Skip to main content

Henipavirus Receptor Usage and Tropism

  • Chapter
  • First Online:
Henipavirus

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 359))

Abstract

Nipah (NiV) and Hendra (HeV) viruses are the deadliest human pathogens within the Paramyxoviridae family, which include human and animal pathogens of global biomedical importance. NiV and HeV infections cause respiratory and encephalitic illness with high mortality rates in humans. Henipaviruses (HNV) are the only Paramyxoviruses classified as biosafety level 4 (BSL4) pathogens due to their extreme pathogenicity, potential for bioterrorism, and lack of licensed vaccines and therapeutics. HNV use ephrin-B2 and ephrin-B3, highly conserved proteins, as viral entry receptors. This likely accounts for their unusually broad species tropism, and also provides opportunities to study how receptor usage, cellular tropism, and end-organ pathology relates to the pathobiology of HNV infections. The clinical and pathologic manifestations of NiV and HeV virus infections are reviewed in the chapters by Wong et al. and Geisbert et al. in this issue. Here, we will review the biology of the HNV receptors, and how receptor usage relates to HNV cell tropism in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams RH, Wilkinson GA, Weiss C, Diella F, Gale NW et al (1999) Roles of ephrinb ligands and ephb receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev 13:295–306

    CAS  PubMed  Google Scholar 

  • Aguilar HC, Lee B (2011) Emerging Paramyxoviruses: molecular mechanisms and antiviral strategies. Expert Rev Mol Med 13:e6

    PubMed  Google Scholar 

  • Bennett BD, Zeigler FC, Gu Q, Fendly B, Goddard AD et al (1995) Molecular cloning of a ligand for the eph-related receptor protein-tyrosine kinase htk. Proc Natl Acad Sci USA 92:1866–1870

    CAS  PubMed  Google Scholar 

  • Benson MD, Romero MI, Lush ME, Lu QR, Henkemeyer M et al (2005) Ephrin-b3 is a myelin-based inhibitor of neurite outgrowth. Proc Natl Acad Sci USA 102:10694–10699

    CAS  PubMed  Google Scholar 

  • Bergemann AD, Cheng HJ, Brambilla R, Klein R, Flanagan JG (1995) Elf-2, a new member of the eph ligand family, is segmentally expressed in mouse embryos in the region of the hindbrain and newly forming somites. Mol Cell Biol 15:4921–4929

    CAS  PubMed  Google Scholar 

  • Bergemann AD, Zhang L, Chiang MK, Brambilla R, Klein R et al (1998) Ephrin-B3, a ligand for the receptor EphB3, expressed at the midline of the developing neural tube. Oncogene 16:471–480

    CAS  PubMed  Google Scholar 

  • Bishop KA, Hickey AC, Khetawat D, Patch JR, Bossart KN et al (2008) Residues in the stalk domain of the Hendra virus g glycoprotein modulate conformational changes associated with receptor binding. J Virol 82:11398–11409

    CAS  PubMed  Google Scholar 

  • Bonaparte MI, Dimitrov AS, Bossart KN, Crameri G, Mungall BA et al (2005) Ephrin-b2 ligand is a functional receptor for Hendra virus and Nipah virus. Proc Natl Acad Sci USA 102:10652–10657

    CAS  PubMed  Google Scholar 

  • Bossart KN, Crameri G, Dimitrov AS, Mungall BA, Feng Y et al (2005) Receptor binding, fusion inhibition, and induction of cross-reactive neutralizing antibodies by a soluble g glycoprotein of Hendra virus. J Virol 79:6690–6702

    CAS  PubMed  Google Scholar 

  • Bossart KN, Geisbert TW, Feldmann H, Zhu Z, Feldmann F et al (2011) A neutralizing human monoclonal antibody protects African green monkeys from Hendra virus challenge. Sci Transl Med 3:105ra103

