Skip to main content

Therapeutic Strategies for Huntington’s Disease

  • Chapter
  • First Online:
Behavioral Neurobiology of Huntington's Disease and Parkinson's Disease

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 22))

Abstract

Huntington’s disease (HD) is a devastating autosomal dominant neurodegenerative disease, caused by expansion of the CAG repeat in the huntingtin (HTT) gene and characterized pathologically by the loss of pyramidal neurons in several cortical areas, of striatal medium spiny neurons, and of hypothalamic neurons. Clinically, a distinguishing feature of the disease is uncontrolled involuntary movements (chorea, dyskensias) accompanied by progressive cognitive, motor, and psychiatric impairment. This review focuses on the current state of therapeutic development for the treatment of HD, including the preclinical and clinical development of small molecules and molecular therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn HS, Bercovici A, Boykow G et al (1997) Potent tetracyclic guanine inhibitors of PDE1 and PDE5 cyclic guanosine monophosphate phosphodiesterases with oral antihypertensive activity. J Med Chem 40:2196–2210

    CAS  PubMed  Google Scholar 

  • Aiken CT, Steffan JS, Guerrero CM et al (2009) Phosphorylation of threonine 3: implications for Huntingtin aggregation and neurotoxicity. J Biol Chem 284:29427–29436

    PubMed Central  CAS  PubMed  Google Scholar 

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375

    CAS  PubMed  Google Scholar 

  • Alkondon M, Pereira EF, Yu P et al (2004) Targeted deletion of the kynurenine aminotransferase ii gene reveals a critical role of endogenous kynurenic acid in the regulation of synaptic transmission via alpha7 nicotinic receptors in the hippocampus. J Neurosci 24:4635–4648

    CAS  PubMed  Google Scholar 

  • Alkondon M, Pereira EF, Albuquerque EX (2011) Endogenous activation of nAChRs and NMDA receptors contributes to the excitability of CA1 stratum radiatum interneurons in rat hippocampal slices: effects of kynurenic acid. Biochem Pharmacol 82:842–851

    CAS  PubMed  Google Scholar 

  • Allen KL, Waldvogel HJ, Glass M et al (2009) Cannabinoid (CB(1)), GABA(A) and GABA(B) receptor subunit changes in the globus pallidus in Huntington’s disease. J Chem Neuroanat 37:266–281

    CAS  PubMed  Google Scholar 

  • Andrade MA, Bork P (1995) HEAT repeats in the Huntington’s disease protein. Nat Genet 11:115–116

    CAS  PubMed  Google Scholar 

  • Andre VM, Cepeda C, Levine MS (2010) Dopamine and glutamate in Huntington’s disease: a balancing act. CNS Neurosci Ther 16:163–178

    PubMed Central  CAS  PubMed  Google Scholar 

  • Arenas E, Akerud P, Wong V et al (1996) Effects of BDNF and NT-4/5 on striatonigral neuropeptides or nigral GABA neurons in vivo. Eur J Neurosci 8:1707–1717

    CAS  PubMed  Google Scholar 

  • Arregui L, Benitez JA, Razgado LF et al (2011) Adenoviral astrocyte-specific expression of BDNF in the striata of mice transgenic for Huntington’s disease delays the onset of the motor phenotype. Cell Mol Neurobiol 31:1229–1243

    CAS  PubMed  Google Scholar 

  • Atwal RS, Desmond CR, Caron N et al (2011) Kinase inhibitors modulate huntingtin cell localization and toxicity. Nat Chem Biol 7:453–460

    CAS  PubMed  Google Scholar 

  • Baldo B, Paganetti P, Grueninger S et al (2012) TR-FRET-based duplex immunoassay reveals an inverse correlation of soluble and aggregated mutant huntingtin in huntington’s disease. Chem Biol 19:264–275

    CAS  PubMed  Google Scholar 

  • Bari M, Battista N, Valenza M et al (2013) In vitro and in vivo models of Huntington’s disease show alterations in the endocannabinoid system. FEBS J 280:3376–3388

    CAS  PubMed  Google Scholar 

  • Bartus RT, Baumann TL, Brown L et al (2013) Advancing neurotrophic factors as treatments for age-related neurodegenerative diseases: developing and demonstrating “clinical proof-of-concept” for AAV-neurturin (CERE-120) in Parkinson’s disease. Neurobiol Aging 34:35–61

    CAS  PubMed  Google Scholar 

  • Becher MW, Kotzuk JA, Sharp AH et al (1998) Intranuclear neuronal inclusions in Huntington’s disease and dentatorubral and pallidoluysian atrophy: correlation between the density of inclusions and IT15 CAG triplet repeat length. Neurobiol Dis 4:387–397

    CAS  PubMed  Google Scholar 

  • Beconi MG, Yates D, Lyons K et al (2012a) Metabolism and pharmacokinetics of JM6 in mice: JM6 is not a prodrug for Ro-61-8048. Drug Metab Dispos 40:2297–2306

    CAS  PubMed  Google Scholar 

  • Beconi M, Aziz O, Matthews K et al (2012b) Oral administration of the pimelic diphenylamide HDAC inhibitor HDACi 4b is unsuitable for chronic inhibition of HDAC activity in the CNS in vivo. PLoS One 7:e44498

    PubMed Central  CAS  PubMed  Google Scholar 

  • Beher D, Wu J, Cumine S et al (2009) Resveratrol is not a direct activator of SIRT1 enzyme activity. Chem Biol Drug Des 74:619–624

    CAS  PubMed  Google Scholar 

  • Benn CL, Butler R, Mariner L et al (2009) Genetic knock-down of HDAC7 does not ameliorate disease pathogenesis in the R6/2 mouse model of Huntington’s disease. PLoS One 4:e5747

    PubMed Central  PubMed  Google Scholar 

  • Bertolino A, Crippa D, di Dio S et al (1988) Rolipram versus imipramine in inpatients with major, minor or atypical depressive disorder: a double-blind double-dummy study aimed at testing a novel therapeutic approach. Int Clin Psychopharmacol 3:245–253

    CAS  PubMed  Google Scholar 

  • Besusso D, Geibel M, Kramer D et al (2013) BDNF-TrkB signaling in striatopallidal neurons controls inhibition of locomotor behavior. Nat Commun 4:2031

    PubMed Central  PubMed  Google Scholar 

  • Biglan KM, Ross CA, Langbehn DR et al (2009) Motor abnormalities in premanifest persons with Huntington’s disease: the PREDICT-HD study. Mov Disord 24:1763–1772

    PubMed Central  PubMed  Google Scholar 

  • Blazquez C, Chiarlone A, Sagredo O et al (2011) Loss of striatal type 1 cannabinoid receptors is a key pathogenic factor in Huntington’s disease. Brain 134:119–136

    PubMed  Google Scholar 

  • Bobrowska A, Paganetti P, Matthias P et al (2011) Hdac6 knock-out increases tubulin acetylation but does not modify disease progression in the R6/2 mouse model of Huntington’s disease. PLoS One 6:e20696

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bobrowska A, Donmez G, Weiss A et al (2012) SIRT2 ablation has no effect on tubulin acetylation in brain, cholesterol biosynthesis or the progression of Huntington’s disease phenotypes in vivo. PLoS One 7:e34805

    PubMed Central  CAS  PubMed  Google Scholar 

  • Boess FG, Hendrix M, van der Staay FJ et al (2004) Inhibition of phosphodiesterase 2 increases neuronal cGMP, synaptic plasticity and memory performance. Neuropharmacology 47:1081–1092

    CAS  PubMed  Google Scholar 

  • Borowsky B, Warner J, Leavitt BR et al (2013) 8OHdG is not a biomarker for Huntington disease state or progression. Neurology 80:1934–1941

    PubMed Central  CAS  PubMed  Google Scholar 

  • Borrell-Pages M, Canals JM, Cordelieres FP et al (2006) Cystamine and cysteamine increase brain levels of BDNF in Huntington disease via HSJ1b and transglutaminase. J Clin Invest 116:1410–1424

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brandt J, Folstein SE, Wong DF et al (1990) D2 receptors in Huntington’s disease: positron emission tomography findings and clinical correlates. J Neuropsychiatry Clin Neurosci 2:20–27

    CAS  PubMed  Google Scholar 

  • Brito V, Puigdellivol M, Giralt A et al (2013) Imbalance of p75(NTR)/TrkB protein expression in Huntington’s disease: implication for neuroprotective therapies. Cell Death Dis 4:e595

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bruno O, Fedele E, Prickaerts J et al (2011) GEBR-7b, a novel PDE4D selective inhibitor that improves memory in rodents at non-emetic doses. Br J Pharmacol 164:2054–2063

    PubMed Central  CAS  PubMed  Google Scholar 

  • Buckley NJ, Johnson R, Zuccato C et al (2010) The role of REST in transcriptional and epigenetic dysregulation in Huntington’s disease. Neurobiol Dis 39:28–39

