Skip to main content

Mechanisms of Microbially Influenced Corrosion

  • Chapter
  • First Online:
Springer Series on Biofilms

Part of the book series: Springer Series on Biofilms

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Acuna N, Ortega-Morales BO, Valadez-Gonzalez A (2006)Biofilm colonization dynamics and its influence on the corrosion resistance of austenitic UNSS31603 stainless steel exposed to Gulf of Mexico seawater. Mar Biotechnol 8:62–70

    Article  PubMed  CAS  Google Scholar 

  • Al Darbi MM, Agha K, Islam MR (2005)Comprehensive modelling of the pitting biocorrosion of steel. Can J Chem Eng 83:872–881

    Article  CAS  Google Scholar 

  • Amaya H, Miyuki H (1994) Mechanism of microbially influenced corrosion on stainless-steels in natural seawater. Journal of the Japan Institute of Metals 58:775–781

    CAS  Google Scholar 

  • Antony PJ, Chongdar S, Kumar P, Raman R (2007) Corrosion of 2205 duplex stainless steel in chloride medium containing sulfate-reducing bacteria. Electrochim Acta 52:3985–3994

    Article  CAS  Google Scholar 

  • ASM Handbook Series (1987) Corrosion: Materials. ASM InternationalASM Handbook Series (1987) Corrosion: Materials. ASM International

    Google Scholar 

  • Beech IB, Gaylarde CC (1999) Recent advances in the study of biocorrosion – An overview. Rev Microbiol 30:177–190

    Article  CAS  Google Scholar 

  • Beech IB, Sunner JA, Hiraoka K (2005)Microbe–surface interactions in biofouling and biocorrosion processes. Int Microbiol 8:157–168

    PubMed  CAS  Google Scholar 

  • Beech WB, Sunner J (2004)Biocorrosion: Towards understanding interactions between biofilms and metals. Curr Opin Biotechnol 15:181–186

    Article  PubMed  CAS  Google Scholar 

  • Bolwell R (2006)Understanding royal navy gas turbine sea water lubricating oil cooler failures when caused by microbial induced corrosion (“SRB”). J Eng Gas Turbines Power – Trans ASME 128:153–162

    Article  CAS  Google Scholar 

  • Borenstein SB (1994)microbiologically influenced corrosion handbook. Industrial Press, New York

    Book  Google Scholar 

  • Braughton KR, Lafond RL, Lewandowski Z (2001)The influence of environmental factors on the rate and extent of stainless steel ennoblement mediated by manganese-oxidizing biofilms. Biofouling 17:241–251

    Article  Google Scholar 

  • Caspi R, Tebo BM, Haygood MG (1998)c-Type cytochromes and manganese oxidation in Pseudomonas putida MnB1. Appl Environ Microbiol 64:3549–3555

    PubMed  CAS  Google Scholar 

  • Chandrasekaran P, Dexter SC (1993)Mechanism of potential ennoblement on passive metals by seawater biofilms (paper no. 493). CORROSION/93, NACE International, Houston, TX

    Google Scholar 

  • Coetser SE, Cloete TE (2005)Biofouling and biocorrosion in industrial water systems. Crit Rev Microbiol 31:213–232

    Article  PubMed  CAS  Google Scholar 

  • Costello JA (1974)Cathodic depolarization by sulfate-reducing bacteria. S Afr J Sci 70:202–204

    CAS  Google Scholar 

  • Crolet JL (1991) From biology and corrosion to biocorrosion. In: Sequeira CAC, Tiller AK (eds.) Proceedings of the 2nd EFC workshop on Microbial Corrosion. HMSO, London, pp 50–60

    Google Scholar 

  • Crolet JL (1992)From biology and corrosion to biocorrosion. Oceanol Acta 15:87–94

    CAS  Google Scholar 

  • Dexter SC, Gao GY (1988)Effect of seawater biofilms on corrosion potential and oxygen reduction on stainless steels. Corrosion 44:717

    CAS  Google Scholar 

  • Dickinson WH, Lewandowski Z (1996)Manganese biofouling and the corrosion behavior of stainless steel. Biofouling 10:79–93

    Article  CAS  Google Scholar 

  • Dickinson WH, Lewandowski Z (1998)Electrochemical concepts and techniques in the study of stainless steel ennoblement. Biodegradation 9:11–21

    Article  PubMed  CAS  Google Scholar 

  • Dickinson WH, Caccavo F, Lewandowski Z (1996a)The ennoblement of stainless steel by manganic oxide biofouling. Corros Sci 38:1407–1422

    Article  CAS  Google Scholar 

  • Dickinson WH, Lewandowski Z, Geer RD (1996b)Evidence for surface changes during ennoblement of type 316L stainless steel: Dissolved oxidant and capacitance measurements. Corrosion 52:910–920