    CAS  PubMed  Google Scholar 

  • Bossart KN, Tachedjian M, McEachern JA, Crameri G, Zhu Z et al (2008) Functional studies of host-specific ephrin-b ligands as Henipavirus receptors. Virology 372:357–371

    CAS  PubMed  Google Scholar 

  • Bossart KN, Wang LF, Eaton BT, Broder CC (2001) Functional expression and membrane fusion tropism of the envelope glycoproteins of Hendra virus. Virology 290:121–135

    CAS  PubMed  Google Scholar 

  • Bossart KN, Zhu Z, Middleton D, Klippel J, Crameri G et al (2009) A neutralizing human monoclonal antibody protects against lethal disease in a new ferret model of acute Nipah virus infection. PLoS Pathog 5:e1000642

    PubMed  Google Scholar 

  • Bowden TA, Aricescu AR, Gilbert RJC, Grimes JM, Jones EY et al (2008a) Structural basis of Nipah and Hendra virus attachment to their cell-surface receptor ephrin-B2. Nat Struct Mol Biol 15:567–572

    CAS  PubMed  Google Scholar 

  • Bowden TA, Crispin M, Harvey DJ, Aricescu AR, Grimes JM et al (2008b) Crystal structure and carbohydrate analysis of Nipah virus attachment glycoprotein: a template for antiviral and vaccine design. J Virol 82:11628–11636

    CAS  PubMed  Google Scholar 

  • Bowden TA, Crispin M, Harvey DJ, Jones EY, Stuart DI (2010a) Dimeric architecture of the Hendra virus attachment glycoprotein: evidence for a conserved mode of assembly. J Virol 84:6208–6217

    CAS  PubMed  Google Scholar 

  • Bowden TA, Crispin M, Jones EY, Stuart DI (2010b) Shared paramyxoviral glycoprotein architecture is adapted for diverse attachment strategies. Biochem Soc Trans 38:1349–1355

    CAS  PubMed  Google Scholar 

  • Bucci C, Lütcke A, Steele-Mortimer O, Olkkonen VM, Dupree P et al (1995) Co-operative regulation of endocytosis by three rab5 isoforms. FEBS Lett 366:65–71

    CAS  PubMed  Google Scholar 

  • Chrencik JE, Brooun A, Kraus ML, Recht MI, Kolatkar AR et al (2006) Structural and biophysical characterization of the EphB4*ephrinB2 protein-protein interaction and receptor specificity. J Biol Chem 281:28185–28192

    CAS  PubMed  Google Scholar 

  • Chua KB (2010) Epidemiology, surveillance and control of Nipah virus infections in Malaysia. Malays J Pathol 32:69–73

    CAS  PubMed  Google Scholar 

  • Chua KB, Goh KJ, Wong KT, Kamarulzaman A, Tan PS et al (1999) Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia. Lancet 354:1257–1259

    CAS  PubMed  Google Scholar 

  • Cowan CA, Henkemeyer M (2001) The sh2/sh3 adaptor grb4 transduces B-ephrin reverse signals. Nature 413:174–179

    CAS  PubMed  Google Scholar 

  • Crimeen-Irwin B, Ellis S, Christiansen D, Ludford-Menting MJ, Milland J et al (2003) Ligand binding determines whether cd46 is internalized by clathrin-coated pits or macropinocytosis. J Biol Chem 278:46927–46937

    CAS  PubMed  Google Scholar 

  • Edwards CM, Mundy GR (2008) Eph receptors and ephrin signaling pathways: a role in bone homeostasis. Int J Med Sci 5:263–272

    CAS  PubMed  Google Scholar 

  • Eph Nomenclature Committee (1997) Unified nomenclature for eph family receptors and their ligands, the ephrins. Eph nomenclature committee. Cell 90:403–404

    Google Scholar 

  • Erbar S, Diederich S, Maisner A (2008) Selective receptor expression restricts Nipah virus infection of endothelial cells. Virol. J 5:142

