Skip to main content

Integrated Pest Management for Sustainable Agriculture

  • Chapter
  • First Online:
Sustainability of Agricultural Environment in Egypt: Part II

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 77))

Abstract

Widespread insecticide resistance has been a major problem in a sustainable agriculture such as the resistance of Tuta absoluta (Meyrick) in tomato crops to some insecticides. Also, the increasing public concern over pesticide safety and possible damage to the environment has resulted in increasing attention being given to safety products for the control of agricultural pests. Integrated pest management (IPM) has become one of the major restricting factors for protected crop and vegetable cultivations in Egypt. The protections of human health, environment, ecosystems, and biodiversity have recently been considered as important elements in the application of agricultural practices. Integrated Pest management is carried out in a sustainable manner by combination of biological, cultural, mechanical, physical and chemical tools in a way that minimizes economic, health and environmental risks.

Despite the importance of the biological control in IPM, the basic principles of IPM are scouting and thresholds. If scouting and thresholds were the only IPM methods practiced by a grower, pesticide-use could usually be reduced by 50% compared to spraying on a regular schedule. Advantages of the use of pest-resistant varieties include low cost, increased security to the grower, decreased use of insecticides, the potential to enhance biological control through conservation of natural Enemies, easy transferability to farmers’ fields, no danger to humans and domestic animals, and compatibility with all other control practices. Several new classes of insecticides became available and been registered in various crops. These compounds are highly efficient and very selective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siqueira HAA, Guedes RNC, Picanço MC (2000) Cartap resistance na synergism in populations of Tuta absoluta (Lep., Gelechiidae). J Appl Entomol 124:233–238

    CAS  Google Scholar 

  2. Zapata N, Smagghe G (2010) Repellency and toxicity of essential oils from the leaves and bark of Laurelia sempervirens and Drimys winteri against Tribolium castaneum. Ind Crop Prod 32:405–410

    CAS  Google Scholar 

  3. Mansour SA (2004) Pesticide exposure: Egyptian scene. Toxicology 198:91–115

    CAS  Google Scholar 

  4. Pimentel D, Greiner A (1997) Environmental and socio-economic costs of pesticide use. In: Pimentel D (ed) Techniques for reducing pesticide use: environmental and economic benefits. Wiley, Chichester, pp 51–78

    Google Scholar 

  5. Mansour SA (2008) Environmental impact of pesticides in Egypt. Rev Environ Contam Toxicol 196:1–51

    CAS  Google Scholar 

  6. Abdel Megeed M (2017) Pesticide management in Egypt. Ministry of Agriculture and Land Reclamation, Giza

    Google Scholar 

  7. Pimentel D, Peshin R (2014) Integrated pest management: pesticide problems, vol 3. Springer, Dordrecht, p 48

    Google Scholar 

  8. FAO (1967) Report of the first session of the FAO panel of experts on integrated pest control. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  9. Ofuoku AU, Egho EO, Enujeke EC (2008) Integrated pest management (IPM) adoption among farmers in central agro-ecological zone of Delta State, Nigeria. Afr J Agric Res 3(12):852–856

    Google Scholar 

  10. Food and Agriculture Organization of the United Nations (FAO) Commission on Genetic Resources for Food and Agriculture. Biodiversity for a world without hunger. http://www.fao.org/fileadmin/templates/nr/documents/CGRFA/commissionfactsheet.pdf. Accessed 19 Dec 2012

  11. Cooper J, Dobson H (2007) The benefits of pesticides to mankind and environment. Crop Prot 26:1337–1348

    CAS  Google Scholar 

  12. Popp J, Peto K, Nagy J (2013) Pesticide productivity and food security: a review. Agron Sustain Dev 33:243–255. https://doi.org/10.1007/s13593–012-0105-x

    Article  Google Scholar 

  13. FAO (2011) Save and grow. Food and Agriculture Organization. The FAO online catalogue. http://www.fao.org/docrep/014/i2215e/i2215e.pdf. Accessed 21 Dec 2012

