Skip to main content

Learning and Motivational Processes Contributing to Pavlovian–Instrumental Transfer and Their Neural Bases: Dopamine and Beyond

  • Chapter
  • First Online:
Behavioral Neuroscience of Motivation

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 27))

Abstract

Pavlovian stimuli exert a range of effects on behavior from simple conditioned reflexes, such as salivation, to altering the vigor and direction of instrumental actions. It is currently accepted that these distinct behavioral effects stem from two sources (i) the various associative connections between predictive stimuli and the component features of the events that these stimuli predict and (ii) the distinct motivational and cognitive functions served by cues, particularly their arousing and informational effects on the selection and performance of specific actions. Here, we describe studies that have assessed these latter phenomena using a paradigm that has come to be called Pavlovian–instrumental transfer. We focus first on behavioral experiments that have described distinct sources of stimulus control derived from the general affective and outcome-specific predictions of conditioned stimuli, referred to as general transfer and specific transfer, respectively. Subsequently, we describe research efforts attempting to establish the neural bases of these transfer effects, largely in the afferent and efferent connections of the nucleus accumbens (NAc) core and shell. Finally, we examine the role of predictive cues in examples of aberrant stimulus control associated with psychiatric disorders and addiction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Apicella P (2007) Leading tonically active neurons of the striatum from reward detection to context recognition. Trends Neurosci 30:299–306

    Article  CAS  PubMed  Google Scholar 

  • Balleine BW (1994) Asymmetrical interactions between thirst and hunger in Pavlovian-instrumental transfer. Q J Exp Psychol B 47:211–231

    CAS  PubMed  Google Scholar 

  • Balleine BW, Morris RW, Leung BK (2015) Thalamocortical integration of instrumental learning and performance and their disintegration in addiction. Brain Res (Epub ahead of print)

    Google Scholar 

  • Baxter DJ, Zamble E (1982) Reinforcer and response specificity in appetitive transfer of control. Anim Learn Behav 10:201–210

    Article  Google Scholar 

  • Beck A, Wustenberg T, Genauck A, Wrase J, Schlagenhauf F, Smolka et al (2012) Effect of brain structure, brain function, and brain connectivity on relapse in alcohol-dependent patients. Arch Gen Psychiatry 69:842–852

    Article  PubMed  Google Scholar 

  • Berridge KC (2007) The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology 191:391–431

    Article  CAS  PubMed  Google Scholar 

  • Bertran-Gonzalez J, Laurent V, Chieng BC, Christie MJ, Balleine BW (2013) Learning-related translocation of δ-opioid receptors on ventral striatal cholinergic interneurons mediates choice between goal-directed actions. J Neurosci 33:16060–16071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bindra D (1974) A motivational view of learning, performance, and behaviour modification. Psychol Rev 81:199–213

    Article  CAS  PubMed  Google Scholar 

  • Bindra D (1978) How adaptive behavior is produced: a perceptual motivational alternative to response-reinforcement. Behav Brain Sci 1:41–91

    Article  Google Scholar 

  • Blundell P, Hall G, Killcross S (2001) Lesions of the basolateral amygdala disrupt selective aspects of reinforcer representation in rats. J Neurosci 21(22):9018–9026

    Google Scholar 

  • Brown P (2007) Abnormal oscillatory synchronisation in the motor system leads to impaired movement. Curr Opin Neurobiol 17:656–664

    Article  CAS  PubMed  Google Scholar 

  • Brown MT, Tan KR, O’Connor EC, Nikonenko I, Muller D, Lüscher C (2012) Ventral tegmental area GABA projections pause accumbal cholinergic interneurons to enhance associative learning. Nature 492:452–456

    Article  CAS  PubMed  Google Scholar 

  • Campese V, McCue M, Lázaro-Muñoz G, Ledoux JE, Cain CK (2013) Development of an aversive Pavlovian-to-instrumental transfer task in rat. Front Behav Neurosci 7:176

