Skip to main content

IKK Regulation and Human Genetics

  • Chapter
  • First Online:
NF-kB in Health and Disease

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 349))

Abstract

The IKK kinase complex is the core element of the NF-κB cascade. It is essentially made of two kinases (IKKα and IKKβ) and a regulatory subunit, NEMO/IKKγ. Additional components may exist, transiently or permanently, but their characterization is still uncertain. In this review, we will focus on the NEMO molecule, and describe the results which have been obtained, and the hypotheses which have been proposed, to explain how NEMO controls the activation of the IKK complex. NEMO is one of the very few non-redundant components of the NF-κB cascade, and the localization of the gene that encodes it on the X chromosome suggests it is likely to be the target of mutations leading to pathologies: this is indeed the case, and we will also present the current status of our knowledge regarding NEMO-associated pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott DW, Wilkins A, Asara JM, Cantley LC (2004) The Crohn’s disease protein, NOD2, requires RIP2 in order to induce ubiquitinylation of a novel site on NEMO. Curr Biol 14:2217–2227

    Article  PubMed  CAS  Google Scholar 

  • Aradhya S, Courtois G, Rajkovic A, Lewis AL, Levy M, Israël A, Nelson DL (2001a) Atypical forms of Incontinentia Pigmenti in males result from mutations of a cytosine tract in exon 10 of NEMO (IKKg). Am J Hum Genet 68:765–771

    Article  PubMed  CAS  Google Scholar 

  • Aradhya S, Woffendin H, Jakins T, Bardaro T, Esposito T, Smahi A, Shaw C, Levy M, Munnich A, D’Urso M, Lewis RA, Kenwrick S, Nelson DL (2001b) A recurrent deletion in the ubiquitously expressed NEMO (IKK-gamma) gene accounts for the vast majority of incontinentia pigmenti mutations. Hum Mol Genet 10:2171–2179

    Article  PubMed  CAS  Google Scholar 

  • Bagnéris C, Ageichik AV, Cronin N, Wallace B, Collins M, Boshoff C, Waksman G, Barrett T (2008) Crystal structure of a vFlip-IKKgamma complex: insights into viral activation of the IKK signalosome. Mol Cell 30:620–631

    Article  PubMed  Google Scholar 

  • Carter RS, Pennington KN, Ungurait BJ, Ballard DW (2003) In vivo identification of inducible phosphoacceptors in the IKK{gamma}/NEMO subunit of Human I{kappa}B Kinase. J Biol Chem 278:19642–19648

    Article  PubMed  CAS  Google Scholar 

  • Chang TT, Behshad R, Brodell RT, Gilliam AC (2008) A male infant with anhidrotic ectodermal dysplasia/immunodeficiency accompanied by incontinentia pigmenti and a mutation in the NEMO pathway. J Am Acad Dermatol 58:316–320

    Article  PubMed  Google Scholar 

  • Chau TL, Gioia R, Gatot JS, Patrascu F, Carpentier I, Chapelle JP, O’Neill LAJ, Beyaert R, Piette J, Chariot A (2008) Are the IKKs and IKK-related kinases TBK1 and IKK-epsilon similarly activated? Trends Biochem Sci 33:171–180

    Article  PubMed  CAS  Google Scholar 

  • Chen ZJ (2005) Ubiquitin signalling in the NF-kappaB pathway. Nat Cell Biol 7:758–765

    Article  PubMed  CAS  Google Scholar 

  • Chen ZJ, Parent L, Maniatis T (1996) Site-specific phosphorylation of IkBa by a novel ubiquitination-dependent protein kinase activity. Cell 84:853–862

    Article  PubMed  CAS  Google Scholar 

  • Cohen P (1994) Incontinentia pigmenti: clinicopathologic characteristics and differential diagnosis. Cutis 54:161–166

    PubMed  CAS  Google Scholar 

  • Cordier F, Grubisha O, Traincard F, Véron M, Delepierre M, Agou F (2009) The zinc finger of NEMO is a functional ubiquitin-binding domain. J Biol Chem 284:2902–2907

