Skip to main content

Photorhabdus luminescens Toxins TccC3 and TccC5: Insecticidal ADP-Ribosyltransferases that Modify Threonine and Glutamine

  • Chapter
  • First Online:
Endogenous ADP-Ribosylation

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 384))

Abstract

The ADP-ribosyltransferases TccC3 and TccC5 are the biologically active TcC components of the tripartite Photorhabdus luminescens Tc toxin, which consist of TcA, TcB, and TcC components. TcA is the binding and membrane translocation component. TcB is a functional linker between TcC and TcA and also involved in the translocation of the toxin. While TccC3 ADP-ribosylates actin at threonine 148, TccC5 modifies Rho proteins at glutamine 61/63. Both modifications result in major alteration of the actin cytoskeleton. Here we discuss structure and function of the Tc toxin and compare its ADP-ribosyltransferase activities with other types of actin and Rho modifying toxins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aktories K, Wegner A (1989) ADP-ribosylation of actin by clostridial toxins. J Cell Biol 109:1385–1387

    Article  PubMed  CAS  Google Scholar 

  • Aktories K, Bärmann M, Ohishi I, Tsuyama S, Jakobs KH, Habermann E (1986) Botulinum C2 toxin ADP-ribosylates actin. Nature 322:390–392

    Article  PubMed  CAS  Google Scholar 

  • Aktories K, Weller U, Chhatwal GS (1987) Clostridium botulinum type C produces a novel ADP-ribosyltransferase distinct from botulinum C2 toxin. FEBS Lett 212:109–113

    Article  PubMed  CAS  Google Scholar 

  • Aktories K, Lang AE, Schwan C, Mannherz HG (2011) Actin as target for modification by bacterial protein toxins. FEBS J 278:4526–4543

    Article  PubMed  CAS  Google Scholar 

  • Barth H, Preiss JC, Hofmann F, Aktories K (1998) Characterization of the catalytic site of the ADP-ribosyltransferase Clostridium botulinum C2 toxin by site-directed mutagenesis. J Biol Chem 273:29506–29511

    Article  PubMed  CAS  Google Scholar 

  • Barth H, Olenik C, Sehr P, Schmidt G, Aktories K, Meyer DK (1999) Neosynthesis and activation of Rho by Escherichia coli cytotoxic necrotizing factor (CNF1) reverse cytopathic effects of ADP-ribosylated Rho. J Biol Chem 274:27407–27414

    Article  PubMed  CAS  Google Scholar 

  • Braun M, Stuber K, Schlatter Y, Wahli T, Kuhnert P, Frey J (2002) Characterization of an ADP-ribosyltransferase toxin (AexT) from Aeromonas salmonicida subsp. salmonicida. J Bacteriol 184:1851–1858

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Burridge K, Wennerberg K (2004) Rho and Rac take center stage. Cell 116:167–179

    Article  PubMed  CAS  Google Scholar 

  • Busby JN, Panjikar S, Landsberg MJ, Hurst MR, Lott JS (2013) The BC component of ABC toxins is an RHS-repeat-containing protein encapsulation device. Nature 501:547–550

    Article  PubMed  CAS  Google Scholar 

  • Cassel D, Pfeuffer T (1978) Mechanism of cholera toxin action: Covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc Natl Acad Sci USA 75:2669–2673

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ciche T (2007) The biology and genome of Heterorhabditis bacteriophora. WormBook, pp 1–9

    Google Scholar 

  • Ciche TA, Kim KS, Kaufmann-Daszczuk B, Nguyen KC, Hall DH (2008) Cell invasion and matricide during Photorhabdus luminescens transmission by Heterorhabditis bacteriophora nematodes. Appl Environ Microbiol 74:2275–2287

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Collier RJ (1968) Effect of diphtheria toxin on protein synthesis: inactivation of one of the transfer factors. J Mol Biol 25:83–98

    Article  Google Scholar 

  • de Souza RF, Aravind L (2012) Identification of novel components of NAD-utilizing metabolic pathways and prediction of their biochemical functions. Mol BioSyst 8:1661–1677

    Article  PubMed  Google Scholar 

  • ffrench-Constant RH, Bowen DJ (2000) Novel insecticidal toxins from nematode-symbiotic bacteria. Cell Mol Life Sci 57:828–833