    PubMed  Google Scholar 

  • Fogarty R, Halpin K, Hyatt AD, Daszak P, Mungall BA (2008) Henipavirus susceptibility to environmental variables. Virus Res 132:140–144

    CAS  PubMed  Google Scholar 

  • Füller T, Korff T, Kilian A, Dandekar G, Augustin HG (2003) Forward ephb4 signaling in endothelial cells controls cellular repulsion and segregation from ephrinB2 positive cells. J Cell Sci 116:2461–2470

    PubMed  Google Scholar 

  • Gale NW, Baluk P, Pan L, Kwan M, Holash J et al (2001) Ephrin-B2 selectively marks arterial vessels and neovascularization sites in the adult, with expression in both endothelial and smooth-muscle cells. Dev Biol 230:151–160

    CAS  PubMed  Google Scholar 

  • Geisbert TW, Daddario-DiCaprio KM, Hickey AC, Smith MA, Chan Y et al (2010) Development of an acute and highly pathogenic nonhuman primate model of Nipah virus infection. PLoS ONE 5:e10690

    PubMed  Google Scholar 

  • Georgakopoulos A, Litterst C, Ghersi E, Baki L, Xu C et al (2006) Metalloproteinase/presenilin1 processing of ephrinb regulates ephb-induced src phosphorylation and signaling. EMBO J 25:1242–1252

    CAS  PubMed  Google Scholar 

  • Georgakopoulos A, Xu J, Xu C, Mauger G, Barthet G et al (2011) Presenilin1/gamma-secretase promotes the ephb2-induced phosphorylation of ephrinB2 by regulating phosphoprotein associated with glycosphingolipid-enriched microdomains/csk binding protein. FASEB J 25:3594–3604

    CAS  PubMed  Google Scholar 

  • Gerety SS, Anderson DJ (2002) Cardiovascular ephrinB2 function is essential for embryonic angiogenesis. Development 129:1397–1410

    CAS  PubMed  Google Scholar 

  • Goh KJ, Tan CT, Chew NK, Tan PS, Kamarulzaman A et al (2000) Clinical features of Nipah virus encephalitis among pig farmers in Malaysia. N Engl J Med 342:1229–1235

    CAS  PubMed  Google Scholar 

  • Guillaume V, Aslan H, Ainouze M, Guerbois M, Wild TF et al (2006) Evidence of a potential receptor-binding site on the Nipah virus g protein (NiV-G): identification of globular head residues with a role in fusion promotion and their localization on an NiV-G structural model. J Virol 80:7546–7554

    CAS  PubMed  Google Scholar 

  • Hafner C, Becker B, Landthaler M, Vogt T (2006) Expression profile of Eph receptors and ephrin ligands in human skin and downregulation of epha1 in nonmelanoma skin cancer. Mod Pathol 19:1369–1377

    CAS  PubMed  Google Scholar 

  • Hasebe F, Thuy NTT, Inoue S, Yu F, Kaku Y et al (2012) Serologic evidence of Nipah virus infection in bats, Vietnam. Emerg Infect Dis 18:536–537

    PubMed  Google Scholar 

  • Hashiguchi T, Maenaka K, Yanagi Y (2011a) Measles virus hemagglutinin: structural insights into cell entry and measles vaccine. Front Microbiol 2:247

    CAS  PubMed  Google Scholar 

  • Hashiguchi T, Ose T, Kubota M, Maita N, Kamishikiryo J et al (2011b) Structure of the Measles virus hemagglutinin bound to its cellular receptor slam. Nat Struct Mol Biol 18:135–141

    CAS  PubMed  Google Scholar 

  • Hayman DTS, Suu-Ire R, Breed AC, McEachern JA, Wang L et al (2008) Evidence of Henipavirus infection in West African fruit bats. PLoS ONE 3:e2739

    PubMed  Google Scholar 

  • Hayman DTS, Wang L, Barr J, Baker KS, Suu-Ire R et al (2011) Antibodies to Henipavirus or Henipa-like viruses in domestic pigs in Ghana, West Africa. PLoS ONE 6:e25256