    Article  PubMed  CAS  Google Scholar 

  • Delhase M, Hayakawa M, Chen Y, Karin M (1999) Positive and negative regulation of I kappa B kinase activity through IKK beta subunit phosphorylation. Science 284:309–313

    Article  PubMed  CAS  Google Scholar 

  • Deng L, Wang C, Spencer E, Yang LY, Braun A, You JX, Slaughter C, Pickart C, Chen ZJ (2000) Activation of the I kappa B kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103:351–361

    Article  PubMed  CAS  Google Scholar 

  • Didonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M (1997) A cytokine-responsive IkB kinase that activates the transcription factor NF-kB. Nature 388:548–554

    Article  PubMed  CAS  Google Scholar 

  • Döffinger R, Smahi A, Bessia C, Geissmann F, Feinberg J, Durandy A, Bodemer C, Kenwrick S, Dupuis-Girod S, Blanche S, Wood P, Rabia SH, Headon DJ, Overbeek PA, Le Deist F, Holland SM, Belani K, Kumararatne DS, Fischer A, Shapiro R, Conley ME, Reimund E, Kalhoff H, Abinun M, Munnich A, Israël A, Courtois G, Casanova JL (2001) X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet 27:277–285

    Article  PubMed  Google Scholar 

  • Ducut-Sigala JL, Bottero V, Young DB, Shevchenko A, Mercurio F, Verma IM (2004) Activation of transcription factor NF-kappaB requires ELKS, an IkappaB kinase regulatory subunit. Science 304:1963–1967

    Article  PubMed  CAS  Google Scholar 

  • Ea CK, Deng L, Xia ZP, Pineda G, Chen ZJ (2006) Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell 22:1–13

    Article  Google Scholar 

  • Filipe-Santos O, Bustamante J, Haverkamp MH, Vinolo E, Ku CL, Puel A, Frucht DM, Christel K, von Bernuth H, Jouanguy E, Feinberg J, Durandy A, Senechal B, Chapgier A, Vogt G, de Beaucoudrey L, Fieschi C, Picard C, Garfa M, Chemli J, Bejaoui M, Tsolia MN, Kutukculer N, Plebani A, Notarangelo L, Bodemer C, Geissmann F, Israel A, Veron M, Knackstedt M, Barbouche R, Abel L, Magdorf K, Gendrel D, Agou F, Holland SM, Casanova JL (2006) X-linked susceptibility to mycobacteria is caused by mutations in NEMO impairing CD40-dependent IL-12 production. J Exp Med 203:1745–1759

    Article  PubMed  CAS  Google Scholar 

  • Fontan E, Traincard F, Levy SG, Yamaoka S, Veron M, Agou F (2007) NEMO oligomerization in the dynamic assembly of the IkappaB kinase core complex. Febs J 274:2540–2551

    Article  PubMed  CAS  Google Scholar 

  • Fusco F, Bardaro T, Fimiani G, Mercadante V, Miano MG, Falco G, Israel A, Courtois G, D’Urso M, Ursini MV (2004) Molecular analysis of the genetic defect in a large cohort of IP patients and identification of novel NEMO mutations interfering with NF-kappaB activation. Hum Mol Genet 13:1763–1773

    Article  PubMed  CAS  Google Scholar 

  • Fusco F, Pescatore A, Bal E, Ghoul A, Paciolla M, Lioi MB, D’Urso M, Rabia SH, Bodemer C, Bonnefont JP, Munnich A, Miano MG, Smahi A, Ursini MV (2008) Alterations of the IKBKG locus and diseases: an update and a report of 13 novel mutations. Hum Mutat 29:595–604

    Article  PubMed  CAS  Google Scholar 

  • Greten FR, Arkan MC, Bollrath J, Hsu LC, Goode J, Miething C, Goktuna SI, Neuenhahn M, Fierer J, Paxian S, Van Rooijen N, Xu Y, O’Cain T, Jaffee BB, Busch DH, Duyster J, Schmid RM, Eckmann L, Karin M (2007) NF-kappaB is a negative regulator of IL-1beta secretion as revealed by genetic and pharmacological inhibition of IKKbeta. Cell 130:918–931