  14. Ramanjaneyulu GV, Chari MS, Raghunath TA, Hussain Z, Kuruganti K (2009) Nonpesticidal management: learning from experiences. In: Peshin R, Dhawn AK (eds) Integrated pest management: innovation development process, vol 1. Springer, Dordrecht, pp 543–573

    Google Scholar 

  15. Bannett RM, Ismeal Y, Kambhampati U, Morse S (2004) Economic impact of genetically modified cotton in India. J Agrobiotechnol Manag Econ 7:96–100

    Google Scholar 

  16. Yücel S, Keçeci M, Ünlü A, Kılıç T, Açkın A, Erdogan P, Ozan S, Ekmekçi U, Ögüt E, Özdemir S, Aydın H, Yurtmen M, Üstün N, Devran Z, Kara-taç A, Mısırlıoglu B, Karahan A, Toktay H, Velioglu S, Kütük H, Erdogan C, Aksoy E, Caner Ö, Duran H (2011) Integrated pest management directions for protected vegetable production. Agricultural Research General Directorate, Plant Protection Office, Ankara, p 163

    Google Scholar 

  17. Yucel SY, Mehmed K, Melike Y, Raziye C, Adem O, Canan C (2013) Integrated pest management of protected vegetable cultivation in Turkey. Eur J Plant Sci Biotechnol 7(Special Issue 1):7–13

    Google Scholar 

  18. Yücel S, Ulubilir A, Yaçarakıncı N, Keçeci M, Ekmekçi U, Demir G, Altın A, Fidan Ü, Tokgönül S, Uçkan A, Üstün N, Çalı S, Ulutaç E, Mısırlıoglu B, Yurtmen M, Uludag A, Ülke G, Aksoy E (2002) Integrated pest management directions for protected vegetable production. Agricultural Research General Directorate, Plant Protection Office, Ankara, p 141

    Google Scholar 

  19. Badawy MI (1998) Use and impact of pesticides in Egypt. Int J Environ Health Res 8:223–239

    CAS  Google Scholar 

  20. Rashad AA, Omar SKM, Ali MM, Abbas Z, Farouk HS, Malak F, Abd El-W, Hassan A, Abed M (2000) A pilot site for integrated pest management for faba bean and wheat crops in Beni-Suef Governorate in Egypt. Supported by the system-wide program on IPM

    Google Scholar 

  21. Alam SN, Hossain MI, Rouf FMA, Jhala RC, Patel MG, Rath LK, Sengupta A, Baral K, Shylesha AN, Satpathy S, Shivalingaswamy TM, Cork A, Talekar NS (2006) Implementation and promotion of an IPM strategy for control of eggplant fruit and shoot borer in South Asia. Technical Bulletin No. 36. AVRDC publication number 06–672. AVRDC, The World Vegetable Center, Taiwan, 74 pp

    Google Scholar 

  22. McDougall S, Industry Leader (Field Vegetables), Yanco Agricultural Institute (2011) Vegetable integrated pest management. National Vegetable Industry Centre, Yanco Agricultural Institute. www.dpi.nsw.gov.au/publications

  23. Pennsylvania Integrated Pest Management Program (2005) Greenhouse IPM with an emphasis on biocontrol. Pennsylvania Department of Agriculture and the Pennsylvania State University, University Park

    Google Scholar 

  24. Hirao T, Murakami M, Kashizaki A (2008) Effects of mobility on daily attraction to light traps: comparison between lepidopteran and coleopteran communities. Insect Conserv Divers 1:32–39

    Google Scholar 

  25. Drake VA, Wang HK, Harman IT (2002) Insect monitoring radar: remote and network operation. Comput Electron Agric 35:77–94

    Google Scholar 

  26. Klueken AM, Hau B, Ulber B, Poehling HM (2009) Forecasting migration of cereal aphids (Hemiptera: Aphididae) in autumn and spring. J Appl Entomol 133:328–344

