, Sallun WF et al (2011) A faixa de dobramento Paraguai na Serra da Bodoquena e depressão do Rio Miranda, Mato Grosso do Sul. Rev Geol USP 11(3):79–96

    Google Scholar 

  35. Brain CKB, Prave AR, Hoffmann KH et al (2012) The first animals: ca. 760-million-year-old sponge-like fossils from Namibia. S Afr J Sci 108(1–2):658

    Google Scholar 

  36. Erwin DH (2006) Dates end rates: temporal resolution in the deep time stratigraphic record. Annu Rev Earth Planet Sci 34:569–590

    Article  CAS  Google Scholar 

  37. Grotzinger JP, James NP (2000) Precambrian carbonates: evolution of understanding. In: Grotzinger JP, James NP (eds) Carbonate sedimentation and diagenesis in the evolving precambrian world, vol 67, SEPM special publication. Tulsa, SEPM, pp 3–20

    Chapter  Google Scholar 

  38. Xiao S, Kaufman AJ (2006) Neoproterozoic geobiology and paleobiology, vol 27, Topics in geobiology series. Springer, Berlin, p 300

    Book  Google Scholar 

  39. Alvarenga CJS, Trompette R (1992) Glacially influenced sedimentation in the later Proterozoic of the Paraguay Belt (Mato Grosso, Brazil). Palaeogeogr Palaeoclimatol Palaeoecol 92:85–105

    Article  Google Scholar 

  40. Babinski M, Boggiani PC, Trindade RIF et al (2013) Detrital zircon ages and geochronological constraints on the Neoproterozoic Puga diamictites and associated BIFs in the southern Paraguay Belt, Brazil. Gondwana Res 23:988–997

    Article  CAS  Google Scholar 

  41. Freitas BT, Warren LV, Boggiani PC et al (2011) Tectono-sedimentary evolution of the Neoproterozoic BIF-bearing Jacadigo Group, SW-Brazil. Sediment Geol 238(1–2):48–70

    Article  CAS  Google Scholar 

  42. Almeida FFM (1965) Geologia da Serra da Bodoquena (Mato Grosso), Brasil. Bol Div Geol e Mineral 219:1–96

    Google Scholar 

  43. Luz JS et al (1980) Projeto Coxipó. Goiania, DNPM/CPRM 1:136

    Google Scholar 

  44. Tokashiki CC, Saes GS (2008) Revisão estratigráfica e faciologia do Grupo Cuiabá no alinhamento Cangas-Poconé, baixada Cuiabána, Mato Grosso. Rev Bras Geosci 38(4):661–675

    Google Scholar 

  45. Dorr II JVN (1945) Manganese and iron deposits of Morro do Urucum, Mato Grosso, Brazil. Bull US Geol Surv 946A:47

    Google Scholar 

  46. Almeida FFM (1946) Origem dos minérios de ferro e manganês de Urucum: Boletim da Divisão de Geologia e Mineralogia. DNPM 119:1–58.

    Google Scholar 

  47. Urban H, Stribrny B, Lippolt H (1992) Iron and manganese deposits of the Urucum district, Mato Grosso do Sul, Brazil. Econ Geol 87:1375–1392

    Article  CAS  Google Scholar 

  48. DNPM (2012) Sumário Mineral 32:136

    Google Scholar 

  49. Piacentini T, Vasconcelos PM, Farley KA (2013) 40Ar/39Ar constraints on the age and thermal history of the Urucum Neoproterozoic banded iron-formation, Brazil. Precambrian Res 228:48–62

    Article  CAS  Google Scholar 

  50. O’Connor EA, Walde DGH (1986) Recognition of an Eocambriam orogenic cycle in SW Brazil and SE Bolivia. Zbl Geol Palaeont 9/10:1441–1456

    Google Scholar 

  51. Alvarenga CJS, Santos RV, Dantas EL (2004) C–O–Sr isotopic stratigraphy of cap carbonates overlying Marinoan-age glacial diamictites in the Paraguay Belt, Brazil. Precambrian Res 131:1–21

    Article  Google Scholar 

  52. Nogueira ACR et al (2003) Soft- sediment deformation at the Neoproterozoic Puga cap carbonate (southwestern Amazon Craton, Brazil): conformation of rapid icehouse to greenhouse transition in snowball Earth. Geology 31:613–616

    Article  CAS  Google Scholar 

  53. Allen PA, Hoffman PF (2005) Extreme winds and waves in the aftermath of a Neoproterozoic glaciation. Nature 433:123–127

