Skip to main content

Role of p53 in Double-Strand Break Repair

  • Chapter
  • First Online:
Genome Integrity

Part of the book series: Genome Dynamics and Stability ((GENOME,volume 1))

  • 695 Accesses

Abstract

In addition to p53's classical tumour suppressor functions in cell cycle control and apoptosis induction, p53 exhibits direct regulatory activities in double-strand break repair. In this review, we summarize data from biochemical, cell based and in vivo approaches demonstrating that wild-type p53 restrains excessive and mutagenic DNA exchange events. Thus, p53 appears to exhibit fidelity control of homologous recombination, and recent evidence also suggests that p53 counteracts error-prone non-homologous end-joining. Additionally, we discuss a novel role for p53: stimulation of recombination via pathways involving topoisomerase I and/or sequence-specific DNA binding. In summary, p53 either functions as a global suppressor of mutagenic genome rearrangements or contributes to recombinative repair, when it is recruited to specific repair complexes by molecular interactions with topoisomerase I and/or other binding partners. The p53 protein therefore combines two genetically separable regulatory functions in recombinative DNA repair that may have implications for a loss-of-function versus gain-of-function phenotype of p53 mutants in genetic destabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alani E, Lee S, Kane MF, Griffith J, Kolodner RD (1997) Saccharomyces Cerevisiae MSH2, a mispaired base recognition protein, also recognizes Holliday junctions in DNA. J Mol Biol 265:289–301

    Article  PubMed  CAS  Google Scholar 

  2. Albor A, Kaku S, Kulesz-Martin M (1998) Wild-type and mutant forms of p53 activate human topoisomerase I: a possible mechanism for gain of function in mutants. Cancer Res 5:2091–2094

    Google Scholar 

  3. Albrechtsen N, Dornreiter I, Grosse F, Kim E, Wiesmüller L, Deppert W (1999) Maintenance of genomic integrity by p53: complementary roles for activated and non-activated p53. Oncogene 18:7706–7717

    Article  PubMed  CAS  Google Scholar 

  4. Akyüz N, Boehden GS, Süsse S, Rimek A, Preuss U, Scheidtmann KH, Wiesmüller L (2002) DNA substrate dependence of p53 mediated regulation of double-strand break repair. Mol Cell Biol 22:6306–6317

    Article  PubMed  CAS  Google Scholar 

  5. Assenmacher N, Hopfner KP (2004) MRE11/RAD50/NBS1: complex activities. Chromosoma 113:157–166

    Article  PubMed  CAS  Google Scholar 

  6. Bachrati CZ, Hickson ID (2003) RecQ helicases: suppressors of tumorigenesis and premature aging. Biochem J 374:577–606

    Article  PubMed  CAS  Google Scholar 

  7. Bakalkin G, Yakovleva T, Selivanova G, Magnusson KP, Szekely L, Kiseleva E, Klein G, Terenius L, Wiman KG (1994) P53 binds single-stranded DNA ends and catalyzes DNA renaturation and strand transfer. Proc Natl Acad Sci USA 91:413–417

    Article  PubMed  CAS  Google Scholar 

  8. Bertrand P, Rouillard D, Boulet A, Levalois C, Soussi T, Lopez BS (1997) Increase of spontaneous intrachromosomal homologous recombination in mammalian cells expressing a mutant p53 protein. Oncogene 14:1117–1122

    Article  PubMed  CAS  Google Scholar 

  9. Bertrand P, Saintigny Y, Lopez BS (2004) P53's double life: transactivation-independent repression of homologous recombination. Trends Genet 20:235–243

    Article  PubMed  CAS  Google Scholar 

  10. Bill CA, Yu Y, Miselis NR, Little JB, Nickoloff JA (1997) A role for p53 in DNA end rejoining by human cell extracts. Mutat Res 385:21–29

    PubMed  CAS  Google Scholar 

  11. Bishop AJ, Hollander MC, Kosaras B, Sidman RL, Fornace AJ Jr, Schiestl RH (2003) Atm-, p53-, Gadd45a-deficient mice show an increased frequency of homologous recombination at different stages during development. Cancer Res 63:5335–5343