    Article  PubMed  CAS  Google Scholar 

  • Grubisha O, Kaminska M, Duquerroy S, Fontan E, Cordier F, Haouz A, Raynal B, Chiaravalli J, Delepierre M, Israël A, Véron M, Agou F (2009) DARPin-assisted crystallography of the CC2-LZ domain of NEMO reveals a coupling between dimerization and ubiquitin binding. J Mol Biol (in press)

    Google Scholar 

  • Habelhah H, Takahashi S, Cho SG, Kadoya T, Watanabe T, Ronai Z (2004) Ubiquitination and translocation of TRAF2 is required for activation of JNK but not of p38 or NF-kappaB. Embo J 23:322–332

    Article  PubMed  CAS  Google Scholar 

  • Headon DJ, Emmal SA, Ferguson BM, Tucker AS, Justice MJ, Sharpe PT, Zonana J, Overbeek PA (2001) Gene defect in ectodermal dysplasia implicates a death domain adapter in development. Nature 414:913–916

    Article  PubMed  CAS  Google Scholar 

  • Hennel SJ, Ekert PG, Volpe JJ, Inder TE (2003) Insights into the pathogenesis of cerebral lesions in incontinentia pigmenti. Pediatr Neurol 29:148–150

    Article  PubMed  Google Scholar 

  • Huang Q, Yang J, Lin Y, Walker C, Cheng J, Liu ZG, Su B (2004) Differential regulation of interleukin 1 receptor and Toll-like receptor signaling by MEKK3. Nat Immunol 5:98–103

    Article  PubMed  CAS  Google Scholar 

  • Huang TT, Wuerzberger-Davis SM, Wu ZH, Miyamoto S (2003) Sequential modification of NEMO/IKKgamma by SUMO-1 and ubiquitin mediates NF-kappaB activation by genotoxic stress. Cell 115:565–576

    Article  PubMed  CAS  Google Scholar 

  • Iwai K, Tokunaga F (2009) Linear polyubiquitination: a new regulator of NF-kappaB activation. EMBO Rep 10:706–713

    Article  PubMed  CAS  Google Scholar 

  • Jain A, Ma CA, Liu S, Brown M, Cohen J, Strober W (2001) Specific missense mutations in NEMO result in hyper-IgM syndrome with hypohydrotic ectodermal dysplasia. Nat Immunol 2:223–228

    Article  PubMed  CAS  Google Scholar 

  • Janssens S, Tinel A, Lippens S, Tschopp J (2005) PIDD mediates NF-kappaB activation in response to DNA damage. Cell 123:1079–1092

    Article  PubMed  CAS  Google Scholar 

  • Karkkainen MJ, Ferrell RE, Lawrence EC, Kimak MA, Levinson KL, McTigue MA, Alitalo K, Finegold DN (2000) Missense mutations interfere with VEGFR-3 signalling in primary lymphoedema. Nat Genet 25:153–159

    Article  PubMed  CAS  Google Scholar 

  • Landy SJ, Donnai D (1993) Incontinentia Pigmenti (Bloch Sulzberger syndrom). J Med Genet 30:53–59

    Article  PubMed  CAS  Google Scholar 

  • Laplantine E, Fontan E, Chiaravalli J, Lopez T, Lakisic G, Véron M, Agou F, Israël A (2009) NEMO specifically recognizes K63-linked poly-ubiquitin chains through a new bipartite ubiquitin-binding domain. EMBO J 28:2885–2895

    Article  PubMed  CAS  Google Scholar 

  • Leibbrandt A, Penninger JM (2008) RANK/RANKL: regulators of immune responses and bone physiology. Ann N Y Acad Sci 1143:123–150