    CAS  PubMed  Google Scholar 

  • Bureau Y, Handa M, Zhu Y et al (2006) Neuroanatomical and pharmacological assessment of Fos expression induced in the rat brain by the phosphodiesterase-4 inhibitor 6-(4-pyridylmethyl)-8-(3-nitrophenyl) quinoline. Neuropharmacology 51:974–985

    CAS  PubMed  Google Scholar 

  • Burgin AB, Magnusson OT, Singh J et al (2010) Design of phosphodiesterase 4D (PDE4D) allosteric modulators for enhancing cognition with improved safety. Nat Biotechnol 28:63–70

    CAS  PubMed  Google Scholar 

  • Cachope R (2012) Functional diversity on synaptic plasticity mediated by endocannabinoids. Philos Trans R Soc Lond B Biol Sci 367:3242–3253

    PubMed Central  CAS  PubMed  Google Scholar 

  • Campesan S, Green EW, Breda C et al (2011) The kynurenine pathway modulates neurodegeneration in a Drosophila model of Huntington’s disease. Curr Biol 21:961–966

    PubMed Central  CAS  PubMed  Google Scholar 

  • Canals JM, Pineda JR, Torres-Peraza JF et al (2004) Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington’s disease. J Neurosci 24:7727–7739

    CAS  PubMed  Google Scholar 

  • Cattaneo E, Zuccato C, Tartari M (2005) Normal huntingtin function: an alternative approach to Huntington’s disease. Nat Rev Neurosci 6:919–930

    CAS  PubMed  Google Scholar 

  • Caviston JP, Holzbaur EL (2009) Huntingtin as an essential integrator of intracellular vesicular trafficking. Trends Cell Biol 19:147–155

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cepeda C, Galvan L, Holley SM et al (2013) Multiple sources of striatal inhibition are differentially affected in Huntington’s disease mouse models. J Neurosci 33:7393–7406

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chandrasekaran A, Toh KY, Low SH et al (2008) Identification and characterization of novel mouse PDE4D isoforms: Molecular cloning, subcellular distribution and detection of isoform-specific intracellular localization signals. Cell Signal 20:139–153

    CAS  PubMed  Google Scholar 

  • Chaturvedi RK, Beal MF (2013) Mitochondria targeted therapeutic approaches in Parkinson’s and Huntington’s diseases. Mol Cell Neurosci 55:101–114

    CAS  PubMed  Google Scholar 

  • Chaturvedi RK, Adhihetty P, Shukla S et al (2009) Impaired PGC-1alpha function in muscle in Huntington’s disease. Hum Mol Genet 18:3048–3065

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen JJ, Ondo WG, Dashtipour K et al (2012) Tetrabenazine for the treatment of hyperkinetic movement disorders: a review of the literature. Clin Ther 34:1487–1504

    PubMed  Google Scholar 

  • Chiodi V, Uchigashima M, Beggiato S et al (2012) Unbalance of CB1 receptors expressed in GABAergic and glutamatergic neurons in a transgenic mouse model of Huntington’s disease. Neurobiol Dis 45:983–991

    CAS  PubMed  Google Scholar 

  • Chou SY, Lee YC, Chen HM et al (2005) CGS21680 attenuates symptoms of Huntington’s disease in a transgenic mouse model. J Neurochem 93:310–320

    CAS  PubMed  Google Scholar 

  • Choudhary C, Kumar C, Gnad F et al (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–840

    CAS  PubMed  Google Scholar 

  • Christofides J, Bridel M, Egerton M et al (2006) Blood 5-hydroxytryptamine, 5-hydroxyindoleacetic acid and melatonin levels in patients with either Huntington’s disease or chronic brain injury. J Neurochem 97:1078–1088

    CAS  PubMed  Google Scholar 

  • Ciammola A, Sassone J, Sciacco M et al (2011) Low anaerobic threshold and increased skeletal muscle lactate production in subjects with Huntington’s disease. Mov Disord 26:130–137

    PubMed Central  PubMed  Google Scholar 

  • Conforti P (2013) Mas Monteys, A.; Zuccato, C., et al. In vivo delivery of DN:REST improves transcriptional changes of REST-regulated genes in HD mice. Gene Ther 20:678–685

    CAS  PubMed  Google Scholar 

  • Conforti P, Zuccato C, Gaudenzi G et al (2013) Binding of the repressor complex REST-mSIN3b by small molecules restores neuronal gene transcription in Huntington’s disease models. J Neurochem 127(1):22–35

    Google Scholar 

  • Crook ZR, Housman D (2011) Huntington’s disease: can mice lead the way to treatment? Neuron 69:423–435

    CAS  PubMed  Google Scholar 

  • Curtis A, Mitchell I, Patel S et al (2009) A pilot study using nabilone for symptomatic treatment in Huntington’s disease. Mov Disord 24:2254–2259

    PubMed  Google Scholar 

  • Dai H, Kustigian L, Carney D et al (2010) SIRT1 activation by small molecules: kinetic and biophysical evidence for direct interaction of enzyme and activator. J Biol Chem 285:32695–32703

    PubMed Central  CAS  PubMed  Google Scholar 

  • De Chiara V, Angelucci F, Rossi S et al (2010) Brain-derived neurotrophic factor controls cannabinoid CB1 receptor function in the striatum. J Neurosci 30:8127–8137

    PubMed  Google Scholar 

  • De Yebenes JG, Landwehrmeyer B, Squitieri F et al (2011) Pridopidine for the treatment of motor function in patients with Huntington’s disease (MermaiHD): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Neurol 10:1049–1057

    PubMed  Google Scholar 

  • Demarch Z, Giampa C, Patassini S et al (2007) Beneficial effects of rolipram in a quinolinic acid model of striatal excitotoxicity. Neurobiol Dis 25:266–273

    CAS  PubMed  Google Scholar 

  • DeMarch Z, Giampa C, Patassini S et al (2008) Beneficial effects of rolipram in the R6/2 mouse model of Huntington’s disease. Neurobiol Dis 30:375–387

    CAS  PubMed  Google Scholar 

  • Denovan-Wright EM, Robertson HA (2000) Cannabinoid receptor messenger RNA levels decrease in a subset of neurons of the lateral striatum, cortex and hippocampus of transgenic Huntington’s disease mice. Neuroscience 98:705–713

    CAS  PubMed  Google Scholar 

  • Deuschl G, Schade-Brittinger C, Krack P et al (2006) A randomized trial of deep-brain stimulation for Parkinson’s disease. N Engl J Med 355:896–908

    CAS  PubMed  Google Scholar 

  • Domenici MR, Scattoni ML, Martire A et al (2007) Behavioral and electrophysiological effects of the adenosine A2A receptor antagonist SCH 58261 in R6/2 Huntington’s disease mice. Neurobiol Dis 28:197–205

    CAS  PubMed  Google Scholar 

  • Doria JG, Silva FR, de Souza JM et al (2013) Metabotropic glutamate receptor 5 positive allosteric modulators are neuroprotective in a mouse model of Huntington’s disease. Br J Pharmacol 169:909–921

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dowie MJ, Bradshaw HB, Howard ML et al (2009) Altered CB1 receptor and endocannabinoid levels precede motor symptom onset in a transgenic mouse model of Huntington’s disease. Neuroscience 163:456–465

    CAS  PubMed  Google Scholar 

  • Dowie MJ, Howard ML, Nicholson LF et al (2010) Behavioural and molecular consequences of chronic cannabinoid treatment in Huntington’s disease transgenic mice. Neuroscience 170:324–336

    CAS  PubMed  Google Scholar 

  • Dubinsky R, Gray C (2006) CYTE-I-HD: phase I dose finding and tolerability study of cysteamine (Cystagon) in Huntington’s disease. Mov Disord 21:530–533

    PubMed  Google Scholar 

  • Duff K, Paulsen JS, Beglinger LJ et al (2007) Psychiatric symptoms in Huntington’s disease before diagnosis: the predict-HD study. Biol Psychiatry 62:1341–1346

    PubMed  Google Scholar 

  • Duff K, Paulsen JS, Beglinger LJ et al (2010) Frontal behaviors before the diagnosis of Huntington’s disease and their relationship to markers of disease progression: evidence of early lack of awareness. J Neuropsychiatry Clin Neurosci 22:196–207

    PubMed Central  PubMed  Google Scholar 

  • Dyhring T, Nielsen EO, Sonesson C et al (2010) The dopaminergic stabilizers pridopidine (ACR16) and (-)-OSU6162 display dopamine D(2) receptor antagonism and fast receptor dissociation properties. Eur J Pharmacol 628:19–26

    CAS  PubMed  Google Scholar 

  • Ehrnhoefer DE, Sutton L, Hayden MR (2011) Small changes, big impact: posttranslational modifications and function of huntingtin in Huntington disease. Neuroscientist 17:475–492

    PubMed Central  CAS  PubMed  Google Scholar 

  • Eidelberg D, Surmeier DJ (2011) Brain networks in Huntington disease. J Clin Invest 121:484–492