    Article  CAS  Google Scholar 

  54. Nogueira ACR (2003) A plataforma carbonática Araras no sudoeste do Cráton Amazônico, Mato Grosso: estratigrafia, contexto paleoambiental e correlação com os eventos glaciais do Neoproterozóico. Ph.D. thesis, University of São Paulo

    Google Scholar 

  55. Hidalgo RLL (2007) Vida após as glaciações globais neoproterozoicas: um estudo fossilífero de capas carbonáticas dos crátons do São Francisco e Amazônico. Ph.D. thesis, University of São Paulo

    Google Scholar 

  56. Babinski M (2011) Geocronologia das glaciações criogenianas do Brasil central. Habilitation thesis, University of São Paulo

    Google Scholar 

  57. Boggiani PC (1998) Análise Estratigráfica da Bacia Corumbá (Neoproterozoico) – Mato Grosso do Sul. Ph.D. thesis, University of São Paulo

    Google Scholar 

  58. Warren LW (2011) Tectônica e sedimentação do Grupo Itapucumi (Ediacarano, Paraguay Setentrional). Ph.D. thesis, University of São Paulo

    Google Scholar 

  59. Boggiani PC, Fairchild TR, Coimbra AM (1993) O Grupo Corumbá (Neoproterozóico-Cambriano) na região Central da Serra da Bodoquena, Mato Grosso do Sul (Faixa Paraguai). Rev Bras Geoci 23(3):301–305

    Google Scholar 

  60. Boggiani PC, Ferreira VP, Sial NA et al (2003) The cap carbonate of the Puga Hill (Central South America) in the context of the post-Varanger Glaciation. In: Short papers of the IV South American symposium on isotope geology, Salvador, pp 324–327

    Google Scholar 

  61. Beurlen K, Sommer FW (1957) Observações estratigráficas e paleontológicas sobre o Calcário Corumbá. Relatório do Departamento Nacional de Produção Mineral. DNPM 168:1–35

    Google Scholar 

  62. Hahn G, Hahn R, Leonardos OH et al (1982) Körporlich erhaltene Scyphozoen-Reste aus dem Jungpräkambrium Brasiliens. Geol et Paleo 16:1–18

    Google Scholar 

  63. Zaine MF, Fairchild TR (1985) Comparison of Aulophycus lucianoi Beurlen & Sommerfrom Ladario (MS) and the genus Cloudina Germs, Ediacaran of Namibia. Ana Acad Bras Cie 57:130

    Google Scholar 

  64. Boggiani PC, Gaucher C, Sial AN et al (2010) Chemostratigraphy of the Tamengo Formation (Corumbá Group, Brazil): a contribution to the calibration of the Ediacaran carbon-isotope curve. Precambrian Res 182:382–401

    Article  CAS  Google Scholar 

  65. Gaucher C, Boggiani PC, Sprechmann P et al (2003) Integrated correlation of the Vendian to Cambrian Arroyo del Soldado and Corumbá Groups (Uruguay and Brazil): palaeogeographic, palaeoclimatic and palaeobiologic implications. Precambrian Res 120:241–278

    Article  CAS  Google Scholar 

  66. Babinski M, Boggiani PC, Fanning CM (2008) U-PB SHRIMP geochronology and isotope chemostratigraphy (C, O, Sr) of the Tamengo Formation, Southern Paraguay Belt, Brazil. In: Book of abstracts of the VI South American symposium on isotope geology, San Carlos de Bariloche, p 160

    Google Scholar 

  67. Van Iten H et al (2014) Origin and early diversification of the phylum Cnidaria Verrill: major developments in the analysis of the taxon’s Proterozoic-Cambrian history. Palaeontology 1–14

    Google Scholar 

  68. Fairchild TR et al (2012) Evolution of Precambrian life in the Brazilian geological record. Int J Astrobiol 11(4):309–323

    Article  Google Scholar 

  69. Warren LV, Simões MG, Fairchild TR et al (2013) Origin and impact of the oldest metazoan bioclastic sediments. Geology 41:507–510

    Article  Google Scholar 

  70. Germs GJB (1972) New shelly fossils from Nama Group, South West Africa. Am J Sci 272:752–761

    Article  Google Scholar 

  71. Vinn O, Zatón M (2012) Inconsistencies in proposed annelid affinities of early biomineralized organism Cloudina (Ediacaran): structural and ontogenetic evidences. Carnets de Geologie [Notebooks on Geology] - Article 2012/03(CG2012-A03):39–47

    Google Scholar 

  72. Grant SWF (1990) Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic. Am J Sci 290:261–294

    Article  Google Scholar 

  73. Pacheco MLAF, Leme JM, Machado AF (2011) Taphonomic analysis and geometric modeling for the reconstruction of the Ediacaran metazoan Corumbella werneri Hahn et al. 1982 (Tamengo Formation, Corumbá Group, Brazil). J Taphon 9:269–283

