Skip to main content

Transport of Proteases to the Vacuole: ER Export Bypassing Golgi?

  • Chapter
  • First Online:
The Plant Endoplasmic Reticulum

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 4))

Abstract

Most vacuolar proteases are transported from the endoplasmic reticulum (ER) to vacuoles via the Golgiapparatus. However, higher plants possess a unique papain-type protease, termed KDEL-tailed protease.This protease has a Lys − Asp − Glu − Leu (KDEL)sequence at its C-terminus, which is known as a retention signal of soluble proteins to the ER, althoughthe protease localizes and functions in vacuoles. Investigations on the intracellular trafficking pathwayof this unique enzyme have suggested that the protease is transported from the ER to vacuoles by bypassingthe Golgi apparatus. In this review, Golgi-dependent vacuolar trafficking of proteases is first explained,then the Golgi-independent vacuolar transport pathway of the KDEL-tailed protease is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akasofu H, Yamauchi D, Mitsuhashi W, Minamikawa T (1989) Nucleotide sequence of cDNA for sulfhydryl-endopeptidase (SH-EP) from cotyledons of germinating Vigna mungo seeds. Nucleic Acids Res 17:6733

    Article  PubMed  CAS  Google Scholar 

  2. Ahmed SU, Bar-Peled M, Raikhel NV (1997) Cloning and subcellular location of an Arabidopsis receptor-like protein that shares common features with protein-sorting receptors of eukaryotic cells. Plant Physiol 114:325–336

    Article  PubMed  CAS  Google Scholar 

  3. Ahmed U, Rojo E, Kovaleva V, Venkataraman S, Dombrowski JE, Matsuoka K, Raikhel NV (2000) The plant vacuolar sorting receptor AtELP is involved in transport of NH(2)-terminal propeptide-containing vacuolar proteins in Arabidopsis thaliana. J Cell Biol 149:1335–1344

    Article  PubMed  CAS  Google Scholar 

  4. Becker C, Senyuk VI, Shutov AD, Nong VH, Fischer J, Horstmann C, Muntz K (1997) Proteinase A, a storage-globulin-degrading endopeptidase of vetch (Vicia sativa L.) seeds, is not involved in early steps of storage-protein mobilization. Eur J Biochem 248:304–312

    Article  PubMed  CAS  Google Scholar 

  5. Berti PJ, Storer AC (1995) Alignment/phylogeny of the papain superfamily of cysteine proteases. J Mol Biol 246:273–283

    Article  PubMed  CAS  Google Scholar 

  6. Carmona E, Dufour E, Plouffe C, Takebe S, Mason P, Mort JS, Menard R (1996) Potency and selectivity of the cathepsin L propeptide as an inhibitor of cysteine proteases. Biochemistry 35:8149–8157

    Article  PubMed  CAS  Google Scholar 

  7. Carter C, Pan S, Zouhar J, Avila EL, Girke T, Raikhel NV (2004) The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant Cell 16:3285–3303

    Article  PubMed  CAS  Google Scholar 

  8. Cercos M, Santamaria S, Carbonell J (1999) Cloning and characterization of TPE4A, a thiol-protease gene induced during ovary senescing and seed germination in pea. Plant Physiol 119:1341–1348

    Article  PubMed  CAS  Google Scholar 

  9. Cordeiro MC, Xue ZT, Pietrzak M, Pais MS, Brodelius PE (1994) Isolation and characterization of a cDNA from flowers of Cynara cardunculus encoding cyprosin (an aspartic proteinase) and its use to study the organ-specific expression of cyprosin. Plant Mol Biol 24:733–741

    Article  PubMed  CAS  Google Scholar 

  10. Costa J, Ashford DA, Nimtz M, Bento I, Frazao C, Esteves CL, Faro CJ, Kervinen J, Pires E, Verissimo P, Wlodawer A, Carrondo MA (1997) The glycosylation of the aspartic proteinases from barley (Hordeum vulgare L.) and cardoon (Cynara cardunculus L.). Eur J Biochem 243:695–700

    Article  PubMed  CAS  Google Scholar 

  11. Davies DR (1990) The structure and function of the aspartic proteinases. Annu Rev Biophys Biophys Chem 19:189–215

    Article  PubMed  CAS  Google Scholar 

  12. Denecke J, De Rycke R, Botterman J (1992) Plant and mammaliam sorting signals for protein retention in the endoplasmic reticulum contain a conserved epitope. EMBO J 11:2345–2355