    Google Scholar 

  27. Merril SC, Gebre-Amlak A, Armstrong JS, Pearirs FB (2010) Nonlinear degree-day models of the sunfl ower weevil (Curculionidae: Coleoptera). J Econ Entomol 103:303–307

    Google Scholar 

  28. Knutson AE, Muegge MA (2010) A degree-day model initiated by pheromone trap captures for managing pecan nut casebearer (Lepidoptera: Pyralidae) in pecans. J Econ Entomol 103:735–743

    Google Scholar 

  29. Zalucki MP, Furlong MJ (2005) Forecasting Helicoverpa populations in Australia: a comparison of regression based models and a bioclimatic based modeling approach. Insect Sci 12:45–46

    Google Scholar 

  30. Phillips T (1997) Semiochemicals of stored-product insects: research and applications. J Stored Prod Res 33:17–30

    CAS  Google Scholar 

  31. Witzgall P, Stelinski L, Gut L, Thomson D (2008) Codling moth management and chemical ecology. Annu Rev Entomol 53:503–522

    CAS  Google Scholar 

  32. Witzgall P, Kirsch P, Cork A (2010) Sex pheromones and their impact on pest management. J Chem Ecol 36(1):80–100

    CAS  Google Scholar 

  33. Prasad Y, Prabhakar M (2012) Pest monitoring and forecasting. In: Shankar U, Abrol DP (eds) Integrated pest management: principles and practice. CABI, Oxfordshire, pp 41–57

    Google Scholar 

  34. Tinzaara W, Dicke M, van Huis A, Gold CS (2002) Use of infochemicals in pest management with special reference to the banana weevil, Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae). Insect Sci Appl 22:241–261

    CAS  Google Scholar 

  35. Ministry of Agriculture (2003/2004) Integrated pest management. Practice for cotton. Ministry of Agriculture, Department of Agriculture and Cooperation, Directorate of Plant Protection, Quarantine and Storage, Government of India, 2003–04

    Google Scholar 

  36. Braham M (2014) Sex pheromone traps for monitoring the tomato leaf miner, Tuta absoluta: effect of colored traps and field weathering of lure on male captures. Res J Agric Environ Manag 3(6):290–298

    Google Scholar 

  37. Kato M, Itioka T, Sakai S, Momose K, Yamane S, Hamid AA, Inoue T (2000) Various population fluctuation patterns of light-attracted beetles in a tropical lowland dipterocarp forest in Sarawak. Popul Ecol 42:97–104

    Google Scholar 

  38. Kazak C, Karut K, Chu C, Arslan A (2009) Frankliniella occidentalis capture on blue and yellow sticky traps treated with floral compound mixture thrips attractant (Thrips-Lure) in greenhouses. Integrated control in protected crops, Mediterranean climate. IOBC/WPRS Bull 49:167–170

    Google Scholar 

  39. Premalatha K, Rajangam J (2011) Efficacy of yellow sticky traps against greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Aleyrodidae: Hemiptera) in Gerbera. J Biopest 4(2):208–210

    CAS  Google Scholar 

  40. Lu Y, Bei Y, Zhang J (2012) Are yellow sticky traps an effective method for control of sweetpotato whitefly, Bemisia tabaci, in the greenhouse or field? J Insect Sci 12:113. http://www.insectscience.org/12.113

    Google Scholar 

  41. Hochmuth RC, Laughlin WL, Sprenkel RK, Smith KS (2007) New use for metalized mulch film in managing greenhouse pests. Vegetarian Newsletter, A Horticultural Sciences Department Extension Publication on Vegetable Crops, University of Florida, North Florida Research and Education Center

    Google Scholar 

  42. Durmusoglu E, Karsavuran Y, Kaya M (2009) Efficiency of different hue yellow sticky traps to whitefly under greenhouse. Turk J Entomol 33(1):13–21

    Google Scholar 

  43. International Association of Operative Millers Food Protection Committee (2016) IAOM integrated pest management manual