    PubMed  CAS  Google Scholar 

  12. Blander G, Kipnis J, Leal JFM, Yu CE, Schellenberg GD, Oren M (1999) Physical and functional interaction between p53 and Werner's syndrome protein. J Biol Chem 274:29463–29469

    Article  PubMed  CAS  Google Scholar 

  13. Boehden GS, Akyüz N, Roemer K, Wiesmüller L (2003) P53 mutated in the transactivation domain retains regulatory functions in homology-directed double-strand break repair. Oncogene 22:4111–4117

    Article  PubMed  CAS  Google Scholar 

  14. Boehden GS, Restle A, Marschalek R, Stocking C, Wiesmüller L (2004) Recombination at chromosomal sequences involved in leukaemogenic rearrangements is differentially regulated by p53. Carcinogenesis 25:1–9

    Article  CAS  Google Scholar 

  15. Boehden GS, Baumann C, Siehler S, Wiesmüller L (2005) Wild-type p53 stimulates homologous recombination upon sequence-specific binding to ribosomal gene cluster repeat. Oncogene 24:4183–4192

    Article  PubMed  CAS  Google Scholar 

  16. Bond GL, Hu W, Levine AJ (2005) MDM2 is a central node in the p53 pathway: 12 years and counting. Curr Cancer Drug Targets 5:3–8

    Article  PubMed  CAS  Google Scholar 

  17. Brain R, Jenkins JR (1994) Human p53 directs DNA strand reassociation and is photolabelled by 8-azido ATP. Oncogene 9:1775–1780

    PubMed  CAS  Google Scholar 

  18. Bristow RG, Hu Q, Jang A, Chung S, Peacock J, Benchimol S, Hill R (1998) Radioresistant MTp53-expressing rat embryo transformants exhibit increased DNA dsb rejoining during exposure to ionising radiation. Oncogene 16:1789–1802

    Article  PubMed  CAS  Google Scholar 

  19. Buchhop S, Gibson MK, Wang XY, Wagner P, Stürzbecher HW, Harris CC (1997) Interaction of p53 with the human Rad51 protein. Nucleic Acids Res 25:3868–3874

    Article  PubMed  CAS  Google Scholar 

  20. Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP, Sedivy JM, Kinzler KW, Vogelstein B (1998) Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282:1497–1501

    Article  PubMed  CAS  Google Scholar 

  21. Christmann M, Tomicic MT, Roos WP, Kaina B (2003) Mechanisms of human DNA repair: an update. Toxicology 193:3–34

    Article  PubMed  CAS  Google Scholar 

  22. Corcoran CA, Huang Y, Sheikh MS (2004) The p53 paddy wagon: COP1, Pirh2 and MDM2 are found resisting apoptosis and growth arrest. Cancer Biol Ther 3:721–725

    CAS  Google Scholar 

  23. Dahm-Daphi J, Hubbe P, Horvath F, El-Awady RA, Bouffard KE, Powell SN, Willers H (2005) Nonhomologous end-joining of site-specific but not of radiation-induced DNA double-strand breaks is reduced in the presence of wild-type p53. Oncogene 24:1663–1672

    Article  PubMed  CAS  Google Scholar 

  24. Degtyareva N, Subramanian D, Griffith JD (2001) Analysis of the binding of p53 to DNAs containing mismatched and bulged bases. J Biol Chem 276:8778–8784

    Article  PubMed  CAS  Google Scholar 

  25. Dudenhöffer C, Kurth M, Janus F, Deppert W, Wiesmüller L (1998) Specific mismatch recognition in heteroduplex intermediates by p53 suggests a role in fidelity control of homologous recombination. Mol Cell Biol 18:5332–5342

    PubMed  Google Scholar 

  26. Dudenhöffer C, Rohaly G, Will K, Deppert W, Wiesmüller L (1999) Dissociation of the recombination control and the sequence-specific transactivation function of p53. Oncogene 18:5773–5784