    Article  PubMed  CAS  Google Scholar 

  • Lo YC, Lin SY, Rospigliosi CC, Conze DB, Wu CJ, Ashwell JD, Eliezer D, Wu H (2009) Structural basis for recognition of diubiquitins by NEMO. Mol Cell 33:602–615

    Article  PubMed  CAS  Google Scholar 

  • Mabb AM, Wuerzberger-Davis SM, Miyamoto S (2006) PIASy mediates NEMO sumoylation and NF-kappaB activation in response to genotoxic stress. Nat Cell Biol 8:986–993

    Article  PubMed  CAS  Google Scholar 

  • Makris C, Godfrey VL, Krahn-Senftleben G, Takahashi T, Roberts JL, Schwarz T, Feng LL, Johnson RS, Karin M (2000) Female mice heterozygous for IKK gamma/NEMO deficiencies develop a dermatopathy similar to the human X-linked disorder incontinentia pigmenti. Mol Cell 5:969–979

    Article  PubMed  CAS  Google Scholar 

  • Mancini AJ, Lawley LP, Uzel G (2008) X-linked ectodermal dysplasia with immunodeficiency caused by NEMO mutation: early recognition and diagnosis. Arch Dermatol 144:342–346

    Article  PubMed  Google Scholar 

  • Mangano S, Barbagallo A (1993) Incontinentia pigmenti: clinical and neuroradiologic features. Brain Dev 15:362–366

    Article  PubMed  CAS  Google Scholar 

  • Mauro C, Pacifico F, Lavorgna A, Mellone S, Iannetti A, Acquaviva R, Formisano S, Vito P, Leonardi A (2006) ABIN-1 binds to NEMO/IKKgamma and co-operates with A20 in inhibiting NF-kappaB. J Biol Chem 281:18482–18488

    Article  PubMed  CAS  Google Scholar 

  • May MJ, D’Acquisto F, Madge LA, Glockner J, Pober JS, Ghosh S (2000) Selective inhibition of NF-kappa B activation by a peptide that blocks the interaction of NEMO with the I kappa B kinase complex. Science 289:1550–1554

    Article  PubMed  CAS  Google Scholar 

  • May MJ, Larsen SE, Shim JH, Madge LA, Ghosh S (2004) A novel ubiquitin-like domain in IkappaB kinase beta is required for functional activity of the kinase. J Biol Chem 279:45528–45539

    Article  PubMed  CAS  Google Scholar 

  • Mercurio F, Murray BW, Shevchenko A, Bennett BL, Young DB, Li JW, Pascual G, Motiwala A, Zhu H, Mann M, Manning AM (1999) IkB kinase (IKK)-associated protein 1, a common component of the heterogeneous IKK complex. Mol Cell Biol 19:1526–1538

    PubMed  CAS  Google Scholar 

  • Mercurio F, Zhu H, Murray BW, Shevchenko A, Bennett BL, Li J, Young DB, Barbosa M, Mann M, Manning A, Rao A (1997) IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science 278:860–866

    Article  PubMed  CAS  Google Scholar 

  • Mikkola ML (2009) Molecular aspects of hypohidrotic ectodermal dysplasia. Am J Med Genet A 149A:2031–2036

    Article  PubMed  CAS  Google Scholar 

  • Morlon A, Munnich A, Smahi A (2005) TAB 2, TRAF6 and TAK1 are involved in NF-kappaB activation induced by the TNF-receptor, Edar and its adaptator Edaradd. Hum Mol Genet 14:3751–3757

    Article  PubMed  CAS  Google Scholar 

  • Nenci A, Huth M, Funteh A, Schmidt-Supprian M, Bloch W, Metzger D, Chambon P, Rajewsky K, Krieg T, Haase I, Pasparakis M (2006) Skin lesion development in a mouse model of incontinentia pigmenti is triggered by NEMO deficiency in epidermal keratinocytes and requires TNF signaling. Hum Mol Genet 15:531–542