    Google Scholar 

  44. Sasikala K, Rao PA, Krishnayya PV (1999) Comparative efficacy of eco-friendly methods involving egg parasitoid, Trichogramma japonicum, mechanical control and safe chemicals against Leucinodes orbonalis Guenee infesting brinjal. J Entomol Res 23(4):369–372

    Google Scholar 

  45. Benoit DL, Vincent C, Chouinard G (2006) Management of weeds, apple sawfly (Hoplocampa testudinea Klug) and plum curculio (Conotrachelus nenuphar Herbst) with cellulose sheets. Crop Prot 25:331–337

    Google Scholar 

  46. Vincent C, Rancourt B, Carisse O (2004) Apple leaf shredding as a non-chemical tool to manage apple scab and spotted tentiform leafminer. Agric Ecosyst Environ 104:595–604

    Google Scholar 

  47. Puterka GJ, Glenn DM, Sekutowski DG, Unruh TR, Jones SK (2000) Progress toward liquid formulations of particle films for insect and disease control in pear. Environ Entomol 29:329–339

    Google Scholar 

  48. Glenn DM, Puterka GJ, Vanderzwet T, Byers RE, Feldhake C (1999) Hydrophobic particle films: a new paradigm for suppression of arthropod pests and plant diseases. J Econ Entomol 92:759–771

    Google Scholar 

  49. Unruh TR, Knight AL, Upton J, Glenn DM, Puterka GJ (2000) Particle films for suppression of the codling moth (Lepidoptera: Tortricidae) in apple and pear orchards. J Econ Entomol 93:737–743

    CAS  Google Scholar 

  50. Thomas AL, Muller ME, Dodson BR, Ellersieck MR, Kaps M (2004) A kaolin-based particle film suppresses certain insect and fungal pests while reducing heat stress in apples. J Am Pomol Soc 58:42–51

    Google Scholar 

  51. James C (2010) Global status of commercialized biotech/GM crops: 2009. ISAAA brief 41–2009. ISAAA, Ithaca

    Google Scholar 

  52. Mabubu J, Nawaz M, Hua H (2016) Advances of transgenic Bt-crops in insect pest management: an overview. J Entomol Zool Stud 4(3):48–52

    Google Scholar 

  53. Brookes G, Barfoot P (2005) GM crops: the global economic and environmental impact – the first nine years 1996–2004. AgBioforum 8:187–196

    Google Scholar 

  54. Toenniessen GH, O’Toole JC, DeVries J (2003) Advances in plant biotechnology and its adoption in developing countries. Curr Opin Plant Biotechnol 6:191–198

    Google Scholar 

  55. Wu KM, Lu YH, Feng HQ, Jiang YY, Zhao JZ (2008) Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin containing cotton. Science 5896:1676–1678

    Google Scholar 

  56. James C (2011) Global status of commercialized biotech/GM crops. ISAAA brief No 43. ISAAA, Ithaca. isaaa.org/resources/publications/briefs/43

  57. Yu HL, Li YH, Wu KM (2011) Risk assessment and ecological effects of transgenic Bacillus thuringiensis crops on non-target organisms. J Integr Plant Biol 53(7):520–538

    Google Scholar 

  58. Baker JR, Shearin EA (2001) Insect screening for greenhouses. http://www.ces.ncsu.edu/depts/ent/notes/O&T/production/note104.html

  59. Dreistadt SH, Phillips PA, O’Donnell CA, Davis UC (2007) Pest notes: thrips. University of California, Agricultural and Natural Resources UC IPM Statewide Integrated Pest Management Programme, Puble, 7429

    Google Scholar 

  60. Diaz-Perez JC, Randle WM, Boyhan G, Walcott RR, Giddings D, Bertrand D, Sanders H, Gitaitis RD (2003) Effect of mulch and irrigation system on sweet onion: I. Bolting, plant growth, and bulb yield and quality. J Am Soc Hortic Sci 129(2):218–224

    Google Scholar 

  61. Momol MT, Olson SM, Funderburk JE, Stavisky J (2004) Integrated management of tomato spotted wilt on field-grown tomatoes. Plant Dis 88:882–890