    CAS  PubMed  Google Scholar 

  • Himanen J, Saha N, Nikolov DB (2007) Cell-cell signaling via Eph receptors and ephrins. Curr Opin Cell Biol 19:534–542

    CAS  PubMed  Google Scholar 

  • Holmberg J, Frisén J (2002) Ephrins are not only unattractive. Trends Neurosci 25:239–243

    CAS  PubMed  Google Scholar 

  • Homaira N, Rahman M, Hossain MJ, Epstein JH, Sultana R et al (2010) Nipah virus outbreak with person-to-person transmission in a district of Bangladesh, 2007. Epidemiol Infect 138:1630–1636

    CAS  PubMed  Google Scholar 

  • Hooper P, Zaki S, Daniels P, Middleton D (2001) Comparative pathology of the diseases caused by Hendra and Nipah viruses. Microbes Infect 3:315–322

    CAS  PubMed  Google Scholar 

  • Hooper PT, Ketterer PJ, Hyatt AD, Russell GM (1997a) Lesions of experimental equine Morbillivirus pneumonia in horses. Vet Pathol 34:312–322

    CAS  PubMed  Google Scholar 

  • Hooper PT, Westbury HA, Russell GM (1997b) The lesions of experimental equine Morbillivirus disease in cats and guinea pigs. Vet Pathol 34:323–329

    CAS  PubMed  Google Scholar 

  • Hsu VP, Hossain MJ, Parashar UD, Ali MM, Ksiazek TG et al (2004) Nipah virus encephalitis reemergence, Bangladesh. Emerg Infect Dis 10:2082–2087

    PubMed  Google Scholar 

  • Kobayashi H, Kitamura T, Sekiguchi M, Homma MK, Kabuyama Y et al (2007) Involvement of EphB1 receptor/ephrinB2 ligand in neuropathic pain. Spine 32:1592–1598

    PubMed  Google Scholar 

  • Kullander K, Croll SD, Zimmer M, Pan L, McClain J et al (2001) Ephrin-B3 is the midline barrier that prevents corticospinal tract axons from recrossing, allowing for unilateral motor control. Genes Dev 15:877–888

    CAS  PubMed  Google Scholar 

  • Kunz TH, Braun de Torrez E, Bauer D, Lobova T, Fleming TH (2011) Ecosystem services provided by bats. Ann NY Acad Sci 1223:1–38

    PubMed  Google Scholar 

  • Lamb RA, Paterson RG, Jardetzky TS (2006) Paramyxovirus membrane fusion: lessons from the F and HN atomic structures. Virology 344:30–37

    CAS  PubMed  Google Scholar 

  • Lee B (2007) Envelope-receptor interactions in Nipah virus pathobiology. Ann NY Acad Sci 1102:51–65

    CAS  PubMed  Google Scholar 

  • Lee B, Ataman ZA (2011) Modes of Paramyxovirus fusion: a Henipavirus perspective. Trends Microbiol 19:389–399

    CAS  PubMed  Google Scholar 

  • Li Y, Wang J, Hickey AC, Zhang Y, Li Y et al (2008) Antibodies to nipah or nipah-like viruses in bats, China. Emerg Infect Dis 14:1974–1976

    PubMed  Google Scholar 

  • Liebl DJ, Morris CJ, Henkemeyer M, Parada LF (2003) mRNA expression of ephrins and Eph receptor tyrosine kinases in the neonatal and adult mouse central nervous system. J Neurosci Res 71:7–22

    CAS  PubMed  Google Scholar 

  • Lim CC, Sitoh YY, Lee KE, Kurup A, Hui F (1999) Meningoencephalitis caused by a novel Paramyxovirus: an advanced MRI case report in an emerging disease. Singap Med J 40:356–358