    PubMed Central  CAS  PubMed  Google Scholar 

  • Faideau M, Kim J, Cormier K et al (2010) In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington’s disease subjects. Hum Mol Genet 19:3053–3067

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fasano A, Mazzone P, Piano C et al (2008) GPi-DBS in Huntington’s disease: results on motor function and cognition in a 72-year-old case. Mov Disord 23:1289–1292

    PubMed  Google Scholar 

  • Fawcett AP, Moro E, Lang AE et al (2005) Pallidal deep brain stimulation influences both reflexive and voluntary saccades in Huntington’s disease. Mov Disord 20:371–377

    PubMed  Google Scholar 

  • Ferrante A, Martire A, Armida M et al (2010) Influence of CGS 21680, a selective adenosine A(2A) receptor agonist, on NMDA receptor function and expression in the brain of Huntington’s disease mice. Brain Res 1323:184–191

    CAS  PubMed  Google Scholar 

  • Figiel M, Szlachcic WJ, Switonski PM et al (2012) Mouse models of polyglutamine diseases: review and data table. Part I. Mol Neurobiol 46:393–429

    CAS  Google Scholar 

  • Fischbeck KH (2001) Polyglutamine expansion neurodegenerative disease. Brain Res Bull 56:161–163

    CAS  PubMed  Google Scholar 

  • Fletcher JM, Hughes RA (2009) Modified low molecular weight cyclic peptides as mimetics of BDNF with improved potency, proteolytic stability and transmembrane passage in vitro. Bioorg Med Chem 17:2695–2702

    CAS  PubMed  Google Scholar 

  • Folstein SE, Chase GA, Wahl WE et al (1987) Huntington disease in Maryland: clinical aspects of racial variation. Am J Hum Genet 41:168–179

    PubMed Central  CAS  PubMed  Google Scholar 

  • Forrest CM, Mackay GM, Stoy N et al (2010) Blood levels of kynurenines, interleukin-23 and soluble human leucocyte antigen-G at different stages of Huntington’s disease. J Neurochem 112:112–122

    CAS  PubMed  Google Scholar 

  • Frank S (2010) Tetrabenazine: the first approved drug for the treatment of chorea in US patients with Huntington disease. Neuropsychiatr Dis Treat 6:657–665

    PubMed Central  CAS  PubMed  Google Scholar 

  • Frank S, Ondo W, Fahn S et al (2008) A study of chorea after tetrabenazine withdrawal in patients with Huntington disease. Clin Neuropharmacol 31:127–133

    CAS  PubMed  Google Scholar 

  • Gellerich FN, Gizatullina Z, Nguyen HP et al (2008) Impaired regulation of brain mitochondria by extramitochondrial Ca2 + in transgenic Huntington disease rats. J Biol Chem 283:30715–30724

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gertz M, Fischer F, Nguyen GT et al (2013) Ex-527 inhibits Sirtuins by exploiting their unique NAD + -dependent deacetylation mechanism. Proc Natl Acad Sci U S A 110(30):E2772–781

    Google Scholar 

  • Giampa C, Laurenti D, Anzilotti S et al (2010) Inhibition of the striatal specific phosphodiesterase PDE10A ameliorates striatal and cortical pathology in R6/2 mouse model of Huntington’s disease. PLoS One 5:e13417

    PubMed Central  PubMed  Google Scholar 

  • Giampa C, Montagna E, Dato C et al (2013) Systemic delivery of recombinant brain derived neurotrophic factor (BDNF) in the R6/2 mouse model of Huntington’s disease. PLoS One 8:e64037

    PubMed Central  CAS  PubMed  Google Scholar 

  • Giampà C, DeMarch Z, D’Angelo V et al (2006) Striatal modulation of cAMP-response-element-binding protein (CREB) after excitotoxic lesions: implications with neuronal vulnerability in Huntington’s disease. Eur J Neurosci 23:11–20

    PubMed  Google Scholar 

  • Giampà C, Patassini S, Borreca A et al (2009a) Phosphodiesterase 10 inhibition reduces striatal excitotoxicity in the quinolinic acid model of Huntington’s disease. Neurobiol Dis 34:450–456

    PubMed  Google Scholar 

  • Giampà C, Middei S, Patassini S et al (2009b) Phosphodiesterase type IV inhibition prevents sequestration of CREB binding protein, protects striatal parvalbumin interneurons and rescues motor deficits in the R6/2 mouse model of Huntington’s disease. Eur J Neurosci 29:902–910

    PubMed  Google Scholar 

  • Gines S (2003) Specific progressive cAMP reduction implicates energy deficit in presymptomatic Huntington’s disease knock-in mice. Hum Mol Genet 12:497–508

    CAS  PubMed  Google Scholar 

  • Giralt A, Saavedra A, Carreton O et al (2011) Increased PKA signaling disrupts recognition memory and spatial memory: role in Huntington’s disease. Hum Mol Genet 20(21):4232–4247

    Google Scholar 

  • Giralt A, Carreton O, Lao-Peregrin C et al (2011b) Conditional BDNF release under pathological conditions improves Huntington’s disease pathology by delaying neuronal dysfunction. Mol Neurodegener 6:71

    PubMed Central  CAS  PubMed  Google Scholar 

  • Glass M, Faull RL, Dragunow M (1993) Loss of cannabinoid receptors in the substantia nigra in Huntington’s disease. Neuroscience 56:523–527

    CAS  PubMed  Google Scholar 

  • Glass M, Dragunow M, Faull RL (2000) The pattern of neurodegeneration in Huntington’s disease: a comparative study of cannabinoid, dopamine, adenosine and GABA(A) receptor alterations in the human basal ganglia in Huntington’s disease. Neuroscience 97:505–519

    CAS  PubMed  Google Scholar 

  • Goggi J, Pullar IA, Carney SL et al (2002) Modulation of neurotransmitter release induced by brain-derived neurotrophic factor in rat brain striatal slices in vitro. Brain Res 941:34–42

    CAS  PubMed  Google Scholar 

  • Gray MA, Egan GF, Ando A et al (2013) Prefrontal activity in Huntington’s disease reflects cognitive and neuropsychiatric disturbances: the IMAGE-HD study. Exp Neurol 239:218–228

    CAS  PubMed  Google Scholar 

  • Grondin R, Kaytor MD, Ai Y et al (2012) Six-month partial suppression of Huntingtin is well tolerated in the adult rhesus striatum. Brain 135:1197–1209

    PubMed Central  PubMed  Google Scholar 

  • Gu X, Li C, Wei W et al (2005) Pathological cell–cell interactions elicited by a neuropathogenic form of mutant Huntingtin contribute to cortical pathogenesis in HD mice. Neuron 46:433–444

    CAS  PubMed  Google Scholar 

  • Guenther MG, Barak O, Lazar MA (2001) The SMRT and N-CoR corepressors are activating cofactors for histone deacetylase 3. Mol Cell Biol 21:6091–6101

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guidetti P, Reddy PH, Tagle DA et al (2000) Early kynurenergic impairment in Huntington’s disease and in a transgenic animal model. Neurosci Lett 283:233–235

    CAS  PubMed  Google Scholar 

  • Guidetti P, Luthi-Carter RE, Augood SJ et al (2004) Neostriatal and cortical quinolinate levels are increased in early grade Huntington’s disease. Neurobiol Dis 17:455–461

    CAS  PubMed  Google Scholar 

  • Guidetti P, Bates GP, Graham RK et al (2006) Elevated brain 3-hydroxykynurenine and quinolinate levels in Huntington disease mice. Neurobiol Dis 23:190–197

    CAS  PubMed  Google Scholar 

  • Hall JA, Dominy JE, Lee Y et al (2013) The sirtuin family’s role in aging and age-associated pathologies. J Clin Invest 123:973–979

    PubMed Central  CAS  PubMed  Google Scholar 

  • Handa N, Mizohata E, Kishishita S et al (2008) Crystal Structure of the GAF-B Domain from Human Phosphodiesterase 10A Complexed with Its Ligand, cAMP. J Biol Chem 283:19657–19664

    CAS  PubMed  Google Scholar 

  • Haroon E, Raison CL, Miller AH (2012) Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior. Neuropsychopharmacology 37:137–162

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hassel B, Tessler S, Faull RL et al (2008) Glutamate uptake is reduced in prefrontal cortex in Huntington’s disease. Neurochem Res 33:232–237

    CAS  PubMed  Google Scholar 

  • Hauser RA, Cantillon M, Pourcher E et al (2011) Preladenant in patients with Parkinson’s disease and motor fluctuations: a phase 2, double-blind, randomised trial. Lancet Neurol 10:221–229

    CAS  PubMed  Google Scholar 

  • Hayden MR, MacGregor JM, Beighton PH (1980) The prevalence of Huntington’s chorea in South Africa. S Afr Med J 58:193–196

    CAS  PubMed  Google Scholar 

  • Hebb A, Robertson H (2007) Role of phosphodiesterases in neurological and psychiatric disease. Curr Opin Pharmacol 7:86–92