    CAS  Google Scholar 

  62. Nagata T, Almeida ACL, Resende RO, DeAvila AC (2004) The competence of four thrips species to transmit and replicate four tospoviruses. Plant Pathol 53:136–140

    Google Scholar 

  63. Andersen PC, Olson SM, Momol MT, Freeman JH (2012) Effect of plastic mulch type and insecticide on incidence of tomato spotted wilt, plant growth, and yield of tomato. Hortscience 47(7):861–865

    Google Scholar 

  64. Yigit F, Dikilitaç M (2007) Status of integrated pest management and their possible application in greenhouses in Fethiye District. In: Proceedings of the 2nd plant protection congress of Turkey, Isparta, 27–29 Aug, p 33

    Google Scholar 

  65. Saygılı H, Çahin F, Aysan Y (2008) Bacterial plant diseases. Meta Press, Izmir, p 317

    Google Scholar 

  66. Yaçarakıncı N, Hıncal P (2001) Studies on population development of Macrolophus caliginosus (Wagner) (Heteroptera; Miridae) and its preys found in vegetables grown under protected conditions in Izmir province. In: 6th national greenhouse congress, Fethiye-Mugla, 3–5 Sept, pp 167–172

    Google Scholar 

  67. Kazak C, Karut K, Sekeroglu E (2000) The population dynamics and predation of Hatay strain of Phytoseiulus persimilis (Athias-Henriot) (Acari: Phytoseiidae) on the prey Tetranychus cinnabarinus Boisduval (Acari: Tetra- nychidae); effects of different initial prey and predator ratios on greenhouse cucumbers. IOBC/WPRS Bull 23(1):195–200

    Google Scholar 

  68. Akyaz R, Ecevit O (2009) The effectiveness of predator mite Phytoseiulus persimilis Athias-Henriot (Acarina: Phytoseiidae) for controlling important spider mite species Tetranychus cinnabarinus Boisduval (Acarina: Tetrany- chidae) in protected cucumbers in Samsun. Anadolu J Agric Sci 24(3):147–157

    Google Scholar 

  69. Ulubilir A, Sekeroglu E (1997) Biological control of Liriomyza trifolii by Diglyphus isaea on unheated greenhouse tomatoes in Adana, Turkey. Bull OILB/SROP 20(4):232–235

    Google Scholar 

  70. Yaçarakınc N, Hıncal P (1997) The research on determining the pests and their beneficial insects, their population densities on the tomato, cucumber, pepper, and lettuce glasshouses in Izmir. Plant Prot Bull 37(1–2):79–89

    Google Scholar 

  71. Keçeci M (2005) Using possibilities of polyphag predator, Orius spp. (Hemiptera: Anthocoridae) against greenhouse vegetable pests. PhD thesis, Ankara University, Graduate School of Natural and Applied Sciences, Department of Plant Protection, p 99

    Google Scholar 

  72. Gigon V, Camps C, Le Corff J (2016) Biological control of Tetranychus urticae by Phytoseiulus macropilis and Macrolophus pygmaeus in tomato greenhouses. Exp Appl Acarol 68(1):55–70

    Google Scholar 

  73. Li L-Y (1994) Worldwide use of Trichogramma for biological control on different crops: a survey. In: Wajnberg E, Hassan SA (eds) Biological control with egg parasitoids. CABI, Wallingford, pp 37–54

    Google Scholar 

  74. Wright MG, Hoffmann MP, Chenus SA, Gardner J (2001) Dispersal behavior of Trichogramma ostriniae (Hymenoptera: Trichogrammatidae) in sweet corn fields: implications for augmentive releases against Ostrinia nubilalis (Lepidoptera: Crambidae). Biol Control 22:29–37