    Article  PubMed  CAS  Google Scholar 

  • ffrench-Constant R, Waterfield N (2006) An ABC guide to the bacterial toxin complexes. Adv Appl Microbiol 58:169–183

    Article  PubMed  CAS  Google Scholar 

  • ffrench-Constant R, Waterfield N, Daborn P, Joyce S, Bennett H, Au C, Dowling A, Boundy S, Reynolds S, Clarke D (2003) Photorhabdus: towards a functional genomic analysis of a symbiont and pathogen. FEMS Microbiol Rev 26:433–456

    Article  PubMed  CAS  Google Scholar 

  • Fieldhouse RJ, Merrill AR (2008) Needle in the haystack: structure-based toxin discovery. Trends Biochem Sci 33:546–556

    Article  PubMed  CAS  Google Scholar 

  • Forst S, Dowds B, Boemare N, Stackebrandt E (1997) Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annu Rev Microbiol 51:47–72

    Article  PubMed  CAS  Google Scholar 

  • Fraylick JE, Rucks EA, Greene DM, Vincent TS, Olson JC (2002) Eukaryotic cell determination of ExoS ADP-ribosyltransferase substrate specificity. Biochem Biophys Res Commun 291:91–100

    Article  PubMed  CAS  Google Scholar 

  • Gatsogiannis C, Lang AE, Meusch D, Pfaumann V, Hofnagel O, Benz R, Aktories K, Raunser S (2013) A syringe-like injection mechanism in Photorhabdus luminescens toxins. Nature 495:520–523

    Article  PubMed  CAS  Google Scholar 

  • Genth H, Gerhard R, Maeda A, Amano M, Kaibuchi K, Aktories K, Just I (2003) Entrapment of Rho ADP-ribosylated by Clostridium botulinum C3 exoenzyme in the Rho-guanine nucleotide dissociation inhibitor-1 complex. J Biol Chem 278:28523–28527

    Article  PubMed  CAS  Google Scholar 

  • Gill DM, Richardson SH (1980) Adenosine diphosphate-ribosylation of adenylate cyclase catalyzed by heat-labile enterotoxin of Escherichia coli: comparison with cholera toxin. J Infect Dis 141:64–70

    Article  PubMed  CAS  Google Scholar 

  • Gill DM, Pappenheimer JAM, Brown R, Kurnick JT (1969) Studies on the mode of action of diphtheria toxin. VII. Toxin-stimulated hydrolysis of nicotinamide adenine dinucleotide in mammalian cell extracts. J Exp Med 129:1–21

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gülke I, Pfeifer G, Liese J, Fritz M, Hofmann F, Aktories K, Barth H (2001) Characterization of the enzymatic component of the ADP-ribosyltransferase toxin CDTa from Clostridium difficile. Infect Immun 69:6004–6011

    Article  PubMed  PubMed Central  Google Scholar 

  • Hall A (1993) Ras-related proteins. Curr Opin Cell Biol 5:265–268

    Article  PubMed  CAS  Google Scholar 

  • Hall A (1994) Small GTP-binding proteins and the regulation of the actin cytoskeleton. Annu Rev Cell Biol 10:31–54

    Article  PubMed  CAS  Google Scholar 

  • Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–514

    Article  PubMed  CAS  Google Scholar 

  • Han S, Tainer JA (2002) The ARTT motif and a unified structural understanding of substrate recognition in ADP-ribosylating bacterial toxins and eukaryotic ADP-ribosyltransferases. Int J Med Microbiol 291:523–529

    Article  PubMed  CAS  Google Scholar 

  • Han S, Craig JA, Putnam CD, Carozzi NB, Tainer JA (1999) Evolution and mechanism from structures of an ADP-ribosylating toxin and NAD complex. Nat Struct Biol 6:932–936

    Article  PubMed  CAS  Google Scholar 

  • Heasman SJ, Ridley AJ (2008) Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 9:690–701

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann C, Schmidt G (2004) CNF and DNT. Rev Physiol Biochem Pharmacol 152:49–63