    CAS  Google Scholar 

  • Lim CCT, Lee WL, Leo YS, Lee KE, Chan KP et al (2003) Late clinical and magnetic resonance imaging follow up of Nipah virus infection. J Neurol Neurosurg Psychiatr 74:131–133

    CAS  PubMed  Google Scholar 

  • Luby SP, Gurley ES, Hossain MJ (2009) Transmission of human infection with Nipah virus. Clin Infect Dis 49:1743–1748

    PubMed  Google Scholar 

  • Luby SP, Rahman M, Hossain MJ, Blum LS, Husain MM et al (2006) Foodborne transmission of Nipah virus, Bangladesh. Emerg Infect Dis 12:1888–1894

    PubMed  Google Scholar 

  • Mäkinen T, Adams RH, Bailey J, Lu Q, Ziemiecki A et al (2005) PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature. Genes Dev 19:397–410

    PubMed  Google Scholar 

  • Marianneau P, Guillaume V, Wong T, Badmanathan M, Looi RY et al (2010) Experimental infection of squirrel monkeys with Nipah virus. Emerg Infect Dis 16:507–510

    PubMed  Google Scholar 

  • Maar D, Harmon B, Chu D et al (2012) Cysteines in the stalk of the Nipah virus G glycoprotein are located in a distinct subdomain critical for fusion activation. J Virol (in press)

    Google Scholar 

  • Marston DJ, Dickinson S, Nobes CD (2003) Rac-dependent trans-endocytosis of ephrinbs regulates Eph–ephrin contact repulsion. Nat Cell Biol 5:879–888

    CAS  PubMed  Google Scholar 

  • Massé N, Ainouze M, Néel B, Wild TF, Buckland R et al (2004) Measles virus (mv) hemagglutinin: evidence that attachment sites for mv receptors slam and CD46 overlap on the globular head. J Virol 78:9051–9063

    PubMed  Google Scholar 

  • Mathieu C, Pohl C, Szecsi J, Trajkovic-Bodennec S, Devergnas S et al (2011) Nipah virus uses leukocytes for efficient dissemination within a host. J Virol 85:7863–7871

    CAS  PubMed  Google Scholar 

  • McFarlane R, Becker N, Field H (2011) Investigation of the climatic and environmental context of Hendra virus spillover events 1994–2010. PLoS ONE 6:e28374

    CAS  PubMed  Google Scholar 

  • Mercer J, Helenius A (2008) Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science 320:531–535

    CAS  PubMed  Google Scholar 

  • Meyer S, Hafner C, Guba M, Flegel S, Geissler EK et al (2005) Ephrin-B2 overexpression enhances integrin-mediated ECM-attachment and migration of B16 melanoma cells. Int J Oncol 27:1197–1206

    CAS  PubMed  Google Scholar 

  • Mills JN, Alim ANM, Bunning ML, Lee OB, Wagoner KD et al (2009) Nipah virus infection in dogs, Malaysia, 1999. Emerg Infect Dis 15:950–952

    PubMed  Google Scholar 

  • Mühlebach MD, Mateo M, Sinn PL, Prüfer S, Uhlig KM et al (2011) Adherens junction protein nectin-4 is the epithelial receptor for Measles virus. Nature 480:530–533

    PubMed  Google Scholar 

  • Mungall BA, Middleton D, Crameri G, Bingham J, Halpin K et al (2006) Feline model of acute Nipah virus infection and protection with a soluble glycoprotein-based subunit vaccine. J Virol 80:12293–12302

    CAS  PubMed  Google Scholar 

  • Mungall BA, Middleton D, Crameri G, Halpin K, Bingham J et al (2007) Vertical transmission and fetal replication of Nipah virus in an experimentally infected cat. J Infect Dis 196:812–816

    CAS  PubMed  Google Scholar 

  • Nahar N, Sultana R, Gurley ES, Hossain MJ, Luby SP (2010) Date palm sap collection: exploring opportunities to prevent nipah transmission. Ecohealth 7:196–203