    CAS  PubMed  Google Scholar 

  • Hebb MO, Garcia R, Gaudet P et al (2006) Bilateral stimulation of the globus pallidus internus to treat choreathetosis in Huntington’s disease: technical case report. Neurosurgery 58:E383.discussion E383

    Google Scholar 

  • Hebenstreit GF, Fellerer K, Fichte K et al (1989) Rolipram in major depressive disorder: results of a double-blind comparative study with imipramine. Pharmacopsychiatry 22:156–160

    CAS  PubMed  Google Scholar 

  • Heikkinen T, Lehtimaki K, Vartiainen N et al (2012) Characterization of neurophysiological and behavioral changes, MRI brain volumetry and 1H MRS in zQ175 knock-in mouse model of Huntington’s disease. PLoS One 7:e50717

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hersch SM, Gevorkian S, Marder K et al (2006) Creatine in Huntington disease is safe, tolerable, bioavailable in brain and reduces serum 8OH2′dG. Neurology 66:250–252

    CAS  PubMed  Google Scholar 

  • Hickey MA, Zhu C, Medvedeva V et al (2012) Evidence for behavioral benefits of early dietary supplementation with CoEnzymeQ10 in a slowly progressing mouse model of Huntington’s disease. Mol Cell Neurosci 49:149–157

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hilditch-Maguire P, Trettel F, Passani LA et al (2000) Huntingtin: an iron-regulated protein essential for normal nuclear and perinuclear organelles. Hum Mol Genet 9:2789–2797

    CAS  PubMed  Google Scholar 

  • Ho DJ, Calingasan NY, Wille E et al (2010) Resveratrol protects against peripheral deficits in a mouse model of Huntington’s disease. Exp Neurol 225:74–84

    CAS  PubMed  Google Scholar 

  • Hockly E, Richon VM, Woodman B et al (2003) Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proc Natl Acad Sci U S A 100:2041–2046

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hogel M, Laprairie RB, Denovan-Wright EM (2012) Promoters are differentially sensitive to N-terminal mutant huntingtin-mediated transcriptional repression. PLoS One 7:e41152

    PubMed Central  CAS  PubMed  Google Scholar 

  • Horne EA, Coy J, Swinney K et al (2013) Downregulation of cannabinoid receptor 1 from neuropeptide Y interneurons in the basal ganglia of patients with Huntington’s disease and mouse models. Eur J Neurosci 37:429–440

    PubMed Central  PubMed  Google Scholar 

  • Houslay MD, Schafer P, Zhang KYJ (2005) Keynote review: phosphodiesterase-4 as a therapeutic target. Drug Discovery Today 10:1503–1519

    CAS  PubMed  Google Scholar 

  • Huang Z, Dias R, Jones T et al (2007) L-454,560, a potent and selective PDE4 inhibitor with in vivo efficacy in animal models of asthma and cognition. Biochem Pharmacol 73:1971–1981

    CAS  PubMed  Google Scholar 

  • Hubbard BP, Loh C, Gomes AP et al (2013) Carboxamide SIRT1 inhibitors block DBC1 binding via an acetylation-independent mechanism. Cell Cycle 12(14):2233–2240. doi:10.4161/cc.25268

    Google Scholar 

  • Hult S, Schultz K, Soylu R et al (2010) Hypothalamic and neuroendocrine changes in Huntington’s disease. Curr Drug Targets 11:1237–1249

    CAS  PubMed  Google Scholar 

  • Hunter A, Bordelon Y, Cook I et al. (2010) QEEG measures in Huntington’s disease: a pilot study. PLoS Curr 2:RRN1192

    Google Scholar 

  • Huntington Study Group (2001) A randomized, placebo-controlled trial of coenzyme Q10 and remacemide in Huntington’s disease. Neurology 57:397–404

    Google Scholar 

  • Huntington Study Group (2006) Tetrabenazine as antichorea therapy in Huntington disease: a randomized controlled trial. Neurology 66:366–372

    Google Scholar 

  • Huntington Study Group TREND-HD Investigators (2008) Randomized controlled trial of ethyl-eicosapentaenoic acid in Huntington disease: the TREND-HD study. Arch Neurol 65:1582–1589

    Google Scholar 

  • Huys D, Bartsch C, Poppe P et al (2013) Management and outcome of pallidal deep brain stimulation in severe Huntington’s disease. Fortschr Neurol Psychiatr 81:202–205

    CAS  PubMed  Google Scholar 

  • Hyson HC, Kieburtz K, Shoulson I et al (2010) Safety and tolerability of high-dosage coenzyme Q10 in Huntington’s disease and healthy subjects. Mov Disord 25:1924–1928

    PubMed  Google Scholar 

  • Imanishi T, Sawa A, Ichimaru Y et al (1997) Ameliorating effects of rolipram on experimentally induced impairments of learning and memory in rodents. Eur J Pharmacol 321:273–278

    CAS  PubMed  Google Scholar 

  • Iona S, Cuomo M, Bushnik T et al (1998) Characterization of the rolipram-sensitive, cyclic AMP-specific phosphodiesterases: identification and differential expression of immunologically distinct forms in the rat brain. Mol Pharmacol 53:23–32

    CAS  PubMed  Google Scholar 

  • Ivkovic S, Ehrlich ME (1999) Expression of the striatal DARPP-32/ARPP-21 phenotype in GABAergic neurons requires neurotrophins in vivo and in vitro. J Neurosci 19:5409–5419

    CAS  PubMed  Google Scholar 

  • Jenkins BG, Rosas HD, Chen YC et al (1998) 1H NMR spectroscopy studies of Huntington’s disease: correlations with CAG repeat numbers. Neurology 50:1357–1365

    CAS  PubMed  Google Scholar 

  • Jeon YH, Heo YS, Kim CM et al (2005) Phosphodiesterase: overview of protein structures, potential therapeutic applications and recent progress in drug development. Cell Mol Life Sci 62:1198–1220

    CAS  PubMed  Google Scholar 

  • Jeong H, Then F, Melia TJ Jr et al (2009) Acetylation targets mutant huntingtin to autophagosomes for degradation. Cell 137:60–72

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jeong H, Cohen DE, Cui L et al (2012) Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway. Nat Med 18:159–165

    CAS  Google Scholar 

  • Jia H, Kast RJ, Steffan JS et al (2012a) Selective histone deacetylase (HDAC) inhibition imparts beneficial effects in Huntington’s disease mice: implications for the ubiquitin-proteasomal and autophagy systems. Hum Mol Genet 21:5280–5293

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jia H, Pallos J, Jacques V et al (2012b) Histone deacetylase (HDAC) inhibitors targeting HDAC3 and HDAC1 ameliorate polyglutamine-elicited phenotypes in model systems of Huntington’s disease. Neurobiol Dis 46:351–361

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jiang M, Wang J, Fu J et al (2012) Neuroprotective role of Sirt1 in mammalian models of Huntington’s disease through activation of multiple Sirt1 targets. Nat Med 18:153–158

    CAS  Google Scholar 

  • Jiang M, Peng Q, Liu X et al (2013) Small-molecule TrkB receptor agonists improve motor function and extend survival in a mouse model of Huntington’s disease. Hum Mol Genet 22:2462–2470

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jiao Y, Zhang Z, Zhang C et al (2011) A key mechanism underlying sensory experience-dependent maturation of neocortical GABAergic circuits in vivo. Proc Natl Acad Sci U S A 108:12131–12136

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jin J, Albertz J, Guo Z et al (2013) Neuroprotective effects of PPAR-gamma agonist rosiglitazone in N171-82Q mouse model of Huntington’s disease. J Neurochem 125:410–419

    PubMed Central  CAS  PubMed  Google Scholar 

  • Johnson JA, Johnson DA, Kraft AD et al (2008) The Nrf2-ARE pathway: an indicator and modulator of oxidative stress in neurodegeneration. Ann N Y Acad Sci 1147:61–69

    PubMed Central  CAS  PubMed  Google Scholar 

  • Johri A, Calingasan NY, Hennessey TM et al (2012) Pharmacologic activation of mitochondrial biogenesis exerts widespread beneficial effects in a transgenic mouse model of Huntington’s disease. Hum Mol Genet 21:1124–1137

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jovicic A, Zaldivar Jolissaint JF, Moser R et al (2013) MicroRNA-22 (miR-22) overexpression is neuroprotective via general anti-apoptotic effects and may also target specific Huntington’s disease-related mechanisms. PLoS One 8:e54222

    Google Scholar 

  • Kang GA, Heath S, Rothlind J et al (2011) Long-term follow-up of pallidal deep brain stimulation in two cases of Huntington’s disease. J Neurol Neurosurg Psychiatry 82:272–277

    PubMed  Google Scholar 

  • Kara E, Lin H, Svensson K et al (2010) Analysis of the actions of the novel dopamine receptor-directed compounds (S)-OSU6162 and ACR16 at the D2 dopamine receptor. Br J Pharmacol 161:1343–1350

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kegel KB, Sapp E, Alexander J et al (2009) Polyglutamine expansion in huntingtin alters its interaction with phospholipids. J Neurochem 110:1585–1597