    Article  PubMed  Google Scholar 

  27. Elliott B, Jasin M (2001) Repair of double-strand breaks by homologous recombination in mismatch repair-defective mammalian cells. Mol Cell Biol 21:2671–2682

    Article  PubMed  CAS  Google Scholar 

  28. Espinosa JM, Emerson BM (2001) Transcriptional regulation by p53 through intrinsic DNA/chromatin binding and site-directed cofactor recruitment. Mol Cell 8:57–69

    Article  PubMed  CAS  Google Scholar 

  29. Fuchs B, O'Connor D, Fallis L, Scheidtmann KH, Lu X (1995) P53 phosphorylation mutants retain transcription activity. Oncogene 10:789–793

    PubMed  CAS  Google Scholar 

  30. Gebow D, Miselis N, Liber HL (2000) Homologous and nonhomologous recombination resulting in deletion: effects of p53 status, microhomology and repetitive DNA length and orientation. Mol Cell Biol 20:4028–4035

    Article  PubMed  CAS  Google Scholar 

  31. Gersten KM, Kemp CJ (1997) Normal meiotic recombination in p53-deficient mice. Nature Genet 17:378–379

    CAS  Google Scholar 

  32. Giannini G, Ristori E, Cerignoli F, Rinaldi C, Zani M, Viel A, Ottini L, Crescenzi M, Martinotti S, Bignami M, Frati L, Screpanti I, Gulino A (2002) Human MRE11 is inactivated in mismatch repair-deficient cancers. EMBO Rep 3:248–254

    Article  PubMed  CAS  Google Scholar 

  33. Gobert C, Skladanowski A, Larsen AK (1999) The interaction between p53 and DNA topoisomerase I is regulated differently in cells with wild-type and mutant p53. Proc Natl Acad Sci USA 96:10355–10360

    Article  PubMed  CAS  Google Scholar 

  34. Gottifredi V, Shieh S, Taya Y, Prives C (2001) p53 accumulates but is functionally impaired when DNA synthesis is blocked. Proc Natl Acad Sci USA 98:1036–1041

    Article  PubMed  CAS  Google Scholar 

  35. Harvey M, Sands AT, Weiss RS, Hegi ME, Wiseman RW, Pantazis P, Giovanella BC, Tainsky MA, Bradley A, Donehower LA (1993) In vitro growth characteristics of embryo fibroblasts isolated from p53-deficient mice. Oncogene 8:2457–2467

    PubMed  CAS  Google Scholar 

  36. Huang P (1998) Excision of mismatched nucleotides from DNA: a potential mechanism for enhancing DNA replication fidelity by the wild-type p53 protein. Oncogene 17:261–270

    Article  PubMed  CAS  Google Scholar 

  37. Hupp TR, Lane DP (1995) Two distinct signaling pathways activate the latent DNA binding function of p53 in a casein kinase II-independent manner. J Biol Chem 270:18165–18174

    Article  PubMed  CAS  Google Scholar 

  38. Hwang BJ, Ford JM, Hanawalt PC, Chu G (1999) Expression of the p48 xeroderma pigmentosum gene is p53-dependent and is involved in global genomic repair. Proc Natl Acad Sci USA 96:424–428

    Article  PubMed  CAS  Google Scholar 

  39. Jackson MW, Agarwal MK, Agarwal ML, Agarwal A, Stanhope-Baker P, Williams BRG, Stark GR (2004) Limited role of N-terminal residues in the activation of transcription by p53. Oncogene 23:4477–4487

    Article  PubMed  CAS  Google Scholar 

  40. Janus F, Albrechtsen N, Knippschild U, Wiesmüller L, Grosse F, Deppert W (1999) Different regulation of the core domain activities 3′ to 5′exonuclease and sequence-specific DNA binding. Mol Cell Biol 19:2155–2168

    PubMed  CAS  Google Scholar 

  41. Janz C, Wiesmüller L (2002) Wild-type p53 inhibits replication-associated homologous recombination. Oncogene 21:5229–5933