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann C, Pop M, Leemhuis J, Schirmer J, Aktories K, Schmidt G (2004) The Yersinia pseudotuberculosis cytotoxic necrotizing factor (CNFY) selectively activates RhoA. J Biol Chem 279:16026–16032

    Article  PubMed  CAS  Google Scholar 

  • Holmes KC, Popp D, Gebhard W, Kabsch W (1990) Atomic model of the actin filament. Nature 347:44–49

    Article  PubMed  CAS  Google Scholar 

  • Honjo T, Nishizuka Y, Hayaishi O (1968) Diphtheria toxin-dependent adenosine diphosphate ribosylation of aminoacryl transferase II and inhibition of protein synthesis. J Biol Chem 243:3553–3555

    PubMed  CAS  Google Scholar 

  • Hottiger MO, Hassa PO, Luscher B, Schuler H, Koch-Nolte F (2010) Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci 35:208–219

    Article  PubMed  CAS  Google Scholar 

  • Iglewski BH, Kabat D (1975) NAD-dependent inhibition of protein synthesis by Pseudomonas aeruginosa toxin. Proc Natl Acad Sci USA 72:2284–2288

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21:247–269

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen R, Purdy AE, Fieldhouse RJ, Kimber MS, Bartlett DH, Merrill AR (2008) Cholix toxin, a novel ADP-ribosylating factor from Vibrio cholerae. J Biol Chem 283:10671–10678

    Article  PubMed  CAS  Google Scholar 

  • Just I, Schallehn G, Aktories K (1992) A novel C3-like ADP-ribosyltransferase produced by Clostridium limosum. In: Poirier GG, Moreau P (eds) ADP-ribosylation reactions. Springer, New York, pp 373–376

    Chapter  Google Scholar 

  • Just I, Selzer J, Jung M, van Damme J, Vandekerckhove J, Aktories K (1995) Rho-ADP-ribosylating exoenzyme from Bacillus cereus—purification, characterization and identification of the NAD-binding site. Biochemistry 34:334–340

    Article  PubMed  CAS  Google Scholar 

  • Landsberg MJ, Jones SA, Rothnagel R, Busby JN, Marshall SD, Simpson RM, Lott JS, Hankamer B, Hurst MR (2011) 3D structure of the Yersinia entomophaga toxin complex and implications for insecticidal activity. Proc Natl Acad Sci USA 108:20544–20549

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lang AE, Schmidt G, Schlosser A, Hey TD, Larrinua IM, Sheets JJ, Mannherz HG, Aktories K (2010) Photorhabdus luminescens toxins ADP-ribosylate actin and RhoA to force actin clustering. Science 327:1139–1142

    Article  PubMed  CAS  Google Scholar 

  • Lang AE, Ernst K, Lee H, Papatheodorou P, Schwan C, Barth H, Aktories K (2013) The chaperone Hsp90 and PPIases of the cyclophilin and FKBP families facilitate membrane translocation of Photorhabdus luminescens ADP-ribosyltransferases. Cell Microbiol

    Google Scholar 

  • Lim L, Hall C, Monfries C (1996) Regulation of actin cytoskeleton by Rho-family GTPases and their associated proteins. Cell Dev Biol 7:699–706

    Article  CAS  Google Scholar 

  • Mannherz HG, Hannappel E (2009) The beta-thymosins: intracellular and extracellular activities of a versatile actin binding protein family. Cell Motil Cytoskelet 66:839–851

    Article  CAS  Google Scholar 

  • Maresso AW, Baldwin MR, Barbieri JT (2004) Ezrin/radixin/moesin proteins are high affinity targets for ADP-ribosylation by Pseudomonas aeruginosa ExoS. J Biol Chem 279:38402–38408

    Article  PubMed  CAS  Google Scholar 

  • Moss J, Vaughan M (1977) Mechanism of action of choleragen. Evidence for ADP-ribosyltransferase activity with arginine as an acceptor. J Biol Chem 252:2455–2457

    PubMed  CAS  Google Scholar 

  • Nobes C, Hall A (1994) Regulation and function of the Rho subfamily of small GTPases. Curr Opin Genet Dev 4:77–81

    Article  PubMed  CAS  Google Scholar 

  • Nobes CD, Hall A (1995) Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81:53–62