    Google Scholar 

  74. Warren LV, Fairchild TR, Gaucher C et al (2011) Corumbella and in situ Cloudina in association with thrombolites in the Ediacaran Itapucumi Group, Paraguay. Terra Nova 23:382–389

    Article  Google Scholar 

  75. Van Iten H (1992) Morphology and phylogenetic significance of the corners and midlines of the conulariid test. Palaeontology 35:335–358

    Google Scholar 

  76. Warren LV, Pacheco MLAF, Fairchild TR et al (2012) The dawn of animal skeletogenesis: ultrastructural analysis of the Ediacaran metazoan Corumbella werneri. Geology 40:691–694

    Article  CAS  Google Scholar 

  77. Babcock LE, Grunow AM, Sadowski AR, Leslie SA (2005) Corumbella, an Ediacaran-grade organism from the Late Neoproterozoic of Brazil. Palaeogeogr Palaeoclimatol Palaeoecol 220:7–18

    Article  Google Scholar 

  78. Leme JM, Simões MG, Van Iten HV (2010) Phylogenetic systematics and evolution of conulariids. Lap Lambert Academic, Saarbrücken

    Google Scholar 

  79. Wood RA (2011) Paleoecology of the earliest skeletal metazoan communities: implications for early biomineralization. Earth Sci Rev 106:184–190

    Article  CAS  Google Scholar 

  80. Pratt BR (1982) Stromatolite decline – a reconsideration. Geology 10:512–515

    Article  Google Scholar 

  81. Almeida FFM (1985) Alguns problemas das relações geológicas entre o Craton Amazônico e as faixas de dobramentos marginais à leste. In: 2° Atas do Simpósio de Geologia do Centro Oeste, Goiânia, pp 3–14

    Google Scholar 

  82. Brito Neves BB, Campos Neto MC, Fuck AF (1999) From Rodinia to Western Gondwana: an approach to the Brasiliano-Pan African cycle and orogenic collage. Episodes 22(3):155–166

    Google Scholar 

  83. Jones JP (1985) The southern border of the Guaporé shield in western Brazil and Bolivia: an interpretation of its geologic evolution. Precambrian Res 28:111–135

    Article  Google Scholar 

  84. O’Connor EA, Walde DGH (1986) Recognition of an Eocambriam orogenic cycle in SW Brazil and SE Bolivia. Zbl Geol Palaeontol 9/10:1441–1456

    Google Scholar 

  85. Alkmin FF, Marshak S, Fonseca MA (2001) Assembling West Gondwana in the Neoproterozoic: clues from the São Francisco Craton region, Brazil. Geology 29:319–322

    Article  Google Scholar 

  86. Trompette R, Alvarenga CJS, Walde D (1998) Geological evolution of the Neoproterozoic Corumbá graben system (Brazil). Depositional context of the stratified Fe and Mn ores of Jacadigo Group. J S Am Earth Sci 11:587–597

    Article  Google Scholar 

  87. Warren LV, Quaglio F, Riccomini C, Simões MG et al (2014) The puzzle assembled: Ediacaran guide fossil Cloudina reveals an old proto-Gondwana seaway. Geology 42:391–394

    Article  Google Scholar 

  88. Cawood PA, Leitch EC (1998) Going down: subduction initiation in the proto-Pacific and relationship to end Neoproterozoic global events. J Afr Earth Sci 27:42

    Google Scholar 

  89. Penny AM, Wood R, Curtis A, Bowyer F, Tostevin R, Hoffman KH (2014) Ediacaran metazoan reefs from the Nama Group, Namibia. Science 344:1504–1506

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the CNPq (project 444070/2014-1) and PROPE/UNESP for the financial support and Dr. Michael M. McGlue (Department of Earth and Environmental Sciences, University of Kentucky) for revising the manuscript. This work has the institutional support of the São Paulo State University (UNESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas V. Warren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Warren, L.V., Quaglio, F., Simões, M.G., Freitas, B.T., Assine, M.L., Riccomini, C. (2014). Underneath the Pantanal Wetland: A Deep-Time History of Gondwana Assembly, Climate Change, and the Dawn of Metazoan Life. In: Bergier, I., Assine, M. (eds) Dynamics of the Pantanal Wetland in South America. The Handbook of Environmental Chemistry, vol 37. Springer, Cham. https://doi.org/10.1007/698_2014_326

Download citation

Publish with us

Policies and ethics