    Google Scholar 

  42. Janz C, Süsse S, Wiesmüller L (2002) P53 and recombination intermediates: role of tetramerization at DNA junctions in complex formation and exonucleolytic degradation. Oncogene 21:2130–2140

    Article  PubMed  CAS  Google Scholar 

  43. Jasin M (2002) Homologous repair of DNA damage and tumorigenesis: the BRCA connection. Oncogene 21:8981–8993

    Article  PubMed  CAS  Google Scholar 

  44. Jayaraman J, Prives C (1995) Activation of p53 sequence-specific DNA binding by short single strands of DNA requires the p53 C-terminus. Cell 81:1021–1029

    Article  PubMed  CAS  Google Scholar 

  45. Jean D, Gendron D, Delbecchi L, Bourgaux P (1997) p53-mediated DNA renaturation can mimic strand exchange. Nucleic Acids Res 25:4004–4012

    Article  PubMed  CAS  Google Scholar 

  46. Krejci L, Chen L, Van Komen S, Sung P, Tomkinson A (2003) Mending the break: two DNA double-strand break repair machines in eukaryotes. Prog Nucl Acid Res Mol Biol 74:159–201

    Article  CAS  Google Scholar 

  47. Lee S, Elenbaas B, Levine A, Griffith J (1995) P53 and its 14 kDaC-terminal domain recognize primary DNA damage in the form of insertion/deletion mismatches. Cell 81:1013–1020

    Article  PubMed  CAS  Google Scholar 

  48. Lee S, Cavallo L, Griffith J (1997) Human p53 binds Holliday junctions strongly and facilitates their cleavage. J Biol Chem 272:7532–7539

    Article  PubMed  CAS  Google Scholar 

  49. Lee H, Sun D, Larner JM, Wu FS (1999) The tumor suppressor p53 can reduce stable transfection in the presence of irradiation. J Biomed Sci 6:285–292

    Article  PubMed  CAS  Google Scholar 

  50. Liang L, Shao C, Deng L, Mendonca MS, Stambrook PJ, Tischfield JA (2002) Radiation-induced genetic instability in vivo depends on p53 status. Mutat Res 502:69–80

    PubMed  CAS  Google Scholar 

  51. Lin Y, Waldman BC, Waldman AS (2003) Suppression of high-fidelity double-strand break repair in mammalian chromosomes by pifithrin-alpha, a chemical inhibitor of p53. DNA Repair 2:1–11

    Article  PubMed  CAS  Google Scholar 

  52. Linke SP, Sengupta S, Khabie N, Jeffries BA, Buchhop S, Miska S, Henning W, Pedeux R, Wang XW, Hofseth LJ, Yang Q, Garfield SH, Stürzbecher HW, Harris CC (2003) P53 interacts with hRad51 and hRad54, and directly modulates homologous recombination. Cancer Res 63:2596–2605

    PubMed  CAS  Google Scholar 

  53. Liu Y, Masson JY, Shah R, O'Regan P, West SC (2004) RAD51C is required for Holliday junction processing in mammalian cells. Science 303:243–246

    Article  PubMed  CAS  Google Scholar 

  54. Mallya SM, Sikpi MO (1999) Requirement for p53 in ionising-radiation-inhibition of double-strand-break rejoining by human lymphoblasts. Mutat Res 23:119–132

    Google Scholar 

  55. Marmorstein LY, Ouchi T, Aaronson SA (1998) The BRCA2 gene product functionally interacts with p53 and Rad51. Proc Natl Acad Sci USA 95:13869–13874

    Article  PubMed  CAS  Google Scholar 

  56. May P, May E (1999) Twenty years of p53 research: structural and functional aspects of the p53 protein. Oncogene 18:7621–7636

    Article  PubMed  CAS  Google Scholar 

  57. McKinney K, Mattia M, Gottifredi V, Prives C (2004) P53 linear diffusion along DNA requires its C-terminus. Mol Cell 16:413–424