    Article  PubMed  PubMed Central  Google Scholar 

  • Colwill RM, Rescorla RA (1990) Effect of reinforcer devaluation on discriminative control of instrumental behavior. J Exp Psychol Anim Behav Process 16(1):40

    Google Scholar 

  • Colwill RM, Motzkin DK (1994) Encoding of the unconditioned stimulus in Pavlovian conditioning. Anim Learn Behav 22:384–394

    Article  Google Scholar 

  • Corbit LH, Balleine BW (2005) Double dissociation of basolateral and central amygdala lesions on the general and outcome-specific forms of Pavlovian-instrumental transfer. J Neurosci 25:962–970

    Article  CAS  PubMed  Google Scholar 

  • Corbit LH, Balleine BW (2011) The general and outcome-specific forms of Pavlovian-instrumental transfer are differentially mediated by the nucleus accumbens core and shell. J Neurosci 31:11786–11794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corbit LH, Chieng BC, Balleine BW (2014) Effects of repeated cocaine exposure on habit learning and reversal by N-acetylcysteine. Neuropsychopharmacology 39:1893–1901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corbit LH, Janak PH (2007a) Inactivation of the lateral but not medial dorsal striatum eliminates the excitatory impact of Pavlovian stimuli on instrumental responding. J Neurosci 27:13977–13981

    Article  CAS  PubMed  Google Scholar 

  • Corbit LH, Janak PH (2007b) Ethanol-associated cues produce general Pavlovian-instrumental transfer. Alcohol Clin Exp Res 31:766–774

    Article  CAS  PubMed  Google Scholar 

  • Corbit LH, Janak PH (2010) Posterior dorsomedial striatum is critical for both selective instrumental and Pavlovian reward learning. Eur J Neurosci 31:1312–1321

    Article  PubMed  PubMed Central  Google Scholar 

  • Corbit LH, Janak PH, Balleine BW (2007) General and outcome-specific forms of Pavlovian-instrumental transfer: the effect of shifts in motivational state and inactivation of the ventral tegmental area. Eur J Neurosci 26:3141–3149

    Article  PubMed  Google Scholar 

  • Corbit LH, Muir JL, Balleine BW (2001) The role of the nucleus accumbens in instrumental conditioning: evidence for a functional dissociation between core and shell. J Neurosci 21:3251–3260

    CAS  PubMed  Google Scholar 

  • Corbit LH, Muir JL, Balleine BW (2003) Lesions of mediodorsal thalamus and anterior thalamic nuclei produce dissociable effects on instrumental conditioning in rats. Eur J Neurosci 18:1286–1294

    Article  PubMed  Google Scholar 

  • Corbit LH, Nie H, Janak PH (2012) Habitual alcohol seeking: time course and the contribution of subregions of the dorsal striatum. Biol Psychiatry 72:389–395

    Article  PubMed  PubMed Central  Google Scholar 

  • Cui G, Jun SB, Jin X, Pham MD, Vogel SS, Lovinger DM, Costa RM (2013) Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494:238–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Borchgrave R, Rawlins JN, Dickinson A, Balleine BW (2002) Effects of cytotoxic nucleus accumbens lesions on instrumental conditioning in rats. Exp Brain Res 144:50–68

    Google Scholar 

  • Dias-Ferreira E, Sousa JC, Melo I, Morgado P, Mesquita AR, Cerqueira JJ, Costa RM, Sousa N (2009) Chronic stress causes frontostriatal reorganization and affects decision-making. Science 325:621–625

    Article  CAS  PubMed  Google Scholar 

  • Dickinson A (1980) Contemporary animal learning theory. Cambridge University Press, Cambridge

    Google Scholar 

  • Dickinson A (1985) Actions and habits—the development of behavioral autonomy. Philos Trans R Soc Lond Ser B Biol Sci 308:67–78

    Article  Google Scholar 

  • Dickinson A, Balleine BW (1994) Motivational control of goal-directed action. Anim learn Behav 22:1–18