    PubMed  Google Scholar 

  • Negrete OA, Chu D, Aguilar HC, Lee B (2007) Single amino acid changes in the nipah and Hendra virus attachment glycoproteins distinguish ephrinB2 from ephrinB3 usage. J Virol 81:10804–10814

    CAS  PubMed  Google Scholar 

  • Negrete OA, Levroney EL, Aguilar HC, Bertolotti-Ciarlet A, Nazarian R et al (2005) EphrinB2 is the entry receptor for Nipah virus, an emergent deadly Paramyxovirus. Nature 436:401–405

    CAS  PubMed  Google Scholar 

  • Negrete OA, Wolf MC, Aguilar HC, Enterlein S, Wang W et al (2006) Two key residues in ephrinB3 are critical for its use as an alternative receptor for Nipah virus. PLoS Pathog 2:e7

    PubMed  Google Scholar 

  • Noyce RS, Bondre DG, Ha MN, Lin LT, Sisson G, Tsao MS, Richardson CD (2011) Tumor cell marker PVRL4 (nectin 4) is an epithelial cell receptor for Measles virus. PLoS Pathog 7:e1002240

    CAS  PubMed  Google Scholar 

  • Olson JG, Rupprecht C, Rollin PE, An US, Niezgoda M et al (2002) Antibodies to nipah-like virus in bats (pteropus lylei), Cambodia. Emerg Infect Dis 8:987–988

    PubMed  Google Scholar 

  • Pascall JC, Brown KD (2004) Intramembrane cleavage of ephrinB3 by the human rhomboid family protease, RHBDl2. Biochem Biophys Res Commun 317:244–252

    CAS  PubMed  Google Scholar 

  • Pasquale EB (2008) Eph–ephrin bidirectional signaling in physiology and disease. Cell 133:38–52

    CAS  PubMed  Google Scholar 

  • Pernet O, Pohl C, Ainouze M, Kweder H, Buckland R (2009) Nipah virus entry can occur by macropinocytosis. Virology 395:298–311

    CAS  PubMed  Google Scholar 

  • Pfaff D, Héroult M, Riedel M, Reiss Y, Kirmse R et al (2008) Involvement of endothelial ephrin-B2 in adhesion and transmigration of EphB-receptor-expressing monocytes. J Cell Sci 121:3842–3850

    CAS  PubMed  Google Scholar 

  • Pitulescu ME, Adams RH (2010) Eph/ephrin molecules—a hub for signaling and endocytosis. Genes Dev 24:2480–2492

    CAS  PubMed  Google Scholar 

  • Plowright RK, Field HE, Smith C, Divljan A, Palmer C et al (2008) Reproduction and nutritional stress are risk factors for Hendra virus infection in little red flying foxes (Pteropus scapulatus). Proc Biol Sci 275:861–869

    PubMed  Google Scholar 

  • Radhakrishna H, Al-Awar O, Khachikian Z, Donaldson JG (1999) ARF6 requirement for Rac ruffling suggests a role for membrane trafficking in cortical actin rearrangements. J Cell Sci 112(Pt 6):855–866

    CAS  PubMed  Google Scholar 

  • Rahman MA, Hossain MJ, Sultana S, Homaira N, Khan SU et al (2012) Date palm sap linked to Nipah virus outbreak in Bangladesh, 2008. Vector Borne Zoonotic Dis 12:65–72

    PubMed  Google Scholar 

  • Rockx B, Bossart KN, Feldmann F, Geisbert JB, Hickey AC et al (2010) A novel model of lethal Hendra virus infection in African green monkeys and the effectiveness of ribavirin treatment. J Virol 84:9831–9839

    CAS  PubMed  Google Scholar 

  • Saeed MF, Kolokoltsov AA, Albrecht T, Davey RA (2010) Cellular entry of Ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes. PLoS Pathog 6:e1001110