    Google Scholar 

  75. Raja J, Rajendran B, Pappiah CM, Reddy PP, Kumar NKK, Verghese A (eds) (1998) Management of egg plant shoot and fruit borer Leucinodes orbonalis Guen. Department of Entomology, Vegetable Research Station, Palur, Tamil Nadu 607 102, India. Advances in IPM for horticultural crops. In: Proceedings of the first national symposium on pest management in horticultural crops: environmental implications and thrusts, Bangalore, 15–17 Oct 1997, pp 84–86

    Google Scholar 

  76. Hegazi EM, Herz A, Hassan S, Agamy E, Khafagi W, Sheweil S, Zaitun A, Mostafa S, Hafez M, El-Shazly A, El-Said S, Abo-Abdala L, Khamis N, El-Kemny S (2005) Naturally occurring Trichogramma species in olive farms in Egypt. Insect Sci 12:185–192

    Google Scholar 

  77. Hegazi E, Khafagi W, Herz A, Konstantopoulou M, Hassan S, Agamy E, Atwa A, Shweil S (2012) Dispersal and field progeny production of Trichogramma species released in an olive orchard in Egypt. BioControl 57:481–492

    Google Scholar 

  78. Goda NF, El-Heneidy AH, Djelouah K, Hassan N (2015) Integrated pest management of the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in tomato fields in Egypt. Egypt J Biol Pest Control 25(3):655–661

    Google Scholar 

  79. Keçeci M, Tepe S, Tekçam I (2008) Research on population development of leaf miner [Liriomyza trifolii (Burgess)] that is a pest of tomato and bean grown under protected condition in Antalya province, and its parasitoids. Derim J 25(2):13–23

    Google Scholar 

  80. Srinivasan R, Tamo M, Lee ST, Lin MY, Huang CC, Hsu YC (2009) Towards developing a biological control program for legume pod borer, Maruca vitrata. In: Gupta S, Ali M, Singh BB (eds) Grain legumes: genetic improvement, management and trade. Indian Society of Pulses Research and Development, Kanpur, pp 183–196

    Google Scholar 

  81. Loevinsohn M, Meijerink G, Salasya B (1998) Integrated pest management in smallholder farming systems in Kenya. Evaluation of a pilot project. International Service for National Agricultural Research, Kenyan Agricultural Research Institute, Nairobi

    Google Scholar 

  82. James C (2004) Global review of commercialized transgenic crops: 2004. ISAAA briefs No. 23. International Service for the Acquisition of Agri-Biotech Applications (ISAAA), Ithaca

    Google Scholar 

  83. Bugeme DM, Knapp M, Boga HI, Wanjoya AK, Maniania NK (2009) Influence of temperature on virulence of fungal isolates of Metarhizium anisopliae and Beauveria bassiana to the two-spotted spider mite Tetranychus urticae. Mycopathologia 167:221–227

    Google Scholar 

  84. Santos Jr HJG, Marques EJ, Barros R, Gondim JRMGC (2006) Interação de Metarhizium anisopliae (Metsch.) Sorok., Beauveria bassiana (Bals.) Vuill. e o parasitóide Oomyzus sokolowskii (kurdjumov) (Hymenoptera: Eulophidae) sobre larvas da traça-das-crucíferas, Plutella xylostella (L.) (Lepidoptera: Plutellidae). Neotrop Entomol 35:241–245

    Google Scholar 

  85. Kaur S, Kaur HP, Kaur K, Kaur A (2011) Effect of different concentrations of Beauveria bassiana on development and reproductive potential of Spodoptera litura (Fabricius). J Biopest 4(2):161–168

    CAS  Google Scholar 

  86. Shearer PW, Atanassov A, Rucker A (2006) Eliminating organophosphate and carbamate insecticides from New Jersey, USA, peach culture. Acta Hortic 713:391–395

    Google Scholar 

  87. Mascarenhas VJ, Leonard BR, Burris E, Graves JB (1996) Beet army warm (Lepidoptera: Noctuidae) control on cotton in Louisiana. Fla Entomol 79(3):336–343