    Article  Google Scholar 

  • Dickinson A, Balleine BW (2002) Steven’s handbook of experimental psychology: learning, motivation and emotion. In: Gallistel C (ed) The role of learning in the operation of motivational systems, vol 3. Wiley, New York, pp 497–534

    Google Scholar 

  • Dickinson A, Dawson GR (1987) Pavlovian processes in the motivational control of instrumental performance. Q J Exp Psychol Sect B Comp Physiol Psychol 39:201–213

    Google Scholar 

  • Dickinson A, Dearing MF (1979) Appetitive-aversive interactions and inhibitory processes. In: Dickinson A, Boakes RA (eds) Mechanism of learning and motivation. Lawrence Erlbaum Associates, Hillsdale, NJ, pp 203–231

    Google Scholar 

  • Dickinson A, Smith J, Mirenowicz J (2000) Dissociation of Pavlovian and instrumental incentive learning under dopamine antagonists. Behav Neurosci 114:468–83

    Google Scholar 

  • Ding JB, Guzman JN, Peterson JD, Goldberg JA, Surmeier DJ (2010) Thalamic gating of corticostriatal signaling by cholinergic interneurons. Neuron 67:294–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estes WK (1943) Discriminative conditioning I: a discriminative property of conditioned anticipation. J Exp Psychol 32:150–155

    Article  Google Scholar 

  • Fuchs RA, Branham RK, See RE (2006) Different neural substrates mediate cocaine seeking after abstinence versus extinction training: a critical role for the dorsolateral caudate-putamen. J Neurosci 26:3584–3588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furlong TM, Jayaweera HK, Balleine BW, Corbit LH (2014) Binge-like consumption of a palatable food accelerates habitual control of behavior and is dependent on activation of the dorsolateral striatum. J Neurosci 34:5012–5022

    Article  CAS  PubMed  Google Scholar 

  • Ganesan R, Pearce JM (1988) Effect of changing the unconditioned stimulus on appetitive blocking. J Exp Psychol Anim Behav Proc 14(3):280–291

    Google Scholar 

  • Garbusow M, Schad DJ, Sebold M, Friedel E, Bernhardt N, Koch SP et al (2015) Pavlovian-to-instrumental transfer effects in the nucleus accumbens relate to relapse in alcohol dependence. Addict Biol (Epub ahead of print)

    Google Scholar 

  • Garbusow M, Schad DJ, Sommer C, Jünger E, Sebold M, Friedel E, Wendt J, Kathmann N, Schlagenhauf F, Zimmermann US, Heinz A, Huys QJ, Rapp MA (2014) Pavlovian-to-instrumental transfer in alcohol dependence: a pilot study. Neuropsychobiology 70:111–121

    Article  CAS  PubMed  Google Scholar 

  • Geisler S, Marinelli M, Degarmo B, Becker ML, Freiman AJ, Beales M, Meredith GE, Zahm DS (2008) Prominent activation of brainstem and pallidal afferents of the ventral tegmental area by cocaine. Neuropsychopharmacology 33:2688–2700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerfen CR, Surmeier DJ (2011) Modulation of striatal projection systems by dopamine. Annu Rev Neurosci 34:441–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg JA, Ding JB, Surmeier DJ (2012) Muscarinic modulation of striatal function and circuitry. Handb Exp Pharmacol 208:223–241

    Article  CAS  PubMed  Google Scholar 

  • Hall J, Parkinson JA, Connor TM, Dickinson A, Everitt BJ (2001) Involvement of the central nucleus of the amygdala and nucleus accumbens core in mediating Pavlovian influences on instrumental behavior. Eur J Neurosci 13:1984–1992

    Article  CAS  PubMed  Google Scholar 

  • Heimer L, Zahm DS, Churchill L, Kalivas PW, Wohltmann C (1991) Specificity in the projection patterns of acumbal core and shell in the rat. Neuroscience 41:89–125