    CAS  PubMed  Google Scholar 

  • Kells AP, Fong DM, Dragunow M et al (2004) AAV-mediated gene delivery of BDNF or GDNF is neuroprotective in a model of Huntington disease. Mol Ther 9:682–688

    CAS  PubMed  Google Scholar 

  • Khoshnan A, Patterson PH (2011) The role of IkappaB kinase complex in the neurobiology of Huntington’s disease. Neurobiol Dis 43:305–311

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim J, Amante DJ, Moody JP et al (2010) Reduced creatine kinase as a central and peripheral biomarker in Huntington’s disease. Biochim Biophys Acta 1802:673–681

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kleiman RJ, Kimmel LH, Bove SE et al (2010) Chronic suppression of phosphodiesterase 10A alters striatal expression of Genes responsible for neurotransmitter synthesis, neurotransmission, and signaling pathways implicated in Huntington’s disease. J Pharmacol Exp Ther 336:64–76

    PubMed  Google Scholar 

  • Kleiman RJ, Kimmel LH, Bove SE et al (2011) Chronic suppression of phosphodiesterase 10A alters striatal expression of genes responsible for neurotransmitter synthesis, neurotransmission, and signaling pathways implicated in Huntington’s disease. J Pharmacol Exp Ther 336:64–76

    CAS  PubMed  Google Scholar 

  • Kobayashi M, Kubo S, Iwata M et al (2011) ASP3258, an orally active potent phosphodiesterase 4 inhibitor with low emetic activity. Int Immunopharmacol 11:732–739

    CAS  PubMed  Google Scholar 

  • Konradsson-Geuken A, Wu HQ, Gash CR et al (2010) Cortical kynurenic acid bi-directionally modulates prefrontal glutamate levels as assessed by microdialysis and rapid electrochemistry. Neuroscience 169:1848–1859

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kordasiewicz HB, Stanek LM, Wancewicz EV et al (2012) Sustained therapeutic reversal of Huntington’s disease by transient repression of huntingtin synthesis. Neuron 74:1031–1044

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kotera J (2003) Subcellular localization of cyclic nucleotide phosphodiesterase type 10A variants, and alteration of the localization by cAMP-dependent protein kinase-dependent phosphorylation. J Biol Chem 279:4366–4375

    PubMed  Google Scholar 

  • Kuroiwa M, Snyder GL, Shuto T et al (2011) Phosphodiesterase 4 inhibition enhances the dopamine D1 receptor/PKA/DARPP-32 signaling cascade in frontal cortex. Psychopharmacology (Berl) 25(8):1101–1117

    Google Scholar 

  • La Spada AR (2012) Finding a sirtuin truth in Huntington’s disease. Nat Med 18:24–26

    PubMed  Google Scholar 

  • Landwehrmeyer GB, Dubois B, de Yebenes JG et al (2007) Riluzole in Huntington’s disease: a 3-year, randomized controlled study. Ann Neurol 62:262–272

    CAS  PubMed  Google Scholar 

  • Langbehn DR, Hayden MR, Paulsen JS (2010) CAG-repeat length and the age of onset in Huntington disease (HD): a review and validation study of statistical approaches. Am J Med Genet B Neuropsychiatr Genet 153B:397–408

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lastres-Becker I, Berrendero F, Lucas JJ et al (2002) Loss of mRNA levels, binding and activation of GTP-binding proteins for cannabinoid CB1 receptors in the basal ganglia of a transgenic model of Huntington’s disease. Brain Res 929:236–242

    CAS  PubMed  Google Scholar 

  • Lemtiri-Chlieh F, Levine ES (2010) BDNF evokes release of endogenous cannabinoids at layer 2/3 inhibitory synapses in the neocortex. J Neurophysiol 104:1923–1932

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li YF, Cheng YF, Huang Y et al (2011) Phosphodiesterase-4D knock-out and RNA interference-mediated knock-down enhance memory and increase hippocampal neurogenesis via increased cAMP signaling. J Neurosci 31:172–183

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ligot N, Krystkowiak P, Simonin C et al (2011) External globus pallidus stimulation modulates brain connectivity in Huntington’s disease. J Cereb Blood Flow Metab 31:41–46

    PubMed Central  PubMed  Google Scholar 

  • Lin YS, Chen CM, Soong BW et al (2011) Dysregulated brain creatine kinase is associated with hearing impairment in mouse models of Huntington disease. J Clin Invest 121:1519–1523

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liot G, Zala D, Pla P et al (2013) Mutant Huntingtin alters retrograde transport of TrkB receptors in striatal dendrites. J Neurosci 33:6298–6309

    CAS  PubMed  Google Scholar 

  • Lopes C, Pereira EF, Wu HQ et al (2007) Competitive antagonism between the nicotinic allosteric potentiating ligand galantamine and kynurenic acid at alpha7* nicotinic receptors. J Pharmacol Exp Ther 322:48–58

    CAS  PubMed  Google Scholar 

  • Lundin A, Dietrichs E, Haghighi S et al (2010) Efficacy and safety of the dopaminergic stabilizer Pridopidine (ACR16) in patients with Huntington’s disease. Clin Neuropharmacol 33:260–264

    CAS  PubMed  Google Scholar 

  • Luthi-Carter R, Taylor DM, Pallos J et al (2010) SIRT2 inhibition achieves neuroprotection by decreasing sterol biosynthesis. Proc Natl Acad Sci U S A 107:7927–7932

    PubMed Central  CAS  PubMed  Google Scholar 

  • Margolis RL, Ross CA (2001) Expansion explosion: new clues to the pathogenesis of repeat expansion neurodegenerative diseases. Trends Mol Med 7:479–482

    CAS  PubMed  Google Scholar 

  • Marongiu D, Imbrosci B, Mittmann T (2013) Modulatory effects of the novel TrkB receptor agonist 7,8-dihydroxyflavone on synaptic transmission and intrinsic neuronal excitability in mouse visual cortex in vitro. Eur J Pharmacol 709:64–71

    CAS  PubMed  Google Scholar 

  • Martin-Aparicio E, Yamamoto A, Hernandez F et al (2001) Proteasomal-dependent aggregate reversal and absence of cell death in a conditional mouse model of Huntington’s disease. J Neurosci 21:8772–8781

    CAS  PubMed  Google Scholar 

  • Martire A, Ferrante A, Potenza RL et al (2010) Remodeling of striatal NMDA receptors by chronic A(2A) receptor blockade in Huntington’s disease mice. Neurobiol Dis 37:99–105

    CAS  PubMed  Google Scholar 

  • Martire A, Pepponi R, Domenici MR et al (2013) BDNF prevents NMDA-induced toxicity in models of Huntington’s disease: the effects are genotype specific and adenosine A(2A) receptor is involved. J Neurochem doi:10.1111/jnc.12177

  • Massa SM, Yang T, Xie Y et al (2010) Small molecule BDNF mimetics activate TrkB signaling and prevent neuronal degeneration in rodents. J Clin Invest 120:1774–1785

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mazarei G, Budac DP, Lu G et al (2013) Age-dependent alterations of the kynurenine pathway in the YAC128 mouse model of Huntington disease. J Neurochem doi: 10.1111/jnc.12350

    Google Scholar 

  • McFarland KN, Das S, Sun TT et al (2012) Genome-wide histone acetylation is altered in a transgenic mouse model of Huntington’s disease. PLoS One 7:e41423

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mehvar R, Jamali F, Watson MW et al (1987) Pharmacokinetics of tetrabenazine and its major metabolite in man and rat: Bioavailability and dose dependency studies. Drug Metab Dispos 15:250–255

    CAS  PubMed  Google Scholar 

  • Menalled LB, Patry M, Ragland N et al (2010) Comprehensive behavioral testing in the R6/2 mouse model of Huntington’s disease shows no benefit from CoQ10 or minocycline. PLoS One 5:e9793

    PubMed Central  PubMed  Google Scholar 

  • Mielcarek M, Benn CL, Franklin SA et al (2011) SAHA decreases HDAC 2 and 4 levels in vivo and improves molecular phenotypes in the R6/2 mouse model of Huntington’s disease. PLoS One 6:e27746

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mievis S, Blum D, Ledent C (2011) Worsening of Huntington disease phenotype in CB1 receptor knockout mice. Neurobiol Dis 42:524–529

    CAS  PubMed  Google Scholar 

  • Miller JP, Hughes RE (2011) Protein interactions and target discovery in Huntington’s disease. In: Lo DC, Hughes RE (eds) Neurobiology of Huntington’s disease. Applications to drug discovery. CRC, Boca Raton

    Google Scholar 

  • Miller BR, Dorner JL, Bunner KD et al (2012) Up-regulation of GLT1 reverses the deficit in cortically evoked striatal ascorbate efflux in the R6/2 mouse model of Huntington’s disease. J Neurochem 121:629–638