    PubMed  Google Scholar 

  • Selvey LA, Wells RM, McCormack JG, Ansford AJ, Murray K et al (1995) Infection of humans and horses by a newly described Morbillivirus. Med J Aust 162:642–645

    CAS  PubMed  Google Scholar 

  • Su Z, Xu P, Ni F (2004) Single phosphorylation of TYR304 in the cytoplasmic tail of ephrin B2 confers high-affinity and bifunctional binding to both the SH2 domain of GRB4 and the PDZ domain of the PDZ-RGS3 protein. Eur J Biochem 271:1725–1736

    CAS  PubMed  Google Scholar 

  • Suksanpaisan L, Susantad T, Smith DR (2009) Characterization of Dengue virus entry into HEPG2 cells. J Biomed Sci 16:17

    PubMed  Google Scholar 

  • Sun P, Yamamoto H, Suetsugu S, Miki H, Takenawa T et al (2003) Small GTPase Rah/Rab34 is associated with membrane ruffles and macropinosomes and promotes macropinosome formation. J Biol Chem 278:4063–4071

    CAS  PubMed  Google Scholar 

  • Tan C, Chua K (2008) Nipah virus encephalitis. Curr Infect Dis Rep 10:315–320

    PubMed  Google Scholar 

  • Tanimura N, Imada T, Kashiwazaki Y, Sharifah SH (2006) Distribution of viral antigens and development of lesions in chicken embryos inoculated with Nipah virus. J Comp Pathol 135:74–82

    CAS  PubMed  Google Scholar 

  • Tatsuo H, Ono N, Tanaka K, Yanagi Y (2000) Slam (CDW150) is a cellular receptor for Measles virus. Nature 406:893–897

    CAS  PubMed  Google Scholar 

  • Vandenbroucke E, Mehta D, Minshall R, Malik AB (2008) Regulation of endothelial junctional permeability. Ann NY Acad Sci 1123:134–145

    CAS  PubMed  Google Scholar 

  • Vigant F, Lee B (2011) Hendra and nipah infection: pathology, models and potential therapies. Infect Disord Drug Targets 11:315–336

    CAS  PubMed  Google Scholar 

  • Wacharapluesadee S, Boongird K, Wanghongsa S, Ratanasetyuth N, Supavonwong P et al (2010) A longitudinal study of the prevalence of Nipah virus in Pteropus lylei bats in Thailand: evidence for seasonal preference in disease transmission. Vector Borne Zoonotic Dis 10:183–190

    PubMed  Google Scholar 

  • Wang HU, Chen ZF, Anderson DJ (1998) Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93:741–753

    CAS  PubMed  Google Scholar 

  • Weise C, Erbar S, Lamp B, Vogt C, Diederich S et al (2010) Tyrosine residues in the cytoplasmic domains affect sorting and fusion activity of the Nipah virus glycoproteins in polarized epithelial cells. J Virol 84:7634–7641

    CAS  PubMed  Google Scholar 

  • Wilkinson DG (2003) How attraction turns to repulsion. Nat Cell Biol 5:851–853

    CAS  PubMed  Google Scholar 

  • Williamson MM, Hooper PT, Selleck PW, Westbury HA, Slocombe RF (2000) Experimental Hendra virus infectionin pregnant guinea-pigs and fruit bats (Pteropus poliocephalus). J Comp Pathol 122:201–207

    CAS  PubMed  Google Scholar 

  • Williamson MM, Hooper PT, Selleck PW, Westbury HA, Slocombe RF (2001) A guinea-pig model of Hendra virus encephalitis. J Comp Pathol 124:273–279

    CAS  PubMed  Google Scholar 

  • Williamson MM, Torres-Velez FJ (2010) Henipavirus: a review of laboratory animal pathology. Vet Pathol 47:871–880

    CAS  PubMed  Google Scholar 

  • Wong KT, Grosjean I, Brisson C, Blanquier B, Fevre-Montange M et al (2003) A golden hamster model for human acute Nipah virus infection. Am J Pathol 163:2127–2137