    PubMed  CAS  Google Scholar 

  13. Elpidina EN, Dunaevsky YE, Belozersky MA (1990) Protein bodies from Buckwheat seed coyledons – Isolation and characterization. J Exp Bot 51:969–977

    Article  Google Scholar 

  14. Frigerio L, de Virgilio M, Prada A, Faoro F, Vitale A (1998) Sorting of phaseolin to the vacuole is saturable and requires a short C-terminal peptide. Plant Cell 10:1031–1042

    PubMed  CAS  Google Scholar 

  15. Guerrero C, Calle M, Reid MS, Valpuesta V (1998) Analysis of the expression of two thiolprotease genes from daylily (Hemerocallis spp.) during flower senescence. Plant Mol Biol 36:565–571

    Article  PubMed  CAS  Google Scholar 

  16. Hara-Nishimura I, Matsushima R, Shimada T, Nishimura M (2004) Diversity and formation of endoplasmic reticulum-derived compartments in plants. Are these compartments specific to plant cells? Plant Physiol 136:3435–3439

    Article  PubMed  CAS  Google Scholar 

  17. Hayashi Y, Yamada K, Shimada T, Matsushima R, Nishizawa NK, Nishimura M, Hara-Nishimura I (2001) A proteinase-storing body that prepares for cell death or stresses in the epidermal cells of Arabidopsis. Plant Cell Physiol 42:894–899

    Article  PubMed  CAS  Google Scholar 

  18. Hiraiwa N, Kondo M, Nishimura M, Hara-Nishimura I (1997) An aspartic endopeptidase is involved in the breakdown of propeptides of storage proteins in protein-storage vacuoles of plants. Eur J Biochem 246:133–141

    Article  PubMed  CAS  Google Scholar 

  19. Holwerda BC, Padgett HS, Rogers JC (1992) Proaleurain vacuolar targeting is mediated by short contiguous peptide interactions. Plant Cell 4:307–318

    PubMed  CAS  Google Scholar 

  20. Kervinen J, Tobin GJ, Costa J, Waugh DS, Wlodawer A, Zdanov A (1999) Crystal structure of plant aspartic proteinase prophytepsin: inactivation and vacuolar targeting. EMBO J 18:3947–3955

    Article  PubMed  CAS  Google Scholar 

  21. Lee HI, Gal S, Newman TC, Raikhel NV (1993) The Arabidopsis endoplasmic reticulum retention receptor functions in yeast. Proc Natl Acad Sci USA 90:11433–11437

    Article  PubMed  CAS  Google Scholar 

  22. Ling JQ, Kojima T, Shiraiwa M, Takahara H (2003) Cloning of two cysteine proteinase genes, CysP1 and CysP2, from soybean cotyledons by cDNA representational difference analysis. Biochim Biophys Acta 1627:129–139

    Article  PubMed  CAS  Google Scholar 

  23. Mahon P, Bateman A (2000) The PA domain: a protease-associated domain. Protein Sci 9:1930–1934

    Article  PubMed  CAS  Google Scholar 

  24. Matsuoka K, Nakamura K (1991) Propeptide of a precursor to a plant vacuolar protein required for vacuolar targeting. Proc Natl Acad Sci USA 88:834–838

    Article  PubMed  CAS  Google Scholar 

  25. Matsuoka K, Neuhaus J-M (1999) Cis-elements of protein transport to the plant vacuoles. J Exp Bot 50:165–174

    CAS  Google Scholar 

  26. Matsushima R, Kondo M, Nishimura M, Hara-Nishimura I (2003) A novel ER-derived compartment, the ER body, selectively accumulates a beta-glucosidase with an ER-retention signal in Arabidopsis. Plant J 33:493–502

    Article  PubMed  CAS  Google Scholar 

  27. Mitsuhashi W, Koshiba T, Minamikawa T (1986) Separation and characterization of two endopeptidases from cotyledons of germinating Vigna mungo seeds. Plant Physiol 80:628–634

    Article  PubMed  CAS  Google Scholar 

  28. Mitsuhashi W, Minamikawa T (1989) Synthesis and posttranslational activation of sulfhydryl-endopeptidase in cotyledons of germinating Vigna mungo seeds. Plant Physiol 89:274–279