    Article  PubMed  CAS  Google Scholar 

  • Otto H, Hanson PI, Chapman ER, Blasi J, Jahn R (1995) Poisoning by botulinum neurotoxin A does not inhibit formation or disassembly of the synaptosomal fusion complex. Biochem Biophys Res Commun 212:945–952

    Article  PubMed  CAS  Google Scholar 

  • Otto H, Reche PA, Bazan F, Dittmar K, Haag F, Koch-Nolte F (2005) In silico characterization of the family of PARP-like poly(ADP-ribosyl)transferases (pARTs). BMC Genom 6:139

    Article  Google Scholar 

  • Pallen MJ, Lam AC, Loman NJ, McBride A (2001) An abundance of bacterial ADP-ribosyltransferases—implications for the origin of exotoxins and their human homologues. Trends Microbiol 9:302–307

    Article  PubMed  CAS  Google Scholar 

  • Perelle S, Gibert M, Bourlioux P, Corthier G, Popoff MR (1997) Production of a complete binary toxin (actin-specific ADP-ribosyltransferase) by Clostridium difficile CD196. Infect Immun 65:1402–1407

    PubMed  CAS  PubMed Central  Google Scholar 

  • Perieteanu AA, Visschedyk DD, Merrill AR, Dawson JF (2010) ADP-ribosylation of cross-linked actin generates barbed-end polymerization-deficient F-actin oligomers. Biochemistry 49:8944–8954

    Article  PubMed  CAS  Google Scholar 

  • Pop M, Aktories K, Schmidt G (2004) Isotype-specific degradation of Rac activated by the cytotoxic necrotizing factor 1 (CNF1). J Biol Chem 279:35840–35848

    Article  PubMed  CAS  Google Scholar 

  • Ridley AJ, Hall A (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70:389–399

    Article  PubMed  CAS  Google Scholar 

  • Ridley AJ, Hall A (1994) Signal transduction pathways regulating Rho-mediated stress fibre formation: requirement for a tyrosine kinase. EMBO J 13:2600–2610

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A (1992) The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70:401–410

    Article  PubMed  CAS  Google Scholar 

  • Safer D (1992) The interaction of actin with thymosin β4. J Muscle Res Cell Motil 13:269–271

    Article  PubMed  CAS  Google Scholar 

  • Schering B, Bärmann M, Chhatwal GS, Geipel U, Aktories K (1988) ADP-ribosylation of skeletal muscle and non-muscle actin by Clostridium perfringens iota toxin. Eur J Biochem 171:225–229

    Article  PubMed  CAS  Google Scholar 

  • Schmidt G, Sehr P, Wilm M, Selzer J, Mann M, Aktories K (1997) Gln63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor 1. Nature 387:725–729

    Article  PubMed  CAS  Google Scholar 

  • Sehr P, Joseph G, Genth H, Just I, Pick E, Aktories K (1998) Glucosylation and ADP-ribosylation of Rho proteins—effects on nucleotide binding, GTPase activity, and effector-coupling. Biochemistry 37:5296–5304

    Article  PubMed  CAS  Google Scholar 

  • Sekine A, Fujiwara M, Narumiya S (1989) Asparagine residue in the rho gene product is the modification site for botulinum ADP-ribosyltransferase. J Biol Chem 264:8602–8605

    PubMed  CAS  Google Scholar 

  • Sheets JJ, Hey TD, Fencil KJ, Burton SL, Ni W, Lang AE, Benz R, Aktories K (2011) Insecticidal toxin complex proteins from Xenorhabdus nematophilus: structure and pore formation. J Biol Chem 286:22742–22749

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Simpson LL, Stiles BG, Zepeda H, Wilkins TD (1989) Production by Clostridium spiroforme of an iotalike toxin that possesses mono(ADP-ribosyl)transferase activity: Identification of a novel class of ADP-ribosyltransferases. Infect Immun 57:255–261

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stoll T, Markwirth G, Reipschlager S, Schmidt G (2009) A new member of a growing toxin family—Escherichia coli cytotoxic necrotizing factor 3 (CNF3). Toxicon 54:745–753

