Skip to main content

Toxicity and Preliminary Risk Assessment of Alternative Antifouling Biocides to Aquatic Organisms

  • Chapter
  • First Online:
Antifouling Paint Biocides

Part of the book series: The Handbook of Environmental Chemistry ((HEC5,volume 5O))

Abstract

Published literature has been reviewed regarding the toxicity of representative alternative antifouling biocides (Chlorothalonil, Dichlofluanid, Diuron, Irgarol 1051, Sea Nine 211, TCMTB, Zineb, ZnPT, CuPT and PK) in aquatic environments, and their hazardous impact on aquatic environments has been evaluated using the information obtained during the process of review. The following statements represent the conclusions. Acute toxicities of the alternative antifouling biocides are in a range of 50 to 50. Irgarol 1051 exhibits especially high toxicity to phytoplankton and seaweed. On the basis of these toxicity values the biocides are classified as “toxic to very toxic” by the OECD classification guidelines. The acute toxicity value of M1, which is a degradation product of Irgarol 1051, ranges between t and s. M1 is also classified as “toxic” to “very toxic” by the OECD classification guidelines. The toxicity levels of these alternative antifouling biocides are almost the same as TBT. The reported concentrations of Irgarol 1051, M1, and Sea Nine 211 exceed the respective PNEC values especially in marinas and fishery harbors implying that Irgarol 1051, M1, and Sea Nine 211 are already causing a hazardous impact on the aquatic ecosystem in some marinas and fishery harbors. In order to assess the ecotoxicological risk of these biocides in detail, further research to clarify the toxicity and to develop the methods of estimating concentrations in natural waters are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

EC50 :

median effect concentration

CuPT:

bis-(1-hydroxy-2(1H)-pyridinethionate-O,S) copper

DDT:

dichloro diphenyl trichloroethane

LC50 :

median lethal concentration

LOEC:

lowest observed effect concentration

M1:

2-methylthio-4-t-butylamino-6-amino-s-triazine

IMO-MEPC:

the Marine Environment Protection Committee of the International Maritime Organization

NOEC:

no observed effect concentration

OECD:

Organization for Economic Cooperation and Development

PCP:

pentachloro phenol

PK:

pyridine triphenyl boron

PNEC:

predicted no effect concentration

TBT:

tributyltin compounds

TCMTB:

2-(thiocyanomethylthio)benzothiazole

TPT:

triphenyltin compounds

ZnPT:

bis-(1-hydroxy-2(1H)-pyridinethionate-O,S) zinc

References

  1. Thomas KV (2001) Biofouling 17:73

    CAS  Google Scholar 

  2. Harino H (2004) Coast Mar Sci 29:28

    Google Scholar 

  3. Thomas KV, McHugh M, Waldock M (2002) Sci Total Environ 293:117

    Article  CAS  Google Scholar 

  4. Voulvoulis N, Scrimshaw MD, Lester JN (2000) Mar Pollut Bull 40:938

    Article  CAS  Google Scholar 

  5. Sakkas VA, Konstantinou IK, Lambropoulou DA, Albanis TA (2002) Environ Sci Pollut Res 9:327

    Article  CAS  Google Scholar 

  6. Thomas KV, Fileman TW, Readman JW, Waldock MJ (2001) Mar Pollut Bull 42:677

    Article  CAS  Google Scholar 

  7. Harino H, Kitano M, Mori Y, Mochida K, Kakuno A, Arima S (2005) J Mar Biol Ass UK 85:33

    Article  CAS  Google Scholar 

  8. Readman JW, Kwing LLW, Grondin D, Bartocci J, Villeneuve JP, Mee LD (1993) Environ Sci Technol 27:1940

    Article  CAS  Google Scholar 

  9. Tolosa I, Readman KJW, Bllaevote A, Ghilini S, Bartocci J, Horvat M (1996) Mar Pollut Bull 32:335

    Article  CAS  Google Scholar 

  10. Gough MA, Forthergill J, Hendrie JD (1994) Mar Pollut Bull 28:613

    Article  CAS  Google Scholar 

  11. Zhou JL, Fileman TW, Evans S, Donkin PD, Mantoura RF, Rowland S (1996) Mar Pollut Bull 32:599

    Article  CAS  Google Scholar 

  12. Scarlett A, Donkin ME, Fileman TW, Donkin P (1997) Mar Pollut Bull 34:64

    Google Scholar 

  13. Biselli S, Bester K, Huhnerfuss H, Fent K (2000) Mar Pollut Bull 40:233

    Article  CAS  Google Scholar 

  14. Okamura H, Aoyama I, Liu D, Maguire RJ, Pacepavicius GJ, Lau YL (2000) Water Res 34:3523

    Article  CAS  Google Scholar 

  15. Liu D, Pacepavicius GJ, Maguire RJ, Lau YL, Okamura H, Aoyama I (1999) Water Res 33:2833

    Article  CAS  Google Scholar 

  16. Albanis TA, Lambropoulou DA, Sakkas VA, Konstantinou IK (2002) Chemosphere 48:475

    Article  CAS  Google Scholar 

  17. Martinez K, Ferrer L, Hernando MD, Fernandez-Alba AR, Marce RM, Borull F, Balcelo D (2001) Environ Technol 22:543

    CAS  Google Scholar 

  18. Liu D, Maguire RJ, Lau YL, Pacepavicius GJ, Okamura H, Aoyama I (1997) Water Res 31:2363

    Article  CAS  Google Scholar 

  19. Okamura H (2002) Chemosphere 48:43

    Article  CAS  Google Scholar 

  20. Shipbuilding Research Association of Japan (1999) Technical report on the prevention of marine pollution by antifouling paints – 1997 edn, p 17 (in Japanese)

    Google Scholar 

  21. Shipbuilding Research Association of Japan (2001) Technical report on the prevention of marine pollution by antifouling paints – 1999 edn, p 48 (in Japanese)

    Google Scholar 

  22. Shipbuilding Research Association of Japan (2002) Technical report on the prevention of marine pollution by antifouling paints – 2001 edn, p 24 (in Japanese)

    Google Scholar 

  23. Shade WD, Hurt SS, Jacobson AH, Reinert KH (1993) Environ Toxicol Risk Assess ASTP STP 1216:381

    Google Scholar 

  24. Ernst W, Doe K, Jonah P, Young J, Julien G, Hennigar P (1991) Arch Environ Contam Tocicol 21:1

    Article  CAS  Google Scholar 

  25. OECD (1996) Proposal for a harmonized classification system based on acute toxicity

    Google Scholar 

  26. Okamura H, Watanabe T, Aoyama I, Hasobe M (2002) Chemosphere 46:945

    Article  CAS  Google Scholar 

  27. Goka K (1999) Environ Res Section A 81:81

    Article  CAS  Google Scholar 

  28. Turley PA, Fem RJ, Ritter JC (2000) Biofouling 15:175

    Article  CAS  Google Scholar 

  29. Cibba-Geigy Co. (1995) Irgarol 1051 in antifouling paints. Technical Information Bulletin

    Google Scholar 

  30. Okamura H, Aoyama I, Takami T, Maruyama T, Suzuki Y, Matsumoto M, Katsuyama I, Hamada J, Beppu T, Tanaka O, Maguire RJ, Liu D, Lau YL, Pacepavicius GJ (2000) Mar Pollut Bull 40:754

    Article  CAS  Google Scholar 

  31. Hall Jr LW, Giddings JM, Solomon KR, Balcomb R (1999) Cri Rev Toxicol 29:367

    CAS  Google Scholar 

  32. Koyama K, Shimizu A (1992) In: Satomi Y, Shimizu M (eds) Organotin Pollution and its Effects on Aquatic Organisms. Koseisha Koseikaku, Tokyo, p 86 (in Japanese)

    Google Scholar 

  33. Horiguti T, Shimizu M (1992) In: Satomi Y, Shimizu M (eds) Organotin Pollution and its Effects on Aquatic Organisms. Koseisha Koseikaku, Tokyo, p 99 (in Japanese)

    Google Scholar 

  34. IMO (1997) MEPC41/INF, Call for the worldwide ban on every use of organotin-based antifouling paints for ship bottoms

    Google Scholar 

Download references

Acknowledgments

I am grateful to Dr. Kazufumi Takayanagi (Seikai National Institute of Fisheries Science, Fisheries Research Agency, Japan) for his advice and critical readings of this paper. Thanks are also due to Mr. Toshimitsu Onzuka for his assistance in preparing a figure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisashi Yamada .

Editor information

Ioannis K. Konstantinou

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Yamada, H. Toxicity and Preliminary Risk Assessment of Alternative Antifouling Biocides to Aquatic Organisms. In: Konstantinou, I.K. (eds) Antifouling Paint Biocides. The Handbook of Environmental Chemistry, vol 5O. Springer, Berlin, Heidelberg . https://doi.org/10.1007/698_5_056

Download citation

Publish with us

Policies and ethics