    Article  PubMed  CAS  Google Scholar 

  58. Meek DW (2004) The p53 response to DNA damage. DNA Repair 3:1049–1056

    Article  PubMed  CAS  Google Scholar 

  59. Mekeel KL, Tang W, Kachnik LA, Luo CM, DeFrank JS, Powell SN (1997) Inactivation of p53 results in high rates of homologous recombination. Oncogene 14:1847–1857

    Article  PubMed  CAS  Google Scholar 

  60. Mummenbrauer T, Janus F, Müller B, Wiesmüller L, Deppert W, Große F (1996) P53 exhibits 3′- to 5′-exonuclease activity. Cell 85:1089–1099

    Article  PubMed  CAS  Google Scholar 

  61. Oberosler P, Hloch P, Ramsperger U, Stahl H (1993) P53 catalysed annealing of complementary single-stranded nucleic acids. EMBO J 12:2389–2396

    PubMed  CAS  Google Scholar 

  62. Odorisio T, Rodriguez TA, Evans EP, Clarke AR, Burgoyne PS (1998) The meiotic checkpoint monitoring synapsis eliminates spermatocytes via p53-independent apoptosis. Nat Genet 18:257–261

    Article  PubMed  CAS  Google Scholar 

  63. Offer H, Wolkowicz R, Matas D, Blumenstein S, Livneh Z, Rotter V (1999) Direct involvement of p53 in the base excision repair pathway of the DNA repair machinery. FEBS Lett 450:197–204

    Article  PubMed  CAS  Google Scholar 

  64. Okorokov AL, Warnock L, Milner J (2002) Effect of wild-type, S15D and R175H p53 proteins on DNA end-joining in vitro: potential mechanism of DNA double-strand break repair modulation. Carcinogenesis 23:549–557

    Article  PubMed  CAS  Google Scholar 

  65. Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC, Hainaut P (2002) The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat 19:607–614

    Article  PubMed  CAS  Google Scholar 

  66. Ouchi T, Monteiro AN, August A, Aaronson SA, Hanafusa H (1998) BRCA1 regulates p53-dependent gene expression. Proc Natl Acad Sci USA 95:2302–2306

    Article  PubMed  CAS  Google Scholar 

  67. Paulson TG, Almasan A, Brody LL, Wahl GM (1998) Gene amplification in a p53-deficient cell line requires cell cycle progression under conditions that generate DNA breakage. Mol Cell Biol 18:3089–3100

    PubMed  CAS  Google Scholar 

  68. Perfettini JL, Kroemer RT, Kroemer G (2004) Fatal liaisons of p53 with Bax and Bak. Nat Cell Biol 6:386–388

    Article  PubMed  CAS  Google Scholar 

  69. Perkins EJ, Nair A, Cowley DO, Van Dyke T, Chang Y, Ramsden DA (2002) Sensing of intermediates in V(D)J recombination by ATM. Genes Dev 16:159–164

    Article  PubMed  CAS  Google Scholar 

  70. Rabbits TH (1991) Translocations, master genes and differences between the origins of acute and chronic leukemias. Cell 67:641–644

    Article  Google Scholar 

  71. Restle A, Janz C, Wiesmüller L (2005) Differences in the association of p53 phosphorylated on serin 15 and key enzymes of homologous recombination. Oncogene 24:4380–4387

    Article  PubMed  CAS  Google Scholar 

  72. Romanova LY, Willers H, Blagosklonny MV, Powell SN (2004) The interaction of p53 with replication protein A mediates suppression of homologous recombination. Oncogene 23:9025–9033

    Article  PubMed  CAS  Google Scholar 

  73. Rothkamm K, Krüger I, Thompson LT, Löbrich M (2003) Pathways of DNA double-strand break repair during mammalian cell cycle. Mol Cell Biol 23:5706–5715

    Article  PubMed  CAS  Google Scholar 

  74. Rotter V, Schwartz D, Almon E, Goldfinger N, Kapon A, Meshorer A, Donehower LA, Levine AJ (1993) Mice with reduced levels of p53 protein exhibit the testicular giant-cell degenerative syndrome. Proc Natl Acad Sci USA 90:9075–9079