    Article  CAS  PubMed  Google Scholar 

  • Heinz A, Siessmeier T, Wrase J, Hermann D, Klein S, Grusser S, Flor H, Braus D, Buchholz HG, Grunder G, Schreckenberger M, Smolka M, Rosch F, Mann K, Bartenstein P (2004) Correlation between dopamine D2 receptors in the ventral striatum and central processing of alcohol cues and craving. Am J Psychiatry 161:1783–1789

    Article  PubMed  Google Scholar 

  • Holland PC (2004) Relations between Pavlovian-instrumental transfer and reinforcer devaluation. J Exp Psychol Anim Behav Process 30:104–117

    Article  PubMed  Google Scholar 

  • Holland PC, Gallagher M (2003) Double dissociation of the effects of lesion of basolateral and central amygdala on conditioned stimulus-potentiated feeding and Pavlovian-instrumental transfer. Eur J Neurosci 17:1680–1694

    Article  PubMed  Google Scholar 

  • Holland PC, Rescorla RA (1975) The effect of two ways of devaluing the unconditioned stimulus after first- and second-order appetitive conditioning. J Exp Psychol Anim Behav Process 1:355–363

    Article  Google Scholar 

  • Holmes NM, Marchand AR, Coutureau E (2010) Pavlovian to instrumental transfer: a neurobehavioural perspective. Neurosci Biobehav Rev 34:1277–1295

    Article  PubMed  Google Scholar 

  • Kalivas PW, Churchill L, Romanides A (1999) Involvement of the pallidal-thalamocortical circuit in adaptive behavior. Ann N Y Acad Sci 877:64–70

    Article  CAS  PubMed  Google Scholar 

  • Konorski J (1967) Integrative activity of the brain. University of Chicago Press, Chicago

    Google Scholar 

  • Kravitz AV, Tye LD, Kreitzer AC (2012) Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat Neurosci 15:816–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruse JM, Overmier JB, Konz WA, Rokke E (1983) Pavlovian conditioned stimulus effects upon instrumental choice behavior are reinforcer specific. Learn Motiv 14(2):165–181

    Google Scholar 

  • Laurent V, Leung B, Maidment N, Balleine BW (2012) Μu- and delta-opioid-related processes in the accumbens core and shell differentially mediate the influence of reward-guided and stimulus-guided decisions on choice. J Neurosci 32:1875–1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laurent V, Bertran-Gonzalez J, Chieng BC, Balleine BW (2014) Delta-opioid and dopaminergic processes in accumbens shell modulate the cholinergic control of predictive learning and choice. J Neurosci 34:1358–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laurent V, Wong FL, Balleine BW (2015) δ-opioid receptors in the accumbens shell mediate the influence of both excitatory and inhibitory predictions on choice. Br J Pharmacol 172:562–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeBlanc KH, Maidment NT, Ostlund SB (2013) Repeated cocaine exposure facilitates the expression of incentive motivation and induces habitual control in rats. PLoS One 8(4):e61355

    Google Scholar 

  • Leung BK, Balleine BW (2013) The ventral striato-pallidal pathway mediates the effect of predictive learning on choice between goal-directed actions. J Neurosci 33:13848–13860

    Article  CAS  PubMed  Google Scholar 

  • Leung BK, Balleine BW (2015) Ventral pallidal projections to mediodorsal thalamus and ventral tegmental area play distinct roles in outcome-specific Pavlovian-instrumental transfer. J Neurosci 35:4953–4964

    Article  CAS  PubMed  Google Scholar 

  • Lex A, Hauber W (2008) Dopamine D1 and D2 receptors in the nucleus accumbens core and shell mediate Pavlovian-instrumental transfer. Learn Mem. 15:483–491

    Article  PubMed  PubMed Central  Google Scholar 

  • Lovibond PF (1983) Facilitation of instrumental behavior by a Pavlovian appetitive conditioned stimulus. J Exp Psychol Anim Behav Process 9:225–247