    Article  PubMed  CAS  Google Scholar 

  • Niehues T, Reichenbach J, Neubert J, Gudowius S, Puel A, Horneff G, Lainka E, Dirksen U, Schroten H, Döffinger R, Casanova JL, Wahn V (2004) Nuclear factor kappaB essential modulator-deficient child with immunodeficiency yet without anhidrotic ectodermal dysplasia. J Allergy Clin Immunol 114:1456–1462

    Article  PubMed  Google Scholar 

  • Ninomiya-Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao ZD, Matsumoto K (1999) The kinase TAK1 can activate the NF-kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398:252–256

    Article  PubMed  CAS  Google Scholar 

  • Orange JS, Brodeur SR, Jain A, Bonilla FA, Schneider LC, Kretschmer R, Nurko S, Rasmussen WL, Kohler JR, Gellis SE, Ferguson BM, Strominger JL, Zonana J, Ramesh N, Ballas ZK, Geha RS (2002) Deficient natural killer cell cytotoxicity in patients with IKK-gamma/NEMO mutations. J Clin Invest 109:1501–1509

    PubMed  CAS  Google Scholar 

  • Orange JS, Jain A, Ballas ZK, Schneider LC, Geha RS, Bonilla FA (2004a) The presentation and natural history of immunodeficiency caused by nuclear factor kappaB essential modulator mutation. J Allergy Clin Immunol 113:725–733

    Article  PubMed  CAS  Google Scholar 

  • Orange JS, Levy O, Brodeur SR, Krzewski K, Roy RM, Niemela JE, Fleisher TA, Bonilla FA, Geha RS (2004b) Human nuclear factor kappa B essential modulator mutation can result in immunodeficiency without ectodermal dysplasia. J Allergy Clin Immunol 114:650–656

    Article  PubMed  CAS  Google Scholar 

  • Oster SF, McLeod DS, Otsuji T, Goldberg MF, Lutty GA (2009) Preliminary ocular histopathological observations on heterozygous NEMO-deficient mice. Exp Eye Res 88:613–616

    Article  PubMed  CAS  Google Scholar 

  • Palkowitsch L, Leidner J, Ghosh S, Marienfeld RB (2008) Phosphorylation of serine 68 in the IkappaB kinase (IKK)-binding domain of NEMO interferes with the structure of the IKK complex and tumor necrosis factor-alpha-induced NF-kappaB activity. J Biol Chem 283:76–86

    Article  PubMed  CAS  Google Scholar 

  • Pasparakis M, Courtois G, Hafner M, Schmidt-Supprian M, Nenci A, Toksoy A, Krampert M, Goebeler M, Gillitzer R, Israël A, Krieg T, Rajewsky K, Haase I (2002) TNF-mediated inflammatory skin disease in mice with epidermis-specific deletion of IKK2. Nature 417:861–866

    Article  PubMed  CAS  Google Scholar 

  • Puel A, Picard C, Ku CL, Smahi A, Casanova JL (2004) Inherited disorders of NF-kappaB-mediated immunity in man. Curr Opin Immunol 16:34–41

    Article  PubMed  CAS  Google Scholar 

  • Qin J, Yao J, Cui G, Xiao H, Kim TW, Fraczek J, Wightman P, Sato S, Akira S, Puel A, Casanova JL, Su B, Li X (2006) TLR8-mediated NF-kappaB and JNK activation are TAK1-independent and MEKK3-dependent. J Biol Chem 281:21013–21021

    Article  PubMed  CAS  Google Scholar 

  • Rahighi S, Ikeda F, Kawasaki M, Akutsu M, Suzuki N, Kato R, Kensche T, Uejima T, Bloor S, Komander D, Randow F, Wakatsuki S, Dikic I (2009) Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation. Cell 136:1098–1109

    Article  PubMed  CAS  Google Scholar 

  • Rothwarf DM, Zandi E, Natoli G, Karin M (1998) IKK-g is an essential regulatory subunit of the IkB kinase complex. Nature 395:297–300