    Article  PubMed  CAS  Google Scholar 

  29. Munro S, Pelham HBR (1987) A C-terminal signal prevents secretion of luminal ER proteins. Cell 48:899–907

    Article  PubMed  CAS  Google Scholar 

  30. Mutlu A, Chen X, Redy SM, Gal S (1999) The aspartic proteinase is expressed in Arabidopsis thaliana seeds and localized in the protein bodies. Seed Sci Res 9:75–84

    CAS  Google Scholar 

  31. Napier RM, Fowke LC, Hawes CR, Lewis M, Pelham HBR (1992) Immunological evidence that plants use both HDEL and KDEL for targeting proteins to the endoplasmic reticulum. J Cell Sci 102:261–271

    PubMed  CAS  Google Scholar 

  32. Nadeau JA, Zhang XS, Li J, O'Neill SD (1996) Ovule development: identification of stage-specific and tissue-specific cDNAs. Plant Cell 8:213–239

    PubMed  CAS  Google Scholar 

  33. O'Brien JS, Kishimoto Y (1991) Saposin proteins: structure, function, and role in human lysosomal storage disorders. FASEB J 5:301–308

    PubMed  Google Scholar 

  34. Okamoto T, Nakayama H, Seta K, Isobe T, Minamikawa T (1994) Posttranslational processing of a carboxy-terminal propeptide containing a KDEL sequence of plant vacuolar cysteine endopeptidase (SH-EP). FEBS Lett 351:31–34

    Article  PubMed  CAS  Google Scholar 

  35. Okamoto T, Minamikawa T (1998) A vacuolar cysteine endopeptidase (SH-EP) that digests seed storage globulin: Characterization, regulation of gene expression, and posttranslational processing. J Plant Physiol 152:675–682

    Article  CAS  Google Scholar 

  36. Okamoto T, Shimada T, Hara-Nishimura I, Nishimura M, Minamikawa T (2003) C-terminal KDEL sequence of a KDEL-tailed cysteine proteinase (sulfhydryl-endopeptidase) is involved in formation of KDEL vesicle and in efficient vacuolar transport of sulfhydryl-endopeptidase. Plant Physiol 132:1892–1900

    Article  PubMed  CAS  Google Scholar 

  37. Okamoto T, Toyooka K, Minamikawa T (2001) Identification of a membrane-associated cysteine protease (MCP) with possible dual roles in the endoplasmic reticulum and protein storage vacuole. J Biol Chem 276:742–751

    Article  PubMed  CAS  Google Scholar 

  38. Paris N, Rogers SW, Jiang L, Kirsch T, Beevers L, Phillips TE, Rogers JC (1997) Molecular cloning and further characterization of a probable plant vacuolar sorting receptor. Plant Physiol 115:29–39

    Article  PubMed  CAS  Google Scholar 

  39. Pelham HBR (1989) Control of protein exit from the endoplasmic reticulum. Annu Rev Cell Biol 5:1–23

    Article  PubMed  CAS  Google Scholar 

  40. Ramalho-Santos M, Pissarra J, Verissimo P, Pereira S, Salema R, Pires E, Faro CJ (1997) Cardosin A, an abundant aspartic proteinase, accumulates in protein storage vacuoles in the stigmatic papillae of Cynara cardunculus L. Planta 203:204–212

    Article  PubMed  CAS  Google Scholar 

  41. Rawlings ND, Barrett AJ (1994) Families of cysteine peptidases. Methods Enzymol 244:461–486

    Article  PubMed  CAS  Google Scholar 

  42. Rawlings ND, Barrett AJ (1999) MEROPS: the peptidase database. Nucleic Acids Res 27:325–331

    Article  PubMed  CAS  Google Scholar 

  43. Runeberg-Roos P, Kervinen J, Kovaleva V, Raikhel NV, Gal S (1994) The aspartic proteinase of barley is a vacuolar enzyme that processes probarley lectin in vitro. Plant Physiol 105:321–329

    Article  PubMed  CAS  Google Scholar 

  44. Runeberg-Roos P, Tormakangas K, Ostman A (1991) Primary structure of a barley-grain aspartic proteinase. A plant aspartic proteinase resembling mammalian cathepsin D. Eur J Biochem 202:1021–1027

    Article  PubMed  CAS  Google Scholar 

  45. Schmid M, Simpson D, Kalousek F, Gietl C (1998) A cysteine endopeptidase with a C-terminal KDEL motif isolated from castor bean endosperm is a marker enzyme for the ricinosome, a putative lytic compartment. Planta 206:466–475