    Article  CAS  PubMed  Google Scholar 

  • Lu XY, Ghasemzadeh MB, Kalivas PW (1998) Expression of D1 receptor, D2 receptor, substance P and enkephalin messenger RNAs in the neurons projecting from the nucleus accumbens. Neuroscience 82:767–780

    Article  CAS  PubMed  Google Scholar 

  • Mahler SV, Aston-Jones GS (2012) Fos activation of selective afferents to ventral tegmental area during cue-induced reinstatement of cocaine seeking in rats. J Neurosci 32:13026–13309

    Article  Google Scholar 

  • Mahler SV, Vazey EM, Beckley JT, Keistler CR, McGlinchey EM, Kaufling J, Wilson SP, Deisseroth K, Woodward JJ, Aston-Jones G (2014) Designer receptors show role for ventral pallidum input to ventral tegmental area in cocaine seeking. Nat Neurosci 17:577–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinovic J, Jones A, Christiansen P, Rose AK, Hogarth L, Field M (2014) Electrophysiological responses to alcohol cues are not associated with Pavlovian-to-instrumental transfer in social drinkers. PLoS One 9(4):e94605

    Google Scholar 

  • McAlonan GM, Robbins TW, Everitt BJ (1993) Effects of medial dorsal thalamic and ventral pallidal lesions on the acquisition of a conditioned place preference: further evidence for the involvement of the ventral striatopallidal system in reward-related processes. Neuroscience 52:605–620

    Article  CAS  PubMed  Google Scholar 

  • Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50:381–425

    Article  CAS  PubMed  Google Scholar 

  • Mogenson GJ, Jones DL, Yim CY (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14:69–97

    Article  CAS  PubMed  Google Scholar 

  • Morgado P, Silva M, Sousa N, Cerqueira JJ (2012) Stress transiently affects Pavlovian-to-instrumental transfer. Front Neurosci 6:93

    Google Scholar 

  • Mowrer OH (1960) Learning theory and behavior, Wiley, New York

    Google Scholar 

  • Nelson A, Killcross S (2006) Amphetamine exposure enhances habit formation. J Neurosci 26:3805–3812

    Article  CAS  PubMed  Google Scholar 

  • Murschall A, Hauber W (2006) Inactivation of the ventral tegmental area abolished the general excitatory influence of Pavlovian cues on instrumental performance. Learn Mem 13:123–126

    Article  CAS  PubMed  Google Scholar 

  • Ostlund SB, Balleine BW (2007) Instrumental reinstatement depends on sensory- and motivationally-specific features of the instrumental outcome. Learn Behav 35(1):43–52

    Article  PubMed  Google Scholar 

  • Ostlund SB, Balleine BW (2008) Differential involvement of the basolateral amygdala and mediodorsal thalamus in instrumental action selection. J Neurosci 28:4398–4405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostlund SB, Maidment NT (2012) Dopamine receptor blockade attenuates the general incentive motivational effects of noncontingently delivered rewards and reward-paired cues without affecting their ability to bias action selection. Neuropsychopharmacology 37:508–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Overmier JB, Lawry JA (1979) Pavlovian conditioning and the mediation of behavior. Psychology of Learning and Motivation 13:1–55

    Google Scholar 

  • Pavlov IP (1927) Conditioned reflexes. Oxford University Press, Oxford, UK

    Google Scholar 

  • Parnaudeau S, Taylor K, Bolkan SS, Ward RD, Balsam PD, Kellendonk C (2015) Mediodorsal thalamus hypofunction impairs flexible goal-directed behavior. Biol Psychiatry 77:445–453

    Article  PubMed  PubMed Central  Google Scholar 

  • Peciña S, Schulkin J, Berridge KC (2006) Nucleus accumbens corticotropin-releasing factor increases cue-triggered motivation for sucrose reward: paradoxical positive incentive effects in stress? BMC Biol 4:8

    Google Scholar 

  • Peciña S, Berridge KC (2013) Dopamine or opioid stimulation of nucleus accumbens similarly amplify cue‐triggered ‘wanting’ for reward: entire core and medial shell mapped as substrates for PIT enhancement. Eur J Neurosci 37(9):1529–1540