    PubMed Central  CAS  PubMed  Google Scholar 

  • Milnerwood AJ, Kaufman AM, Sepers MD et al (2012) Mitigation of augmented extrasynaptic NMDAR signaling and apoptosis in cortico-striatal co-cultures from Huntington’s disease mice. Neurobiol Dis 48:40–51

    CAS  PubMed  Google Scholar 

  • Mishra R, Hoop CL, Kodali R et al (2012) Serine phosphorylation suppresses huntingtin amyloid accumulation by altering protein aggregation properties. J Mol Biol 424:1–14

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mitchell CJ, Ballantine SP, Coe DM et al (2010) Pyrazolopyridines as potent PDE4B inhibitors: 5-heterocycle SAR. Bioorg Med Chem Lett 20:5803–5806

    CAS  PubMed  Google Scholar 

  • Miyake N, Skinbjerg M, Easwaramoorthy B et al (2011) Imaging changes in glutamate transmission in vivo with the metabotropic glutamate receptor 5 tracer [11C] ABP688 and N-acetylcysteine challenge. Biol Psychiatry 69:822–824

    CAS  PubMed  Google Scholar 

  • Mizuno Y, Hasegawa K, Kondo T et al (2010) Clinical efficacy of istradefylline (KW-6002) in Parkinson’s disease: a randomized, controlled study. Mov Disord 25:1437–1443

    PubMed  Google Scholar 

  • Mochel F, Haller RG (2011) Energy deficit in Huntington disease: why it matters. J Clin Invest 121:493–499

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mochel F, Duteil S, Marelli C et al (2010) Dietary anaplerotic therapy improves peripheral tissue energy metabolism in patients with Huntington’s disease. Eur J Hum Genet 18:1057–1060

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mochel F, Durant B, Meng X et al (2012) Early alterations of brain cellular energy homeostasis in Huntington disease models. J Biol Chem 287:1361–1370

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mok MH, Fricker AC, Weil A et al (2009) Electrophysiological characterisation of the actions of kynurenic acid at ligand-gated ion channels. Neuropharmacology 57:242–249

    CAS  PubMed  Google Scholar 

  • Moro E, Lang AE, Strafella AP et al (2004) Bilateral globus pallidus stimulation for Huntington’s disease. Ann Neurol 56:290–294

    PubMed  Google Scholar 

  • Moumne L, Campbell K, Howland D et al (2012) Genetic knock-down of HDAC3 does not modify disease-related phenotypes in a mouse model of Huntington’s disease. PLoS One 7:e31080

    PubMed Central  CAS  PubMed  Google Scholar 

  • Munoz-Sanjuan I, Bates GP (2011) The importance of integrating basic and clinical research toward the development of new therapies for Huntington disease. J Clin Invest 121:476–483

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nagakura A, Niimura M, Takeo S (2002) Effects of a phosphodiesterase IV inhibitor rolipram on microsphere embolism-induced defects in memory function and cerebral cyclic AMP signal transduction system in rats. Br J Pharmacol 135:1783–1793

    PubMed Central  CAS  PubMed  Google Scholar 

  • Naganuma K, Omura A, Maekawara N et al (2009) Discovery of selective PDE4B inhibitors. Bioorg Med Chem Lett 19:3174–3176

    CAS  PubMed  Google Scholar 

  • Nin V, Escande C, Chini CC et al (2012) Role of deleted in breast cancer 1 (DBC1) protein in SIRT1 deacetylase activation induced by protein kinase A and AMP-activated protein kinase. J Biol Chem 287:23489–23501

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nishi A, Watanabe Y, Higashi H et al (2005) Glutamate regulation of DARPP-32 phosphorylation in neostriatal neurons involves activation of multiple signaling cascades. Proc Natl Acad Sci U S A 102:1199–1204

    PubMed Central  CAS  PubMed  Google Scholar 

  • Obrietan K (2004) CRE-mediated transcription is increased in Huntington’s disease transgenic mice. J Neurosci 24:791–796

    CAS  PubMed  Google Scholar 

  • Okuda S, Nishiyama N, Saito H et al (1998) 3-Hydroxykynurenine, an endogenous oxidative stress generator, causes neuronal cell death with apoptotic features and region selectivity. J Neurochem 70:299–307

    CAS  PubMed  Google Scholar 

  • O’Leary PD, Hughes RA (2003) Design of potent peptide mimetics of brain-derived neurotrophic factor. J Biol Chem 278:25738–25744

    PubMed  Google Scholar 

  • Orru M, Zanoveli JM, Quiroz C et al (2011a) Functional changes in postsynaptic adenosine A(2A) receptors during early stages of a rat model of Huntington disease. Exp Neurol 232:76–80

    PubMed Central  CAS  PubMed  Google Scholar 

  • Orru M, Bakesova J, Brugarolas M et al (2011b) Striatal pre- and postsynaptic profile of adenosine A(2A) receptor antagonists. PLoS One 6:e16088

    PubMed Central  CAS  PubMed  Google Scholar 

  • Paleacu D (2007) Tetrabenazine in the treatment of Huntington’s disease. Neuropsychiatr Dis Treat 3:545–551

    PubMed Central  CAS  PubMed  Google Scholar 

  • Perreault M, Feng G, Will S et al (2013) Activation of TrkB with TAM-163 results in opposite effects on body weight in rodents and non-human primates. PLoS One 8:e62616

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pettibone DJ, Totaro JA, Pflueger AB (1984a) Tetrabenazine-induced depletion of brain monoamines: characterization and interaction with selected antidepressants. Eur J Pharmacol 102:425–430

    CAS  PubMed  Google Scholar 

  • Pettibone DJ, Pflueger AB, Totaro JA (1984b) Tetrabenazine-induced depletion of brain monoamines: mechanism by which desmethylimipramine protects cortical norepinephrine. Eur J Pharmacol 102:431–436

    CAS  PubMed  Google Scholar 

  • Pisani A, Bernardi G, Ding J et al (2007) Re-emergence of striatal cholinergic interneurons in movement disorders. Trends Neurosci 30:545–553

    CAS  PubMed  Google Scholar 

  • Pocivavsek A, Wu HQ, Potter MC et al (2011) Fluctuations in endogenous kynurenic acid control hippocampal glutamate and memory. Neuropsychopharmacology 36:2357–2367

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ponten H, Kullingsjo J, Lagerkvist S et al (2010) In vivo pharmacology of the dopaminergic stabilizer pridopidine. Eur J Pharmacol 644:88–95

    CAS  PubMed  Google Scholar 

  • Popoli P, Blum D, Domenici MR et al (2008) A critical evaluation of adenosine A2A receptors as potentially druggable targets in Huntington’s disease. Curr Pharm Des 14:1500–1511

    CAS  PubMed  Google Scholar 

  • Puri BK, Bydder GM, Counsell SJ et al (2002) MRI and neuropsychological improvement in Huntington disease following ethyl-EPA treatment. Neuroreport 13:123–126

    PubMed  Google Scholar 

  • Puri BK, Leavitt BR, Hayden MR et al (2005) Ethyl-EPA in Huntington disease: a double-blind, randomized, placebo-controlled trial. Neurology 65:286–292

    CAS  PubMed  Google Scholar 

  • Qin ZH, Wang Y, Sapp E et al (2004) Huntingtin bodies sequester vesicle-associated proteins by a polyproline-dependent interaction. J Neurosci 24:269–281

    CAS  PubMed  Google Scholar 

  • Quinti L, Chopra V, Rotili D et al (2010) Evaluation of histone deacetylases as drug targets in Huntington’s disease models: study of HDACs in brain tissues from R6/2 and CAG140 knock-in HD mouse models and human patients and in a neuronal HD cell model. PLoS Curr 2: pii:RRN1172

    Google Scholar 

  • Raynes R, Pombier KM, Nguyen K et al (2013) The SIRT1 modulators AROS and DBC1 regulate HSF1 activity and the heat shock response. PLoS One 8:e54364

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reiner A, Dragatsis I, Zeitlin S et al (2003) Wild-type huntingtin plays a role in brain development and neuronal survival. Mol Neurobiol 28:259–276

    CAS  PubMed  Google Scholar 

  • Reiner A, Lafferty DC, Wang HB et al (2012) The group 2 metabotropic glutamate receptor agonist LY379268 rescues neuronal, neurochemical and motor abnormalities in R6/2 Huntington’s disease mice. Neurobiol Dis 47:75–91

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reynolds NC, Prost RW, Mark LP et al (2008) MR-spectroscopic findings in juvenile-onset Huntington’s disease. Mov Disord 23:1931–1935

    PubMed  Google Scholar 

  • Ribeiro FM, Paquet M, Ferreira LT et al (2010) Metabotropic glutamate receptor-mediated cell signaling pathways are altered in a mouse model of Huntington’s disease. J Neurosci 30:316–324

    CAS  PubMed  Google Scholar 

  • Richfield EK, Herkenham M (1994) Selective vulnerability in Huntington’s disease: preferential loss of cannabinoid receptors in lateral globus pallidus. Ann Neurol 36:577–584