    Article  PubMed  CAS  Google Scholar 

  46. Schmid M, Simpson D, Gietl C (1999) Programmed cell death in castor bean endosperm is associated with the accumulation and release of a cysteine endopeptidase from ricinosomes. Proc Natl Acad Sci USA 96:14159–14164

    Article  PubMed  CAS  Google Scholar 

  47. Schmid M, Simpson DJ, Sarioglu H, Lottspeich F, Gietl C (2001) The ricinosomes of senescing plant tissue bud from the endoplasmic reticulum. Proc Natl Acad Sci USA 98:5353–8535

    Article  PubMed  CAS  Google Scholar 

  48. Shimada T, Kuroyanagi M, Nishimura M, Hara-Nishimura I (1997) A pumpkin 72-kDa membrane protein of precursor-accumulating vesicles has characteristics of a vacuolar sorting receptor. Plant Cell Physiol 38:1414–1420

    Article  PubMed  CAS  Google Scholar 

  49. Simoes I, Faro C (2004) Structure and function of plant aspartic proteinases. Eur J Biochem 271:2067–2075

    Article  PubMed  CAS  Google Scholar 

  50. Shintani A, Kato H, Minamikawa T (1997) Hormonal regulation of expression of two cysteine endopeptidase genes in rice seedlings. Plant Cell Physiol 38:1242–1248

    Article  PubMed  CAS  Google Scholar 

  51. Tanaka T, Minamikawa T, Yamauchi D, Ogushi Y (1993) Expression of an endopeptidase (EP-C1) in Phaseolus vulgalis plants. Plant Physiol 101:421–428

    PubMed  CAS  Google Scholar 

  52. Tormakangas K, Hadlington JL, Pimpl P, Hillmer S, Brandizzi F, Teeri TH, Denecke J (2001) A vacuolar sorting domain may also influence the way in which proteins leave the endoplasmic reticulum. Plant Cell 13:2021–2032

    PubMed  CAS  Google Scholar 

  53. Toyooka K, Okamoto T, Minamikawa T (2000) Mass transport of a proform of a KDEL-tailed cysteine proteinase (SH-EP) to protein storage vacuoles by endoplasmic reticulum-derived vesicle is involved in protein mobilization in germinating seeds. J Cell Biol 148:453–563

    Article  PubMed  CAS  Google Scholar 

  54. Tsuru-Furuno A, Okamoto T, Minamikawa T (2001) Isolation of a putative receptor for KDEL-tailed cysteine proteinase (SH-EP) from cotyledons of Vigna mungo seedlings. Plant Cell Physiol 42:1062–1070

    Article  PubMed  CAS  Google Scholar 

  55. Valpuesta V, Lange NE, Guerrero C, Reid MS (1995) Up-regulation of a cysteine protease accompanies the ethylene-insensive senescence of daylily (Hemerocallis spp.) floweres. Plant Mol Biol 28:575–582

    Article  PubMed  CAS  Google Scholar 

  56. Vernet T, Berti PJ, de Montigny C, Musil R, Tessier DC, Menard R, Magny MC, Storer AC, Thomas DY (1995) Processing of the papain precursor. The ionization state of a conserved amino acid motif within the Pro region participates in the regulation of intramolecular processing. J Biol Chem 270:10838–10846

    Article  PubMed  CAS  Google Scholar 

  57. Vital A, Raikhel NV (1999) What do proteins need to reach different vacuoles? Trends Plant Sci 4:149–155

    Article  Google Scholar 

  58. Watanabe E, Shimada T, Tamura K, Matsushima R, Koumoto Y, Nishimura M, Hara-Nishimura I (2004) An ER-localized form of PV72, a seed-specific vacuolar sorting receptor, interferes the transport of an NPIR-containing proteinase in Arabidopsis leaves. Plant Cell Physiol 45:9–17

    Article  PubMed  CAS  Google Scholar 

  59. Weiler S, Kishimoto Y, O'Brien JS, Barranger JA, Tomich JM (1995) Identification of the binding and activating sites of the sphingolipid activator protein, saposin C, with glucocerebrosidase. Protein Sci 4:756–764

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Okamoto .

Editor information

David G. Robinson

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Okamoto, T. (2006). Transport of Proteases to the Vacuole: ER Export Bypassing Golgi?. In: Robinson, D.G. (eds) The Plant Endoplasmic Reticulum. Plant Cell Monographs, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_055

Download citation

Publish with us

Policies and ethics