    Article  CAS  Google Scholar 

  • Dickinson WH, Caccavo F, Olesen B, Lewandowski Z (1997)Ennoblement of stainless steel by the manganese-depositing bacterium Leptothrix discophora. Appl Environ Microbiol 63:2502–2506

    PubMed  CAS  Google Scholar 

  • Eashwar M, Maruthamuthu S (1995)Mechanism of biologically produced ennoblement – Ecological perspectives and a hypothetical model. Biofouling 8:203–213

    Article  CAS  Google Scholar 

  • Finster K, Liesack W, Thamdrup B (1998)Elemental sulfur and thiosulfate disproportionation by Desulfocapsa sulfoexigens sp nov, a new anaerobic bacterium isolated from marine surface sediment. Appl Environ Microbiol 64:119–125

    PubMed  CAS  Google Scholar 

  • Flemming HC (1995)Biofouling and biocorrosion – Effects of undesired biofilms. Chem Ing Tech 67:1425–1430

    Article  CAS  Google Scholar 

  • Flemming HC, Wingender J (2001)Relevance of microbial extracellular polymeric substances (EPSs) – Part II: Technical aspects. Water Sci Technol 43:9–16

    PubMed  CAS  Google Scholar 

  • Ford T, Mitchell R (1990)The ecology of microbial corrosion. Adv Microb Ecol 11:231–262

    CAS  Google Scholar 

  • Francis CA, Tebo BM (2002)Enzymatic manganese(II) oxidation by metabolically dormant spores of diverse Bacillus species. Appl Environ Microbiol 68:874–880

    Article  PubMed  CAS  Google Scholar 

  • Geiser M, Avci R, Lewandowski Z (2002)Microbially initiated pitting on 316L stainless steel. Int Biodeterior Biodegrad 49:235–243

    Article  CAS  Google Scholar 

  • Hakkarainen TJ (2003)Microbiologically influenced corrosion of stainless steels – What is required for pitting? Mater Corros/Werkstoffe Korrosion 54:503–509

    Article  CAS  Google Scholar 

  • Hamilton WA (2003)Microbially influenced corrosion as a model system for the study of metal microbe interactions: A unifying electron transfer hypothesis. Biofouling 19:65–76

    Article  PubMed  CAS  Google Scholar 

  • Hernandez G, Pedersen A, Thierry D, Hermansson M (1990) Bacterial effects of corrosion of steel in seawater. In: Dowling NJ, Mittelman MW, Danko JC (eds) Proceedings – Microbially influenced corrosion and biodeterioration, University of Tennessee, KnoxvilleHernandez G, Pedersen A, Thierry D, Hermansson M (1990) Bacterial effects of corrosion of steel in seawater. In: Dowling NJ, Mittelman MW, Danko JC (eds) Proceedings – Microbially influenced corrosion and biodeterioration, University of Tennessee, Knoxville

    Google Scholar 

  • Hernandez G, Kucera V, Thierry D, Pedersen A, Hermansson M (1994)Corrosion inhibition of steel by bacteria. Corrosion 50:603–608

    Article  CAS  Google Scholar 

  • Herro HM (1991)Tubercle formation and growth on ferrous alloys (paper no. 84). NACE, Cincinnati, Ohio

    Google Scholar 

  • Hossain MA, Das CR (2005)Kinetic and thermodynamic studies of microbial corrosion of mild steel specimen in marine environment. J Indian Chem Soc 82:376–378

    CAS  Google Scholar 

  • Ilhan-Sungur E, Cansever N, Cotuk A (2007)Microbial corrosion of galvanized steel by a freshwater strain of sulphate reducing bacteria (Desulfovibrio sp.). Corros Sci 49:1097–1109

    Article  CAS  Google Scholar 

  • Javaherdashti RA (1999)Review of some characteristics of MIC caused by sulfate-reducing bacteria: Past, present and future. Anti-Corros Methods Mater 46:173–180

    Article  CAS  Google Scholar 

  • Jayaraman A, Ornek D, Duarte DA, Lee CC, Mansfeld FB, Wood TK (1999)Axenic aerobic biofilms inhibit corrosion of copper and aluminum. Appl Microbiol Biotechnol 52:787–790

    Article  PubMed  CAS  Google Scholar 

  • Lee AK, Newman DK (2003)Microbial iron respiration: Impacts on corrosion processes. Appl Microbiol Biotechnol 62:134–139

    Article  PubMed  CAS  Google Scholar 

  • Lee W, Lewandowski Z, Nielsen PH, Hamilton WA (1995)Role of sulfate-reducing bacteria in corrosion of mild-steel – A review. Biofouling 8:165–194