    CAS  PubMed  Google Scholar 

  • Roberts MS, McLean S, Millingen KS et al (1986) The pharmacokinetics of tetrabenazine and its hydroxy metabolite in patients treated for involuntary movement disorders. Eur J Clin Pharmacol 29:703–708

    CAS  PubMed  Google Scholar 

  • Robichaud A, Tattersall FD, Choudhury I et al (1999) Emesis induced by inhibitors of type IV cyclic nucleotide phosphodiesterase (PDE IV) in the ferret. Neuropharmacology 38:289–297

    CAS  PubMed  Google Scholar 

  • Robichaud A, Savoie C, Stamatiou PB et al (2002) Assessing the emetic potential of PDE4 inhibitors in rats. Br J Pharmacol 135:113–118

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rodefer JS, Saland SK, Eckrich SJ (2012) Selective phosphodiesterase inhibitors improve performance on the ED/ID cognitive task in rats. Neuropharmacology 62(3):1182-1190

    Google Scholar 

  • Rose GM, Hopper A, De Vivo M et al (2005) Phosphodiesterase inhibitors for cognitive enhancement. Curr Pharm Des 11:3329–3334

    CAS  PubMed  Google Scholar 

  • Ross CA, Tabrizi SJ (2011) Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol 10:83–98

    CAS  PubMed  Google Scholar 

  • Rung JP, Rung E, Helgeson L et al (2008) Effects of (-)-OSU6162 and ACR16 on motor activity in rats, indicating a unique mechanism of dopaminergic stabilization. J Neural Transm 115:899–908

    CAS  PubMed  Google Scholar 

  • Rutten K, Prickaerts J, Blokland A (2006) Rolipram reverses scopolamine-induced and time-dependent memory deficits in object recognition by different mechanisms of action. Neurobiol Learn Mem 85:132–138

    CAS  PubMed  Google Scholar 

  • Rutten K, Lieben C, Smits L et al (2007a) The PDE4 inhibitor rolipram reverses object memory impairment induced by acute tryptophan depletion in the rat. Psychopharmacology (Berl) 192:275–282

    CAS  Google Scholar 

  • Rutten K, Prickaerts J, Hendrix M et al (2007b) Time-dependent involvement of cAMP and cGMP in consolidation of object memory: studies using selective phosphodiesterase type 2, 4 and 5 inhibitors. Eur J Pharmacol 558:107–112

    CAS  PubMed  Google Scholar 

  • Rutten K, Basile JL, Prickaerts J et al (2008) Selective PDE inhibitors rolipram and sildenafil improve object retrieval performance in adult cynomolgus macaques. Psychopharmacology (Berl) 196:643–648

    CAS  Google Scholar 

  • Sadri-Vakili G, Bouzou B, Benn CL et al (2007) Histones associated with downregulated genes are hypo-acetylated in Huntington’s disease models. Hum Mol Genet 16:1293–1306

    CAS  PubMed  Google Scholar 

  • Sah DW, Aronin N (2011) Oligonucleotide therapeutic approaches for Huntington disease. J Clin Invest 121:500–507

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sanberg PR, Fibiger HC, Mark RF (1981) Body weight and dietary factors in Huntington’s disease patients compared with matched controls. Med J Aust 1:407–409

    CAS  PubMed  Google Scholar 

  • Sapko MT, Guidetti P, Yu P et al (2006) Endogenous kynurenate controls the vulnerability of striatal neurons to quinolinate: Implications for Huntington’s disease. Exp Neurol 197:31–40

    CAS  PubMed  Google Scholar 

  • Sari Y, Prieto AL, Barton SJ et al (2010) Ceftriaxone-induced up-regulation of cortical and striatal GLT1 in the R6/2 model of Huntington’s disease. J Biomed Sci 17:62

    PubMed Central  PubMed  Google Scholar 

  • Sathasivam K, Lane A, Legleiter J et al (2010) Identical oligomeric and fibrillar structures captured from the brains of R6/2 and knock-in mouse models of Huntington’s disease. Hum Mol Genet 19:65–78

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sathasivam K, Neueder A, Gipson TA et al (2013) Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington disease. Proc Natl Acad Sci U S A 110:2366–2370

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sathyasaikumar KV, Stachowski EK, Amori L et al (2010) Dysfunctional kynurenine pathway metabolism in the R6/2 mouse model of Huntington’s disease. J Neurochem 113:1416–1425

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schiefer J, Sprunken A, Puls C et al (2004) The metabotropic glutamate receptor 5 antagonist MPEP and the mGluR2 agonist LY379268 modify disease progression in a transgenic mouse model of Huntington’s disease. Brain Res 1019:246–254

    CAS  PubMed  Google Scholar 

  • Schmidt CJ, Chapin DS, Cianfrogna J et al (2008) Preclinical characterization of selective phosphodiesterase 10A inhibitors: a new therapeutic approach to the treatment of schizophrenia. J Pharmacol Exp Ther 325:681–690

    CAS  PubMed  Google Scholar 

  • Schwarcz R, Bruno JP, Muchowski PJ et al (2012) Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci 13:465–477

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sebastian C, Satterstrom FK, Haigis MC et al (2012) From sirtuin biology to human diseases: an update. J Biol Chem 287:42444–42452

    PubMed Central  CAS  PubMed  Google Scholar 

  • Seeger T (2003) Immunohistochemical localization of PDE10A in the rat brain. Brain Res 985:113–126

    CAS  PubMed  Google Scholar 

  • Seong IS, Ivanova E, Lee JM et al (2005) HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism. Hum Mol Genet 14:2871–2880

    CAS  PubMed  Google Scholar 

  • Shin BH, Lim Y, Oh HJ et al (2013) Pharmacological activation of Sirt1 Ameliorates Polyglutamine-induced toxicity through the regulation of autophagy. PLoS One 8:e64953

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shirasaki DI, Greiner ER, Al-Ramahi I et al (2012) Network organization of the huntingtin proteomic interactome in mammalian brain. Neuron 75:41–57

    PubMed Central  CAS  PubMed  Google Scholar 

  • Skaper SD, Di Marzo V (2012) Endocannabinoids in nervous system health and disease: the big picture in a nutshell. Philos Trans R Soc Lond B Biol Sci 367:3193–3200

    PubMed Central  CAS  PubMed  Google Scholar 

  • Soldati C, Bithell A, Conforti P et al (2011) Rescue of gene expression by modified REST decoy oligonucleotides in a cellular model of Huntington’s disease. J Neurochem 116:415–425

    CAS  PubMed  Google Scholar 

  • Sotty F, Montezinho LP, Steiniger-Brach B et al (2009) Phosphodiesterase 10A inhibition modulates the sensitivity of the mesolimbic dopaminergic system to d-amphetamine: involvement of the D1-regulated feedback control of midbrain dopamine neurons. J Neurochem 109:766–775

    CAS  PubMed  Google Scholar 

  • Spina D (2008) PDE4 inhibitors: current status. Br J Pharmacol 155:308–315

    PubMed Central  CAS  PubMed  Google Scholar 

  • Squitieri F, Landwehrmeyer B, Reilmann R et al (2013) One-year safety and tolerability profile of pridopidine in patients with Huntington disease. Neurology 80:1086–1094

    CAS  PubMed  Google Scholar 

  • Steffan JS, Bodai L, Pallos J et al (2001) Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413:739–743

    CAS  PubMed  Google Scholar 

  • Stiles DK, Zhang Z, Ge P et al (2012) Widespread suppression of huntingtin with convection-enhanced delivery of siRNA. Exp Neurol 233:463–471

    CAS  PubMed  Google Scholar 

  • Stone TW, Darlington LG (2002) Endogenous kynurenines as targets for drug discovery and development. Nat Rev Drug Discov 1:609–620

    CAS  PubMed  Google Scholar 

  • Sugars KL (2003) Decreased cAMP Response Element-mediated Transcription: an early event in exon 1 and full-length cell models of Huntington’s disease that contributes to polyglutamine pathogenesis. J Biol Chem 279:4988–4999

    PubMed  Google Scholar 

  • Switonski PM, Szlachcic WJ, Gabka A et al (2012) Mouse models of polyglutamine diseases in therapeutic approaches: review and data table. Part II. Mol Neurobiol 46:430–466

    CAS  Google Scholar 

  • Tabrizi SJ, Blamire AM, Manners DN et al (2003) Creatine therapy for Huntington’s disease: clinical and MRS findings in a 1-year pilot study. Neurology 61:141–142

    CAS  PubMed  Google Scholar 

  • Tam S, Spiess C, Auyeung W et al (2009) The chaperonin TRiC blocks a huntingtin sequence element that promotes the conformational switch to aggregation. Nat Struct Mol Biol 16:1279–1285

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tang JK, Moro E, Lozano AM et al (2005) Firing rates of pallidal neurons are similar in Huntington’s and Parkinson’s disease patients. Exp Brain Res 166:230–236

    PubMed  Google Scholar 

  • Tang B, Seredenina T, Coppola G et al (2011) Gene expression profiling of R6/2 transgenic mice with different CAG repeat lengths reveals genes associated with disease onset and progression in Huntington’s disease. Neurobiol Dis 42:459–467