    Google Scholar 

  • Pielock SM, Lex B, Hauber W (2011) The role of dopamine in the dorsomedial striatum in general and outcome-selective Pavlovian-instrumental transfer. Eur J Neurosci 33:717–725

    Article  PubMed  Google Scholar 

  • Pool E, Brosch T, Delplanque S, Sander D (2015) Stress increases cue-triggered “wanting” for sweet reward in humans. J Exp Psychol Anim Learn Cogn 41:128–136

    Article  PubMed  Google Scholar 

  • Ray OS, Stein L (1959) Generalization of conditioned suppression. J Exp Anal Behav 2:357–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rescorla RA (1994) Transfer of instrumental control mediated by a devalued outcome. Anim Learn Behav 22:27–33

    Article  Google Scholar 

  • Rescorla RA, LoLordo VM (1965) Inhibition of avoidance behavior. J Comp Physiol Psychol 59:406–412

    Article  CAS  PubMed  Google Scholar 

  • Rescorla RA, Solomon RL (1967) Two-process learning theory: relationship between Pavlovian conditioning and instrumental learning. Psychol Rev 74:151–182

    Article  CAS  PubMed  Google Scholar 

  • Saddoris MP, Stamatakis A, Carelli RM (2011) Neural correlates of Pavlovian-to-instrumental transfer in the nucleus accumbens shell are selectively potentiated following cocaine self-administration. Eur J Neurosci 33:2274–2287

    Article  PubMed  Google Scholar 

  • Salamone JD, Correa M, Farrar A, Mingote SM (2007) Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology 191:461–482

    Article  CAS  PubMed  Google Scholar 

  • Scherrer G, Tryoen-Tóth P, Filliol D, Matifas A, Laustriat D, Cao YQ, Basbaum AI, Dierich A, Vonesh JL, Gavériaux-Ruff C, Kieffer BL (2006) Knockin mice expressing fluorescent delta-opioid receptors uncover G protein-coupled receptor dynamics in vivo. Proc Natl Acad Sci 103:9691–9696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwabe L, Wolf OT (2010) Socially evaluated cold pressor stress after instrumental learning favors habits over goal-directed action. Psychoneuroendocrinology. 35:977–986

    Article  PubMed  Google Scholar 

  • Schultz W (2006) Behavioral theories and the neurophysiology of reward. Annu Rev Psychol 2006(57):87–115

    Article  Google Scholar 

  • Shiflett MW (2012) The effects of amphetamine exposure on outcome-selective Pavlovian-instrumental transfer in rats. Psychopharmacology 223(3):361–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiflett MW, Balleine BW (2010) At the limbic-motor interface: disconnection of basolateral amygdala from nucleus accumbens core and shell reveals dissociable components of incentive motivation. Eur J Neurosci 32:1735–1743

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith RJ, Lobo MK, Spencer S, Kalivas PW (2013) Cocaine-induced adaptations in D1 and D2 accumbens projection neurons (a dichotomy not necessarily synonymous with direct and indirect pathways). Curr Opin Neurobiol 23:546–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soares-Cunha C, Coimbra B, Borges S, Carvalho MM, Rodrigues AJ, Sousa N (2014) The motivational drive to natural rewards is modulated by prenatal glucocorticoid exposure. Transl Psychiatry. 2014(4):e397

    Article  Google Scholar 

  • Solomon RL, Turner LH (1962) Discriminative classical conditioning in dogs paralyzed by curare can later control discriminative discriminative avoidance responses in the normal state. Psychol Rev 69:202–219

    Article  CAS  PubMed  Google Scholar 

  • Stocco A (2012) Acetylcholine-based entropy in response selection: a model of how striatal interneurons modulate exploration, exploitation, and response variability in decision-making. Front Neurosci 6:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Toates FM (1986) Motivational systems. Cambridge University Press, Cambridge