    Article  CAS  Google Scholar 

  • Lewandowski Z, Beyenal H (2007) Fundamentals of biofilm research. CRCLewandowski Z, Beyenal H (2007) Fundamentals of biofilm research. CRC

    Google Scholar 

  • Lewandowski Z, Dickinson W, Lee W (1997)Electrochemical interactions of biofilms with metal surfaces. Water Sci Technol 36:295–302

    Article  CAS  Google Scholar 

  • Lewandowski Z, Beyenal H, Stookey D (2004)Reproducibility of biofilm processes and the meaning of steady state in biofilm reactors. Water Sci Technol 49:359–364

    PubMed  CAS  Google Scholar 

  • Linhardt P (1996)Failure of chromium-nickel steel in a hydroelectric power plant by manganese-oxidizing bacteria. In: Heitz E, Flemming HC, Sand W (eds.) Microbially influenced corrosion of materials. Springer Verlag, Berlin Heidelberg, pp 221–230

    Google Scholar 

  • Linhardt P (1998) Electrochemical identification of higher oxides of manganese in corrosion relevant deposits formed by microorganisms Linhardt P (1998) Electrochemical identification of higher oxides of manganese in corrosion relevant deposits formed by microorganisms

    Google Scholar 

  • Linhardt P (2004)Microbially influenced corrosion of stainless steel by manganese oxidizing microorganisms. Mater Corros/Werkstoffe Korrosion 55:158–163

    Article  CAS  Google Scholar 

  • Linhardt P (2006)MIC of stainless steel in freshwater and the cathodic behaviour of biomineralized Mn-oxides. Electrochim Acta 51:6081–6084

    Article  CAS  Google Scholar 

  • Little B, Ray R (2002)A perspective on corrosion inhibition by biofilms. Corrosion 58:424–428

    Article  CAS  Google Scholar 

  • Little B, Lee J, Ray R (2007)A review of ‘green’ strategies to prevent or mitigate microbiologically influenced corrosion. Biofouling 23:87–97

    Article  PubMed  CAS  Google Scholar 

  • Little BJ, Ray RI, Pope RK (2000)Relationship between corrosion and the biological sulfur cycle: A review. Corrosion 56:433–443

    Article  CAS  Google Scholar 

  • Mansfeld F, Little BA (1991)Technical review of electrochemical techniques applied to microbiologically influenced corrosion. Corros Sci 32:247

    Article  CAS  Google Scholar 

  • Mattila K, Carpen L, Hakkarainen T, Salkinoja-Salonen MS (1997)Biofilm development during ennoblement of stainless steel in Baltic Sea water: A microscopic study. Int Biodeterior Biodegrad 40:1–10

    Article  Google Scholar 

  • Miyanaga K, Terashi R, Kawai H, Unno H, Tanji Y (2007)Biocidal effect of cathodic protection on bacterial viability in biofilm attached to carbon steel. Biotechnol Bioeng 97:850–857

    Article  PubMed  CAS  Google Scholar 

  • Mollica A, Trevis A (1976) Correlation entre la formation de la pellicule primaire et la modification de le cathodique sur des aciers inoxydables experimentes en eau de mer aux vitesses de 0.3 A, 5.2 m/s. Proceedings of 4th international congress on marine corrosion and fouling, Juan Les-Pins, France, 14–18 June 1976Mollica A, Trevis A (1976) Correlation entre la formation de la pellicule primaire et la modification de le cathodique sur des aciers inoxydables experimentes en eau de mer aux vitesses de 0.3 A, 5.2 m/s. Proceedings of 4th international congress on marine corrosion and fouling, Juan Les-Pins, France, 14–18 June 1976

    Google Scholar 

  • Nielsen P, Lee WC, Morrison M, Characklis WG (1993)Corrosion of mild steel in an alternating oxic and anoxic biofilm system. Biofouling 7:267–284

    Article  Google Scholar 

  • Olesen BH, Avci R, Lewandowski Z (2000a)Manganese dioxide as a potential cathodic reactant in corrosion of stainless steels. Corros Sci 42:211–227

    Article  CAS  Google Scholar 

  • Olesen BH, Nielsen PH, Lewandowski Z (2000b)Effect of biomineralized manganese on the corrosion behavior of C1008 mild steel. Corrosion 56:80–89

    Article  CAS  Google Scholar 

  • Olesen BH, Yurt N, Lewandowski Z (2001)Effect of biomineralized manganese on pitting corrosion of type 304L stainless steel. Mater Corros/Werkstoffe Korrosion 52:827–832

    Article  CAS  Google Scholar 

  • Rao TS, Sairam TN, Viswanathan B, Nair KVK (2000)Carbon steel corrosion by iron oxidising and sulphate reducing bacteria in a freshwater cooling system. Corros Sci 42:1417–1431