    Article  PubMed  CAS  Google Scholar 

  75. Rubbi CP, Milner J (2003) p53 is a chromatin accessibility factor for nucleotide excision repair of DNA damage. EMBO J 22:975–986

    Article  PubMed  CAS  Google Scholar 

  76. Rubnitz J, Subramani S (1984) The minimum amount of homology required for homologous recombination in mammalian cells. Mol Cell Biol 4:2253–2258

    PubMed  CAS  Google Scholar 

  77. Saintigny Y, Lopez BS (2002) Homologous recombination induced by replication inhibition, is stimulated by expression of mutant p53. Oncogene 21:488–492

    Article  PubMed  CAS  Google Scholar 

  78. Saintigny Y, Rouillard D, Chaput B, Soussi T, Lopez BS (1999) Mutant p53 proteins stimulate spontaneous and radiation-induced intrachromosomal homologous recombination independently of the alteration of the transactivation activity and of the G1 checkpoint. Oncogene 18:3553–3565

    Article  PubMed  CAS  Google Scholar 

  79. Saintigny Y, Delacôte F, Varès G, Petitot F, Lambert S, Averbeck D, Lopez BS (2001) Characterization of homologous recombination induced replication inhibition in mammalian cells. EMBO J 20:3861–3870

    Article  PubMed  CAS  Google Scholar 

  80. Saito S, Yamaguchi H, Higashimoto Y, Chao C, Xu Y, Fornace AJ Jr, Appella E, Anderson CW (2003) Phosphorylation site interdependence of human p53 post-translational modifications in response to stress. J Biol Chem 278:37536–37544

    Article  PubMed  CAS  Google Scholar 

  81. Schwartz D, Goldfinger N, Kam Z, Rotter V (1999) p53 controls low DNA damage-dependent premeiotic checkpoint and facilitates DNA repair during spermatogenesis. Cell Growth Differ 10:665–675

    CAS  Google Scholar 

  82. Sengupta S, Harris CC (2005) P53: traffic cop at the crossroads of DNA repair and recombination. Nat Rev Mol Cell Biol 6:44–55

    Article  PubMed  CAS  Google Scholar 

  83. Sengupta S, Linke SP, Pedeux R (2003) BLM helicase-dependent transport of p53 to sites of stalled DNA replication forks modulates homologous recombination. EMBO J 22:1210–1222

    Article  PubMed  CAS  Google Scholar 

  84. Sjöblom T, Lähdetie J (1996) Expression of p53 in normal and γ-irradiated rat testis suggests a role for p53 in meiotic recombination and repair. Oncogene 12:2499–2505

    PubMed  Google Scholar 

  85. Skalski V, Lin ZY, Choi BY, Brown KR (2000) Substrate specificity of the p53-associated 3′-5′ exonuclease. Oncogene 19:3321–3329

    Article  PubMed  CAS  Google Scholar 

  86. Sommers JA, Sharma S, Doherty KM, Karmakar P, Yang Q, Kenny MK, Harris CC, Brosh RM Jr (2005) p53 modulates RPA-dependent and RPA-independent WRN helicase activity. Cancer Res 65:1223–1233

    Article  PubMed  CAS  Google Scholar 

  87. Spillare EA, Robles AI, Wang XW, Shen JC, Yu CE, Schellenberg GD, Harris CC (1999) p53-mediated apoptosis is attenuated in Werner syndrome cells. Genes Dev 13:1355–1360

    Article  PubMed  CAS  Google Scholar 

  88. Stark JM, Pierce AJ, Oh J, Pastink A, Jasin M (2004) Genetic steps of mammalian homologous repair with distinct mutagenic consequences. Mol Cell Biol 24:9305–9316

    Article  PubMed  CAS  Google Scholar 

  89. Stephan H, Grosse F, Soe K (2002) Human topoisomerase I cleavage complexes are repaired by a p53-stimulated recombination-like reaction. Nucleic Acids Res 30:5087–5093