    Google Scholar 

  • Trapold MA, Overmier JB (1972) The second learning process in instrumental learning. In: Black AA, Prokasy WF (eds) Classical conditioning II: current research and theory. Appleton-Century-Crofts, New York, pp 427–452

    Google Scholar 

  • Tripathi A, Prensa L, Mengual E (2013) Axonal branching patterns of ventral pallidal neurons in the rat. Brain Struct Funct 218:1133–1157

    Article  PubMed  Google Scholar 

  • Vanderschuren LJ, Di Ciano P, Everitt BJ (2005) Involvement of the dorsal striatum in cue-controlled cocaine seeking. J Neurosci 25:8665–8670

    Article  CAS  PubMed  Google Scholar 

  • Wassum KM, Ostlund SB, Loewinger GC, Maidment NT (2013) Phasic mesolimbic dopamine release tracks reward seeking during expression of Pavlovian-to-instrumental transfer. Biol Psychiatry 73(8):747–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson P, Wiers RW, Hommel B, de Wit S (2014) Working for food you don’t desire cues interfere with goal-directed food-seeking. Appetite 79:139–148

    Article  CAS  PubMed  Google Scholar 

  • Wiers CE, Stelzel C, Park SQ, Gawron CK, Ludwig VU, Gutwinski S, Heinz A, Lindenmeyer J, Wiers RW, Walter H, Bermpohl F (2014) Neural correlates of alcohol-approach bias in alcohol addiction: the spirit is willing but the flesh is weak for spirits. Neuropsychopharmacology 39:688–697

    Article  PubMed  PubMed Central  Google Scholar 

  • Winterbauer NE, Balleine BW (2005) Motivational control of second-order conditioning. J Exp Psychol Anim Behav Process 31(3):334–340

    Article  PubMed  Google Scholar 

  • Wyvell CL, Berridge KC (2000) Intra-accumbens amphetamine increases the conditioned incentive salience of sucrose reward: enhancement of reward “wanting” without enhanced “liking” or response reinforcement. J Neurosci 20:8122–8130

    CAS  PubMed  Google Scholar 

  • Wyvell CL, Berridge KC (2001) Incentive sensitization by previous amphetamine exposure: increased cue-triggered “wanting” for sucrose reward. J Neurosci 21:7831–7840

    CAS  PubMed  Google Scholar 

  • Yin HH, Ostlund SB, Knowlton BJ, Balleine BW (2005) The role of the dorsomedial striatum in instrumental conditioning. Eur J Neurosci 22:513–523

    Article  PubMed  Google Scholar 

  • Zahm DS (2000) An integrative neuroanatomical perspective on some subcortical substrates of adaptive responding with emphasis on the nucleus accumbens. Neurosci Biobehav Rev 24:85–105

    Article  CAS  PubMed  Google Scholar 

  • Zahm DS, Heimer L (1990) Two transpallidal pathways originating in the rat nucleus accumbens. J Comp Neurol 302:437–446

    Article  CAS  PubMed  Google Scholar 

  • Zener K (1937) The significance of behavior accompanying conditioned salivary secretion for theories of the conditioned response. Am J Psychol 50:384–403

    Article  Google Scholar 

  • Zhou L, Furuta T, Kaneko T (2003) Chemical organization of projection neurons in the rat accumbens nucleus and olfactory tubercle. Neuroscience 120:783–798

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This preparation of this chapter was supported by a Project Grant (APP1050137) to LHC and by a Senior Principal Research Fellowship to BWB, each from the National Health and Medical Research Council of Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard W. Balleine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Corbit, L.H., Balleine, B.W. (2015). Learning and Motivational Processes Contributing to Pavlovian–Instrumental Transfer and Their Neural Bases: Dopamine and Beyond . In: Simpson, E., Balsam, P. (eds) Behavioral Neuroscience of Motivation. Current Topics in Behavioral Neurosciences, vol 27. Springer, Cham. https://doi.org/10.1007/7854_2015_388

Download citation

Publish with us

Policies and ethics