    Article  PubMed  CAS  Google Scholar 

  • Rushe M, Silvian L, Bixler S, Chen LL, Cheung A, Bowes S, Cuervo H, Berkowitz S, Zheng T, Guckian K, Pellegrini M, Lugovskoy A (2008) Structure of a NEMO/IKK-associating domain reveals architecture of the interaction site. Structure 16:798–808

    Article  PubMed  CAS  Google Scholar 

  • Salminen A, Paimela T, Suuronen T, Kaarniranta K (2008) Innate immunity meets with cellular stress at the IKK complex: regulation of the IKK complex by HSP70 and HSP90. Immunol Lett 117:9–15

    Article  PubMed  CAS  Google Scholar 

  • Sato S, Sanjo H, Takeda K, Ninomiya-Tsuji J, Yamamoto M, Kawai T, Matsumoto K, Takeuchi O, Akira S (2005) Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat Immunol 6:1087–1095

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Supprian M, Bloch W, Courtois G, Addicks K, Israël A, Rajewsky K, Pasparakis M (2000) NEMO/IKK gamma-deficient mice model Incontinentia Pigmenti. Mol Cell 5:981–992

    Article  PubMed  CAS  Google Scholar 

  • Sebban H, Yamaoka S, Courtois G (2006) Posttranslational modifications of NEMO and its partners in NF-kappaB signaling. Trends Cell Biol 16:569–577

    Article  PubMed  CAS  Google Scholar 

  • Sebban-Benin H, Pescatore A, Fusco F, Pascuale V, Gautheron J, Yamaoka S, Moncla A, Ursini MV, Courtois G (2007) Identification of TRAF6-dependent NEMO polyubiquitination sites through analysis of a new NEMO mutation causing incontinentia pigmenti. Hum Mol Genet 16:2805–2815

    Article  PubMed  CAS  Google Scholar 

  • Shim JH, Xiao C, Paschal AE, Bailey ST, Rao P, Hayden MS, Lee KY, Bussey C, Steckel M, Tanaka N, Yamada G, Akira S, Matsumoto K, Ghosh S (2005) TAK1, but not TAB 1 or TAB 2, plays an essential role in multiple signaling pathways in vivo. Genes Dev 19:2668–2681

    Article  PubMed  CAS  Google Scholar 

  • Sil AK, Maeda S, Sano Y, Roop DR, Karin M (2004) IkappaB kinase-alpha acts in the epidermis to control skeletal and craniofacial morphogenesis. Nature 428:660–664

    Article  PubMed  CAS  Google Scholar 

  • Silverman N, Zhou R, Erlich RL, Hunter M, Bernstein E, Schneider D, Maniatis T (2003) Immune activation of NF-kappaB and JNK requires Drosophila TAK1. J Biol Chem 278:48928–48934

    Article  PubMed  CAS  Google Scholar 

  • Smahi A, Courtois G, Vabres P, Yamaoka S, Heuertz S, Munnich A, Israël A, Heiss NS, Klauck S, Kioschis P, Wiemann S, Poustka A, Esposito T, Bardaro T, Gianfrancesco F, Ciccodicola A, D’Urso M, Woffendin H, Jakins T, Donnai D, Stewart H, Kenwrick S, Aradhya S, Yamagata T, Levy M, Lewis RA, Nelson DL (2000) Genomic rearrangement in NEMO impairs NF-kB activation and is a cause of Incontinentia Pigmenti. Nature 405:466–472

    Article  PubMed  CAS  Google Scholar 

  • Stilmann M, Hinz M, Arslan S, Zimmer A, Schreiber V, Scheidereit C (2010) A nuclear poly(ADP-Ribose)-dependent signalosome confers DNA damage-induced IkappaB kinase activation. Mol Cell 36:365–378

    Article  Google Scholar 

  • Stratis A, Pasparakis M, Rupec RA, Markur D, Hartmann K, Scharffetter-Kochanek K, Peters T, van Rooijen N, Krieg T, Haase I (2006) Pathogenic role for skin macrophages in a mouse model of keratinocyte-induced psoriasis-like skin inflammation. J Clin Invest 116:2094–2104