    PubMed  Google Scholar 

  • Wong KT, Shieh W, Kumar S, Norain K, Abdullah W et al (2002) Nipah virus infection: pathology and pathogenesis of an emerging Paramyxoviral zoonosis. Am J Pathol 161:2153–2167

    PubMed  Google Scholar 

  • Xu K, Rajashankar KR, Chan Y, Himanen JP, Broder CC et al (2008) Host cell recognition by the Henipaviruses: crystal structures of the nipah g attachment glycoprotein and its complex with ephrin-B3. Proc Natl Acad Sci USA 105:9953–9958

    CAS  PubMed  Google Scholar 

  • Yoneda M, Guillaume V, Ikeda F, Sakuma Y, Sato H et al (2006) Establishment of a Nipah virus rescue system. Proc Natl Acad Sci USA 103:16508–16513

    CAS  PubMed  Google Scholar 

  • Young PL, Halpin K, Selleck PW, Field H, Gravel JL et al (1996) Serologic evidence for the presence in pteropus bats of a Paramyxovirus related to equine Morbillivirus. Emerg Infect Dis 2:239–240

    CAS  PubMed  Google Scholar 

  • Yuan J, Marsh G, Khetawat D, Broder CC, Wang L et al (2011a) Mutations in the G–H loop region of ephrin-B2 can enhance Nipah virus binding and infection. J Gen Virol 92:2142–2152

    CAS  PubMed  Google Scholar 

  • Yuan K, Hong T, Chen JJW, Tsai WH, Lin MT (2004) Syndecan-1 up-regulated by ephrinB2/EphB4 plays dual roles in inflammatory angiogenesis. Blood 104:1025–1033

    CAS  PubMed  Google Scholar 

  • Yuan K, Jin YT, Lin MT (2000) Expression of tie-2, angiopoietin-1, angiopoietin-2, ephrinb2 and ephb4 in pyogenic granuloma of human gingiva implicates their roles in inflammatory angiogenesis. J Periodont Res 35:165–171

    CAS  PubMed  Google Scholar 

  • Yuan P, Leser GP, Demeler B, Lamb RA, Jardetzky TS (2008) Domain architecture and oligomerization properties of the Paramyxovirus PIV 5 hemagglutinin-neuraminidase (HN) protein. Virology 378:282–291

    CAS  PubMed  Google Scholar 

  • Yuan P, Swanson KA, Leser GP, Paterson RG, Lamb RA et al (2011b) Structure of the newcastle disease virus hemagglutinin–neuraminidase (HN) ectodomain reveals a four-helix bundle stalk. Proc Natl Acad Sci USA 108:14920–14925

    CAS  PubMed  Google Scholar 

  • Zamudio-Meza H, Castillo AM, González-Bonilla C et al (2009) Rac1 and CDC42 GTPases cross-talk regulates formation of filopodia required for Dengue virus type-2 entry into HMEC-1 cells. J Gen Virol 90(pt 12):2902–2911.Epub 2009 Aug 26

    CAS  PubMed  Google Scholar 

  • Zhao C, Irie N, Takada Y, Shimoda K, Miyamoto T et al (2006) Bidirectional ephrinb2–Ephb4 signaling controls bone homeostasis. Cell Metab 4:111–121

    CAS  PubMed  Google Scholar 

  • Zimmer M, Palmer A, Köhler J, Klein R (2003) EphB-ephrinB bi-directional endocytosis terminates adhesion allowing contact mediated repulsion. Nat Cell Biol 5:869–878

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benhur Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Verlag-Berlin Heidelberg

About this chapter

Cite this chapter

Pernet, O., Wang, Y.E., Lee, B. (2012). Henipavirus Receptor Usage and Tropism. In: Lee, B., Rota, P. (eds) Henipavirus. Current Topics in Microbiology and Immunology, vol 359. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2012_222

Download citation

Publish with us

Policies and ethics