    Article  CAS  Google Scholar 

  • Roe FL, Lewandowski Z, Funk T (1996)Simulating microbiologically influenced corrosion by depositing extracellular biopolymers on mild steel surfaces. Corrosion 52:744–752

    Article  CAS  Google Scholar 

  • Romero JM, Angeles-Chavez C, Amaya M (2004)Role of anaerobic and aerobic bacteria in localised corrosion: Field and laboratory morphological study. Corros Eng Sci Technol 39:261–264

    Article  CAS  Google Scholar 

  • Schmitt G (1991)Effect of elemental sulfur on corrosion in sour gas systems. Corrosion 47:285–308

    CAS  Google Scholar 

  • Sedriks AJ (1996)Corrosion of stainless steel. Wiley, New York

    Google Scholar 

  • Shi X, Avci R, Lewandowski Z (2002a)Microbially deposited manganese and iron oxides on passive metals – Their chemistry and consequences for material performance. Corrosion 58:728–738

    Article  CAS  Google Scholar 

  • Shi XM, Avci R, Lewandowski Z (2002b)Electrochemistry of passive metals modified by manganese oxides deposited by Leptothrix discophora: Two-step model verified by ToF-SIMS. Corros Sci 44:1027–1045

    Article  CAS  Google Scholar 

  • Starosvetsky J, Starosvetsky D, Armon R (2007)Identification of microbiologically influenced corrosion (MIC) in industrial equipment failures. Eng Fail Anal 14:1500–1511

    Article  CAS  Google Scholar 

  • Tebo BM, Ghiorse WC, van Waasbergen LG, Siering PL, Caspi R (1997) Bacterially mediated mineral formation: Insights into manganese(II) oxidation from molecular genetic and biochemical studies Tebo BM, Ghiorse WC, van Waasbergen LG, Siering PL, Caspi R (1997) Bacterially mediated mineral formation: Insights into manganese(II) oxidation from molecular genetic and biochemical studies

    Google Scholar 

  • Tebo BM, Bargar JR, Clement BG, Dick GJ, Murray KJ, Parker D, Verity R, Webb SM (2004)Biogenic manganese oxides: Properties and mechanisms of formation. Annu Rev Earth Planet Sci 32:287–328

    Article  ADS  CAS  Google Scholar 

  • Tebo BM, Johnson HA, McCarthy JK, Templeton AS (2005)Geomicrobiology of manganese(II) oxidation. Trend Microbiol 13:421–428

    Article  CAS  Google Scholar 

  • Videla HA (2001)Microbially induced corrosion: An updated overview (reprinted). Int Biodeterior Biodegrad 48:176–201

    Article  CAS  Google Scholar 

  • Videla HA, Herrera LK (2005)Microbiologically influenced corrosion: Looking to the future. Int Microbiol 8:169–180

    PubMed  CAS  Google Scholar 

  • Wang W, Wang J, Xu H, Li X (2006)Some multidisciplinary techniques used in MIC studies. Mater Corros/Werkstoffe Korrosion 57:531–537

    Article  CAS  Google Scholar 

  • Washizu N, Katada Y, Kodama T (2004)Role of H2O2 in microbially influenced ennoblement of open circuit potentials for type 316L stainless steel in seawater. Corros Sci 46:1291–1300

    Article  CAS  Google Scholar 

  • White DC, de Nivens PD, Nichols J, Mikell AT, Kerger BD, Henson JM, Geesey G, Clarke CK (1985)Role of aerobic bacteria and their extracellular polymers in facilitation of corrosion: Use of Fourier transforming infrared spectroscopy and “signature” phospholipid fatty acid analysis. In: Dexter SC (ed.) Biologically induced corrosion. NACE, Houston, p 233

    Google Scholar 

  • Xu CM, Zhang YH, Cheng GX, Zhu WS (2007)Localized corrosion behavior of 316L stainless steel in the presence of sulfate-reducing and iron-oxidizing bacteria. Mater Sci Eng A Struct Mater: Properties Microstruct Process 443:235–241

    Google Scholar 

  • Zuo RJ, Kus E, Mansfeld F, Wood TK (2005)The importance of live biofilms in corrosion protection. Corros Sci 47:279–287

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the United States Office of Naval Research (contract nos. N00014-99-1-0701 and N00014-06-1-0217). Beyenal was supported by Washington State University (fund no. 9904).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Lewandowski .

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London

About this chapter

Cite this chapter

Lewandowski, Z., Beyenal, H. (2008). Mechanisms of Microbially Influenced Corrosion. In: Springer Series on Biofilms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7142_2008_8

Download citation

  • DOI: https://doi.org/10.1007/7142_2008_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

Publish with us

Policies and ethics