    Article  PubMed  CAS  Google Scholar 

  • Sun SC (2008) Deubiquitylation and regulation of the immune response. Nat Rev Immunol 8:501–511

    Article  PubMed  CAS  Google Scholar 

  • Tang ED, Wang CY, Xiong Y, Guan KL (2003) A role for NF-kappaB essential modifier/IkappaB kinase-gamma (NEMO/IKKgamma) ubiquitination in the activation of the IkappaB kinase complex by tumor necrosis factor-alpha. J Biol Chem 278:37297–37305

    Article  PubMed  CAS  Google Scholar 

  • Tobin E, Rohwedder A, Holland SM, Philips B, Carlson JA (2003) Recurrent ‘sterile’ verrucous cyst abscesses and epidermodysplasia verruciformis-like eruption associated with idiopathic CD4 lymphopenia. Br J Dermatol 149:627–633

    Article  PubMed  CAS  Google Scholar 

  • Tokunaga F, Sakata S, Saeki Y, Satomi Y, Kirisako T, Kamei K, Nakagawa T, Kato M, Murata S, Yamaoka S, Yamamoto M, Akira S, Takao T, Tanaka K, Iwai K (2009) Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat Cell Biol 11:123–132

    Article  PubMed  CAS  Google Scholar 

  • Vinolo E, Sebban H, Chaffotte A, Israel A, Courtois G, Veron M, Agou F (2006) A point mutation in NEMO associated with anhidrotic ectodermal dysplasia with immunodeficiency pathology results in destabilization of the oligomer and reduces lipopolysaccharide- and tumor necrosis factor-mediated NF-kappa B activation. J Biol Chem 281:6334–6348

    Article  PubMed  CAS  Google Scholar 

  • Wagner S, Carpentier I, Rogov V, Kreike M, Ikeda F, Lohr F, Wu CJ, Ashwell JD, Dotsch V, Dikic I, Beyaert R (2008) Ubiquitin binding mediates the NF-kappaB inhibitory potential of ABIN proteins. Oncogene 27:3739–3745

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ (2001) TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412:346–351

    Article  PubMed  CAS  Google Scholar 

  • Wu CJ, Conze DB, Li T, Srinivasula SM, Ashwell JD (2006a) NEMO is a sensor of Lys 63-linked polyubiquitination and functions in NF-kappaB activation. Nat Cell Biol 8:398–406

    Article  PubMed  CAS  Google Scholar 

  • Wu ZH, Miyamoto S (2007) Many faces of NF-kappaB signaling induced by genotoxic stress. J Mol Med 85:1187–1202

    Article  PubMed  CAS  Google Scholar 

  • Wu ZH, Shi Y, Tibbetts RS, Miyamoto S (2006b) Molecular linkage between the kinase ATM and NF-{kappa}B signaling in response to genotoxic stimuli. Science 311:1141–1146

    Article  PubMed  CAS  Google Scholar 

  • Xia Z, Sun L, Chen X, Pineda G, Jiang X, Adhikari A, Zeng W, Chen Z (2009) Direct activation of protein kinases by unanchored polyubiquitin chains. Nature 461:114–120

    Article  PubMed  CAS  Google Scholar 

  • Xu M, Skaug B, Zeng W, Chen ZJ (2009) A ubiquitin replacement strategy in human cells reveals distinct mechanisms of IKK activation by TNFalpha and IL-1beta. Mol Cell 36:302–314

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M, Okamoto T, Takeda K, Sato S, Sanjo H, Uematsu S, Saitoh T, Yamamoto N, Sakurai H, Ishii KJ, Yamaoka S, Kawai T, Matsuura Y, Takeuchi O, Akira S (2006) Key function for the Ubc13 E2 ubiquitin-conjugating enzyme in immune receptor signaling. Nat Immunol 7:962–970