    Article  PubMed  CAS  Google Scholar 

  90. Stommel JM, Marchenko ND, Jimenez GS, Moll UM, Hope TJ, Wahl GM (1999) A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J 18:1660–1672

    Article  PubMed  CAS  Google Scholar 

  91. Stürzbecher HW, Donzelmann B, Henning W, Knippschild U, Buchhop S (1996) p53 is linked directly to homologous recombination processes via Rad51/RecA protein interaction. EMBO J 15:1992–2002

    PubMed  Google Scholar 

  92. Subramanian D, Griffith JD (2002) Interactions between p53, hMSH2-hMSH6 and HMG I(Y) on Holliday junctions and bulged bases. Nucleic Acids Res 30:2427–2434

    Article  PubMed  CAS  Google Scholar 

  93. Subramanian D, Griffith JD (2005) Modulation of p53 binding to Holliday junctions and 3-cytosine bulges by phosphorylation events. Biochemistry 44:2536–2544

    Article  PubMed  CAS  Google Scholar 

  94. Süsse S, Janz C, Janus F, Deppert W, Wiesmüller L (2000) Role of heteroduplex joints in the functional interactions between human Rad51 and wild-type p53. Oncogene 19:4500–4512

    Article  PubMed  Google Scholar 

  95. Süsse S, Scholz CJ, Bürkle A, Wiesmüller L (2004) Poly(ADP-ribose) polymerase (PARP-1) and p53 independently function in regulating double-strand break repair in primate cells. Nucleic Acids Res 32:669–680

    Article  PubMed  CAS  Google Scholar 

  96. Tang W, Willers H, Powell SN (1999) P53 directly enhances rejoining of DNA double-strand breaks with cohesive ends in gamma-irradiated mouse fibroblasts. Cancer Res 59:2562–2565

    PubMed  CAS  Google Scholar 

  97. Thompson T, Tovar C, Yang H, Carvajal D, Vu BT, Xu Q, Wahl GM, Heimbrook DC, Vassilev LT (2004) Phosphorylation of p53 on key serines is dispensable for transcriptional activation and apoptosis. J Biol Chem 279:53015–53022

    Article  PubMed  CAS  Google Scholar 

  98. Valerie K, Povirk LF (2003) Regulation and mechanisms of mammalian double-strand break repair. Oncogene 22:5792–5812

    Article  PubMed  CAS  Google Scholar 

  99. Vaziri H, West MD, Allsopp RC, Davison TS, Wu YS, Arrowsmith CH, Poirier GG, Benchimol S (1997) ATM-dependent telomere loss in aging human diploid fibroblasts and DNA damage lead to the post-translational activation of p53 protein involving poly(ADP-ribose) polymerase. EMBO J 16:6018–6033

    Article  PubMed  CAS  Google Scholar 

  100. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    Article  PubMed  CAS  Google Scholar 

  101. Vousden KH, Prives C (2005) P53 and prognosis: new insights and further complexity. Cell 120:7–10

    PubMed  CAS  Google Scholar 

  102. Wang FJ (1998) Analysis of downstream effectors of p53 on cell growth arrest and apoptosis induced by a temperature sensitive Val138 mutant. J Med Dent Sci 45:141–149

    CAS  Google Scholar 

  103. Wang X, Ohnishi K, Takahashi A, Ohnishi T (1998) Poly(ADP-ribosyl)ation is required for p53-dependent signal transduction induced by radiation. Oncogene 17:2819–2825

    Article  PubMed  CAS  Google Scholar 

  104. Wang XW, Tseng A, Ellis NA, Spillare EA, Linke SP, Robles AI, Seker H, Yang Q, Hu P, Beresten S, Bemmels NA, Garfield S, Harris CC (2001) Functional interaction of p53 and BLM DNA helicase in apoptosis. J Biol Chem 276:32948–32955