    Article  PubMed  CAS  Google Scholar 

  • Sugai M, Enomoto T, Hashimoto K, Matsumoto K, Matsuo Y, Ohgai H, Hong Y-M, Inoue S, Yoshikawa K, Suginaka H (1990) A novel epidermal cell differentiation inhibitor (EDIN): Purification and characterization from Staphylococcus aureus. Biochem Biophys Res Commun 173:92–98

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Barbieri JT (2003) Pseudomonas aeruginosa ExoT ADP-ribosylates CT10-regulator of kinase (Crk). J Biol Chem 278:32794–32800

    Article  PubMed  CAS  Google Scholar 

  • Takai Y, Kaibuchi K, Kikuchi A, Sasaki T, Shirataki H (1993) Regulators of small GTPases. Ciba Found Symp 176:128–138

    PubMed  CAS  Google Scholar 

  • Tsurumura T, Tsumori Y, Qiu H, Oda M, Sakurai J, Nagahama M, Tsuge H (2013) Arginine ADP-ribosylation mechanism based on structural snapshots of iota-toxin and actin complex. Proc Natl Acad Sci USA 110:4267–4272

    Google Scholar 

  • Ui M (1984) Islet-activating protein, pertussis toxin: A probe for functions of the inhibitory guanine nucleotide regulatory component of adenylate cyclase. Trends Pharmacol Sci 5:277–279

    Article  CAS  Google Scholar 

  • Vandekerckhove J, Schering B, Bärmann M, Aktories K (1987) Clostridium perfringens iota toxin ADP-ribosylates skeletal muscle actin in Arg-177. FEBS Lett 225:48–52

    Article  PubMed  CAS  Google Scholar 

  • Vandekerckhove J, Schering B, Bärmann M, Aktories K (1988) Botulinum C2 toxin ADP-ribosylates cytoplasmic β/g-actin in arginine 177. J Biol Chem 263:696–700

    PubMed  CAS  Google Scholar 

  • Vetter IR, Wittinghofer A (2001) The guanine nucleotide-binding switch in three dimensions. Science 294:1299–1304

    Article  PubMed  CAS  Google Scholar 

  • Visschedyk DD, Perieteanu AA, Turgeon ZJ, Fieldhouse RJ, Dawson JF, Merrill AR (2010) Photox, a novel actin-targeting mono-ADP-ribosyltransferase from Photorhabdus luminescens. J Biol Chem 285:13525–13534

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Waterfield NR, Bowen DJ, Fetherston JD, Perry RD, ffrench-Constant RH (2001) The tc genes of Photorhabdus: a growing family. Trends Microbiol 9:185–191

    Article  PubMed  CAS  Google Scholar 

  • Waterfield NR, Ciche T, Clarke D (2009) Photorhabdus and a host of hosts. Annu Rev Microbiol 63:557–574

    Article  PubMed  CAS  Google Scholar 

  • Wegner A, Aktories K (1988) ADP-ribosylated actin caps the barbed ends of actin filaments. J Biol Chem 263:13739–13742

    PubMed  CAS  Google Scholar 

  • Weigt C, Just I, Wegner A, Aktories K (1989) Nonmuscle actin ADP-ribosylated by botulinum C2 toxin caps actin filaments. FEBS Lett 246:181–184

    Article  PubMed  CAS  Google Scholar 

  • West RE, Moss J, Vaughan M, Liu T, Liu T-Y (1985) Pertussis toxin-catalyzed ADP-ribosylation of transducin. J Biol Chem 260:14428–14430

    PubMed  CAS  Google Scholar 

  • Wilde C, Chhatwal GS, Aktories K (2002) C3stau, a new member of the family of C3-like ADP-ribosyltransferases. Trends Microbiol 10:5–7

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Research Foundation (DFG) and the Center for Biological Signaling Studies (BIOSS) in Freiburg (Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Aktories .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aktories, K., Schmidt, G., Lang, A.E. (2014). Photorhabdus luminescens Toxins TccC3 and TccC5: Insecticidal ADP-Ribosyltransferases that Modify Threonine and Glutamine. In: Koch-Nolte, F. (eds) Endogenous ADP-Ribosylation. Current Topics in Microbiology and Immunology, vol 384. Springer, Cham. https://doi.org/10.1007/82_2014_382

Download citation

Publish with us

Policies and ethics