    Article  PubMed  CAS  Google Scholar 

  • Yamaoka S, Courtois G, Bessia C, Whiteside ST, Weil R, Agou F, Kirk HE, Kay RJ, Israël A (1998) Complementation cloning of NEMO, a component of the IkB kinase complex essential for NF-kB activation. Cell 93:1231–1240

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki K, Gohda J, Kanayama A, Miyamoto Y, Sakurai H, Yamamoto M, Akira S, Hayashi H, Su B, Inoue J (2009) Two mechanistically and temporally distinct NF-kappaB activation pathways in IL-1 signaling. Sci Signal 2:ra66

    Google Scholar 

  • Yan M, Zhang Z, Brady JR, Schilbach S, Fairbrother WJ, Dixit VM (2002) Identification of a novel death domain-containing adaptor molecule for ectodysplasin-A receptor that is mutated in crinkled mice. Curr Biol 12:409–413

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Lin Y, Guo Z, Cheng J, Huang J, Deng L, Liao W, Chen Z, Liu Z, Su B (2001) The essential role of MEKK3 in TNF-induced NF-kappaB activation. Nat Immunol 2:620–624

    Article  PubMed  CAS  Google Scholar 

  • Yao J, Kim TW, Qin J, Jiang Z, Qian Y, Xiao H, Lu Y, Qian W, Gulen MF, Sizemore N, DiDonato J, Sato S, Akira S, Su B, Li X (2007) Interleukin-1 (IL-1)-induced TAK1-dependent versus MEKK3-dependent NFkappaB activation pathways bifurcate at IL-1 receptor-associated kinase modification. J Biol Chem 282:6075–6089

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa A, Sato Y, Yamashita M, Mimura H, Yamagata A, Fukai S (2009) Crystal structure of the NEMO ubiquitin-binding domain in complex with Lys 63-linked di-ubiquitin. FEBS Lett 583:3317–3322

    Article  PubMed  CAS  Google Scholar 

  • Zhang SQ, Kovalenko A, Cantarella G, Wallach D (2000) Recruitment of the IKK signalosome to the p55 TNF receptor: RIP and A20 bind to NEMO (IKKgamma) upon receptor stimulation. Immunity 12:301–311

    Article  PubMed  CAS  Google Scholar 

  • Zhao T, Yang L, Sun Q, Arguello M, Ballard DW, Hiscott J, Lin R (2007) The NEMO adaptor bridges the nuclear factor-kappaB and interferon regulatory factor signaling pathways. Nat Immunol 8:592–600

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Wertz I, O’Rourke K, Ultsch M, Seshagiri S, Eby M, Xiao W, Dixit VM (2004) Bcl10 activates the NF-kappaB pathway through ubiquitination of NEMO. Nature 427:167–171

    Article  PubMed  CAS  Google Scholar 

  • Zhu G, Wu CJ, Zhao Y, Ashwell JD (2007) Optineurin negatively regulates TNFalpha-induced NF-kappaB activation by competing with NEMO for ubiquitinated RIP. Curr Biol 17:1438–1443

    Article  PubMed  CAS  Google Scholar 

  • Zonana J, Elder ME, Schneider LC, Orlow SJ, Moss C, Golabi M, Shapira SK, Farndon PA, Wara DW, Emmal SA, Ferguson BM (2000) A novel X-linked disorder of immune deficiency and hypohidrotic ectodermal dysplasia is allelic to incontinentia pigmenti and due to mutations in IKK-gamma (NEMO). Am J Hum Genet 67:1555–1562

    Article  PubMed  CAS  Google Scholar 

  • Zou CC, Zhao ZY (2007) Clinical and molecular analysis of NF-kappaB essential modulator in Chinese incontinentia pigmenti patients. Int J Dermatol 46:1017–1022

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Israël .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Courtois, G., Israël, A. (2010). IKK Regulation and Human Genetics. In: Karin, M. (eds) NF-kB in Health and Disease. Current Topics in Microbiology and Immunology, vol 349. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2010_98

Download citation

Publish with us

Policies and ethics