    Article  PubMed  CAS  Google Scholar 

  105. West S (2003) Molecular views of recombination proteins and their control. Nat Rev Mol Cell Biol 4:435–445

    Article  PubMed  CAS  Google Scholar 

  106. Wiesmüller L, Cammenga J, Deppert W (1996) In vivo assay of p53 function in homologous recombination between Simian Virus 40 chromosomes. J Virol 70:737–744

    PubMed  Google Scholar 

  107. Willers H, McCarthy EE, Wu B, Wunsch H, Tang W, Taghian DG, Xia F, Powell SN (2000) Dissociation of p53-mediated suppression of homologous recombination from G1/S cell cycle checkpoint control. Oncogene 19:632–639

    Article  PubMed  CAS  Google Scholar 

  108. Willers H, McCarthy EE, Hubb P, Dahm-Daphi J, Powell SN (2001) Homologous recombination in extrachromosomal plasmid substrates is not suppressed by p53. Carcinogenesis 22:1757–1763

    Article  PubMed  CAS  Google Scholar 

  109. Willers H, Xia F, Powell SN (2002) Recombinational DNA repair in cancer and normal cells: the challenge of functional analysis. J Biomed Biotechnol 2:86–93

    Article  CAS  Google Scholar 

  110. Yang X-J (2005) Multisite protein modification and intramolecular signaling. Oncogene 24:1653–1662

    Article  PubMed  CAS  Google Scholar 

  111. Yang T, Namba H, Takmura N, Nagayama Y, Fukata S, Ishikawa N, Kuma K, Ito K, Yamashita S (1997) P53 induced by ionizing radiation mediates DNA end-joining activity, but not apoptosis of thyroid cells. Oncogene 14:1511–1519

    Article  PubMed  CAS  Google Scholar 

  112. Yang Q, Zhang R, Wang XW, Linke SP, Sengupta S, Hickson ID, Pedrazzi G, Perrera C, Stagljar I, Littman SJ, Modrich P, Harris CC (2004) The mismatch DNA repair heterodimer, hMSH2/6, regulates BLM helicase. Oncogene 23:3749–3756

    Article  PubMed  CAS  Google Scholar 

  113. Yang Q, Zhang R, Wang XW, Spillare EA, Linke SP, Subramanian D, Griffith JD, Li JL, Hickson ID, Shen JC, Loeb LA, Mazur SJ, Appella E, Brosh RM Jr, Karamakar P, Bohr VA, Harris CC (2002) The processing of the Holliday junctions by BLM and WRN helicases is regulated by p53. J Biol Chem 277:31980–31987

    Article  PubMed  CAS  Google Scholar 

  114. Yoon D, Wang Y, Stapleford K, Wiesmüller L, Chen J (2004) P53 inhibits strand exchange and replication fork regression promoted by human Rad51. J Mol Biol 336:639–654

    Article  PubMed  CAS  Google Scholar 

  115. Yun S, Lie-A-Cheong C, Porter AC (2004) Discriminatory suppression of homologous recombination by p53. Nucleic Acids Res 32:6479–6489

    Article  PubMed  CAS  Google Scholar 

  116. Zhang H, Somasundram K, Peng Y, Tian H, Zhang H, Bi D, Weber BL, El-Deiry WS (1998) BRCA1 physically associates with p53 and stimulates its transcriptional activity. Oncogene 16:1713–1721

    Article  PubMed  CAS  Google Scholar 

  117. Zhou J, Ahn J, Wilson SH, Prives C (2001) A role for p53 in base excision repair. EMBO J 20:914–923

    Article  PubMed  CAS  Google Scholar 

  118. Zink D, Mayr C, Janz C, Wiesmüller L (2002) Association of p53 and MSH2 with recombinative repair complexes during S-phase. Oncogene 21:4788–4800

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Wiesmüller .

Editor information

Dirk-Henner Lankenau

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gatz, S.A., Wiesmüller, L. (2005). Role of p53 in Double-Strand Break Repair. In: Lankenau, DH. (eds) Genome Integrity. Genome Dynamics and Stability, vol 1. Springer, Berlin, Heidelberg . https://doi.org/10.1007/7050_009

Download citation

Publish with us

Policies and ethics