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tarditi A, Camurri A, Varani K et al (2006) Early and transient alteration of adenosine A2A receptor signaling in a mouse model of Huntington disease. Neurobiol Dis 23:44–53

    CAS  PubMed  Google Scholar 

  • Temel Y, Cao C, Vlamings R et al (2006) Motor and cognitive improvement by deep brain stimulation in a transgenic rat model of Huntington’s disease. Neurosci Lett 406:138–141

    CAS  PubMed  Google Scholar 

  • Thakur AK, Jayaraman M, Mishra R et al (2009) Polyglutamine disruption of the huntingtin exon 1 N terminus triggers a complex aggregation mechanism. Nat Struct Mol Biol 16:380–389

    PubMed Central  CAS  PubMed  Google Scholar 

  • The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983

    Google Scholar 

  • Thomas EA, Coppola G, Desplats PA et al (2008) The HDAC inhibitor 4b ameliorates the disease phenotype and transcriptional abnormalities in Huntington’s disease transgenic mice. Proc Natl Acad Sci U S A 105:15564–15569

    PubMed Central  CAS  PubMed  Google Scholar 

  • Threlfell S, Sammut S, Menniti FS et al (2008) Inhibition of phosphodiesterase 10A increases the responsiveness of striatal projection neurons to cortical stimulation. J Pharmacol Exp Ther 328:785–795

    PubMed Central  PubMed  Google Scholar 

  • Threlfell S, Sammut S, Menniti FS et al (2009) Inhibition of phosphodiesterase 10A increases the responsiveness of striatal projection neurons to cortical stimulation. J Pharmacol Exp Ther 328:785–795

    PubMed Central  CAS  PubMed  Google Scholar 

  • Trevino RS, Lauckner JE, Sourigues Y et al (2012) Fibrillar structure and charge determine the interaction of polyglutamine protein aggregates with the cell surface. J Biol Chem 287:29722–29728

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tsao D, Thomsen HK, Chou J et al (2008) TrkB agonists ameliorate obesity and associated metabolic conditions in mice. Endocrinol 149:1038–1048

    CAS  Google Scholar 

  • van den Bogaard SJ, Dumas EM, Teeuwisse WM et al (2011) Exploratory 7-Tesla magnetic resonance spectroscopy in Huntington’s disease provides in vivo evidence for impaired energy metabolism. J Neurol 258:2230–2239

    PubMed Central  PubMed  Google Scholar 

  • Van Laere K, Casteels C, Dhollander I et al (2010) Widespread decrease of type 1 cannabinoid receptor availability in Huntington disease in vivo. J Nucl Med 51:1413–1417

    PubMed  Google Scholar 

  • Van Raamsdonk JM, Pearson J, Rogers DA et al (2005) Ethyl-EPA treatment improves motor dysfunction, but not neurodegeneration in the YAC128 mouse model of Huntington disease. Exp Neurol 196:266–272

    PubMed  Google Scholar 

  • Vanevski F, Xu B (2013) Molecular and neural bases underlying roles of BDNF in the control of body weight. Front Neurosci 7:37

    PubMed Central  PubMed  Google Scholar 

  • Vecsei L, Szalardy L, Fulop F et al (2013) Kynurenines in the CNS: recent advances and new questions. Nat Rev Drug Discov 12:64–82

    CAS  PubMed  Google Scholar 

  • Velez-Lago FM, Thompson A, Oyama G et al (2013) Differential and better response to deep brain stimulation of chorea compared to dystonia in Huntington’s Disease. Stereotact Funct Neurosurg 91:129–133

    PubMed  Google Scholar 

  • Venuto CS, McGarry A, Ma Q et al (2012) Pharmacologic approaches to the treatment of Huntington’s disease. Mov Disord 27:31–41

    CAS  PubMed  Google Scholar 

  • Verbessem P, Lemiere J, Eijnde BO et al (2003) Creatine supplementation in Huntington’s disease: a placebo-controlled pilot trial. Neurology 61:925–930

    CAS  PubMed  Google Scholar 

  • Vlamings R, Benazzouz A, Chetrit J et al (2012) Metabolic and electrophysiological changes in the basal ganglia of transgenic Huntington’s disease rats. Neurobiol Dis 48:488–494

    PubMed  Google Scholar 

  • Vonsattel JP, DiFiglia M (1998) Huntington disease. J Neuropathol Exp Neurol 57:369–384

    CAS  PubMed  Google Scholar 

  • Wang ZM, Lashuel HA (2013) Discovery of a novel aggregation domain in the huntingtin protein: implications for the mechanisms of Htt aggregation and toxicity. Angew Chem Int Ed Engl 52:562–567

    CAS  PubMed  Google Scholar 

  • Wang H, Peng MS, Chen Y et al (2007) Structures of the four subfamilies of phosphodiesterase-4 provide insight into the selectivity of their inhibitors. Biochem J 408:193–201

    PubMed Central  CAS  PubMed  Google Scholar 

  • Waterhouse EG, Xu B (2013) The skinny on brain-derived neurotrophic factor: evidence from animal models to GWAS. J Mol Med (Berl) 91(11):1241–1247. doi:10.1007/s00109-013-1071-8. Epub 2013 Jul 5

    Google Scholar 

  • Weiss A, Trager U, Wild EJ et al (2012) Mutant huntingtin fragmentation in immune cells tracks Huntington’s disease progression. J Clin Invest 122:3731–3736

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wen YD, Perissi V, Staszewski LM et al (2000) The histone deacetylase-3 complex contains nuclear receptor corepressors. Proc Natl Acad Sci U S A 97:7202–7207

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wexler NS, Lorimer J, Porter J et al (2004) Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington’s disease age of onset. Proc Natl Acad Sci U S A 101:3498–3503

    PubMed Central  CAS  PubMed  Google Scholar 

  • Weydt P, Pineda VV, Torrence AE et al (2006) Thermoregulatory and metabolic defects in Huntington’s disease transgenic mice implicate PGC-1alpha in Huntington’s disease neurodegeneration. Cell Metab 4:349–362

    CAS  PubMed  Google Scholar 

  • Woda JM, Calzonetti T, Hilditch-Maguire P et al (2005) Inactivation of the Huntington’s disease gene (Hdh) impairs anterior streak formation and early patterning of the mouse embryo. BMC Dev Biol 5:17

    PubMed Central  PubMed  Google Scholar 

  • Wolf RC, Thomann PA, Thomann AK et al (2013) Brain structure in preclinical Huntington’s disease: a multi-method approach. Neurodegener Dis 12(1):13–22

    Google Scholar 

  • Wright HH, Still CN, Abramson RK (1981) Huntington’s disease in black kindreds in South Carolina. Arch Neurol 38:412–414

    CAS  PubMed  Google Scholar 

  • Xie Y, Hayden MR, Xu B (2010) BDNF overexpression in the forebrain rescues Huntington’s disease phenotypes in YAC128 mice. J Neurosci 30:14708–14718

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yamamoto A, Lucas JJ, Hen R (2000) Reversal of neuropathology and motor dysfunction in a conditional model of Huntington’s disease. Cell 101:57–66

    CAS  PubMed  Google Scholar 

  • Yang L, Calingasan NY, Wille EJ et al (2009) Combination therapy with coenzyme Q10 and creatine produces additive neuroprotective effects in models of Parkinson’s and Huntington’s diseases. J Neurochem 109:1427–1439

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zala D, Colin E, Rangone H et al (2008) Phosphorylation of mutant huntingtin at S421 restores anterograde and retrograde transport in neurons. Hum Mol Genet 17:3837–3846

    CAS  PubMed  Google Scholar 

  • Zhang HT, Huang Y, Masood A et al (2008) Anxiogenic-like behavioral phenotype of mice deficient in phosphodiesterase 4B (PDE4B). Neuropsychopharmacol 33:1611–1623

    CAS  Google Scholar 

  • Zhang SF, Hennessey T, Yang L et al (2011) Impaired brain creatine kinase activity in Huntington’s disease. Neurodegener Dis 8:194–201

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao W, Kruse JP, Tang Y et al (2008) Negative regulation of the deacetylase SIRT1 by DBC1. Nature 451:587–590

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zuccato C, Valenza M, Cattaneo E (2010) Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiol Rev 90:905–981

    CAS  PubMed  Google Scholar 

  • Zuccato C, Marullo M, Vitali B et al (2011) Brain-derived neurotrophic factor in patients with Huntington’s disease. PLoS One 6:e22966

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zwilling D, Huang SY, Sathyasaikumar KV et al (2011) Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell 145:863–874

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Munoz-Sanjuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mrzljak, L., Munoz-Sanjuan, I. (2013). Therapeutic Strategies for Huntington’s Disease. In: Nguyen, H., Cenci, M. (eds) Behavioral Neurobiology of Huntington's Disease and Parkinson's Disease. Current Topics in Behavioral Neurosciences, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2013_250

Download citation

Publish with us

Policies and ethics