    CAS  Google Scholar 

  88. Perlak FJ, Fuchs RL, Dean DA, Mcpherson SL, Fischhoff DA (1991) Modification of the coding sequence enhances plant expression of insect control protein genes. Proc Natl Acad Sci U S A 88:3324–3328

    CAS  Google Scholar 

  89. De la Riva G, Adang MJ (1996) Expression of Bacillus thuringiensis δ-endotoxin genes in transgenic plants. Biotecnol Apl 13:251–260

    Google Scholar 

  90. Leroy T, Henry A-M, Royer M, Altosaar I, Frutos R, Duris D, Philippe R (2000) Genetically modified coffee plants expressing the Bacillus thuringiensis cry1Ac gene for resistance to leaf miner. Plant Cell Rep 19:382–389

    CAS  Google Scholar 

  91. Misztal LH, Mostowska A, Skibinska M, Bajsa J, Musial WG, Jarmolowski A (2004) Expression of modified Cry1Ac gene of Bacillus thuringiensis in transgenic tobacco plants. Mol Biotechnol 26:17–26

    CAS  Google Scholar 

  92. Chen M, Shelton A, Gong-yin Y (2011) Insect-resistant genetically modified rice in China: from research to commercialization. Annu Rev Entomol 56:81–101

    CAS  Google Scholar 

  93. Naranjo SE (2011) Impacts of Bt transgenic cotton on integrated pest management. J Agric Food Chem 59:5842–5851

    CAS  Google Scholar 

  94. Shelton AM, Olmstead DL, Burkness EC, Hutchison WD, Dively G, Welty C, Sparks AN (2013) Multi-state trials of B.t. sweet corn varieties for control of the corn earworm. J Econ Entomol 106:2151–2159

    CAS  Google Scholar 

  95. Christeller JT, Malone LA, Todd JH, Marshall RM, Burgess EPJ, Philip BA (2005) Distribution and residual activity of two insecticidal proteins, avidin and aprotinin, expressed in transgenic tobacco plants, in the bodies and frass of Spodoptera litura larvae following feeding. J Insect Physiol 51:1117–1126

    CAS  Google Scholar 

  96. Murray C, Markwick P, Kaji R, Poulton J, Martin H, Christeller JT (2010) Expression of various biotin-binding proteins in transgenic tobacco confers resistance to potato tuber moth, Phthorimaea operculella (Zeller) (fam. Gelechiidae). Transgenic Res 19:1041–1051

    CAS  Google Scholar 

  97. Kabir KE, Sugimoto H, Tado H, Endo K, Yamanaka A, Tanaka S, Koga D (2006) Effect of Bombyx mori chitinase against Japanese pine sawyer (Monochamus alternatus) adults as a biopesticide. Biosci Biotechnol Biochem 70:219–229

    CAS  Google Scholar 

  98. Morton RL, Schroeder HE, Bateman KS, Chrispeels MJ, Armstrong E, Higgins TJ (2000) Bean alpha-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions. Proc Natl Acad Sci U S A 97:3820–3825

    CAS  Google Scholar 

  99. Van Damme EJM, Lannoo N, Peumans WJ (2008) Plant lectins. Adv Bot Res 48:107–209. https://doi.org/10.1016/S0065-2296(08)00403-5

    Article  CAS  Google Scholar 

  100. Amin AA, Gergis MF (2006) Integrated management strategies for control of cotton key pests in Middle Egypt. Agron Res 4:121–128

    Google Scholar 

  101. Haggag WM, Shabaan AM, Nasr AK, Abd El-Salam AME (2014) Integrated pest management for sustainable mango production. Int J Pharm Sci Rev Res 29(2):276–282

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Ali Romeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Romeh, A.A. (2018). Integrated Pest Management for Sustainable Agriculture. In: Negm, A., Abu-hashim, M. (eds) Sustainability of Agricultural Environment in Egypt: Part II. The Handbook of Environmental Chemistry, vol 77. Springer, Cham. https://doi.org/10.1007/698_2018_267

Download citation

Publish with us

Policies and ethics