Skip to main content

The Triple Threat of HIV-1 Protease Inhibitors

  • Chapter
  • First Online:
The Future of HIV-1 Therapeutics

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 389))

Abstract

HIV Maturation. This illustration shows an immature virion in the process of maturation at bottom right and a nearly mature virion at upper left. HIV protease (A) is cleaving the Gag and Gag-Pol proteins into functional proteins

Newly released human immunodeficiency virus type 1 (HIV-1) particles obligatorily undergo a maturation process to become infectious. The HIV-1 protease (PR) initiates this step, catalyzing the cleavage of the Gag and Gag-Pro-Pol structural polyproteins. Proper organization of the mature virus core requires that cleavage of these polyprotein substrates proceeds in a highly regulated, specific series of events. The vital role the HIV-1 PR plays in the viral life cycle has made it an extremely attractive target for inhibition and has accordingly fostered the development of a number of highly potent substrate-analog inhibitors. Though the PR inhibitors (PIs) inhibit only the HIV-1 PR, their effects manifest at multiple different stages in the life cycle due to the critical importance of the PR in preparing the virus for these subsequent events. Effectively, PIs masquerade as entry inhibitors, reverse transcription inhibitors, and potentially even inhibitors of post-reverse transcription steps. In this chapter, we review the triple threat of PIs: the intermolecular cooperativity in the form of a cooperative dose–response for inhibition in which the apparent potency increases with increasing inhibition; the pleiotropic effects of HIV-1 PR inhibition on entry, reverse transcription, and post-reverse transcription steps; and their potency as transition state analogs that have the potential for further improvement that could lead to an inability of the virus to evolve resistance in the context of single drug therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

HIV:

Human immunodeficiency virus

PR:

Protease

PI:

Protease inhibitor

RT:

Reverse transcriptase

IN:

Integrase

TF:

Transframe

MA:

Matrix

CA:

Capsid

NC:

Nucleocapsid

SP1:

Spacer peptide 1

SP2:

Spacer peptide 2

Env:

Envelope

CT:

Cytoplasmic tail

DRV:

Darunavir

TPV:

Tipranavir

SQV:

Saquinavir

NNRTI:

Non-nucleoside reverse transcriptase inhibitor

NRTI:

Nucleoside reverse transcriptase inhibitor

INSTI:

Integrase strand transfer inhibitor

AZT:

Zidovudine

RTC:

Reverse transcription complex

RNP:

Ribonucleoprotein

PIC:

Pre-integration complex

NPC:

Nuclear pore complex

References

  • Abrahamyan LG, Mkrtchyan SR, Binley J, Lu M, Melikyan GB, Cohen FS (2005) The cytoplasmic tail slows the folding of human immunodeficiency virus type 1 env from a late prebundle configuration into the six-helix bundle. J Virol 79:106–115

    PubMed Central  CAS  PubMed  Google Scholar 

  • Alfadhli A, Barklis RL, Barklis E (2009) HIV-1 matrix organizes as a hexamer of trimers on membranes containing phosphatidylinositol-(4,5)-bisphosphate. Virology 387:466–472

    PubMed Central  CAS  PubMed  Google Scholar 

  • Altman MD, Ali A, Reddy KK, Nalam MNL, Anjum SG, Cao H, Chellappan S, Kairys V, Fernandes MX, Gilson MK, Schiffer CA, Rana TM, Tidor B (2008) HIV-1 protease inhibitors from inverse design in the substrate envelope exhibit subnanomolar binding to drug-resistant variants. J Am Chem Soc 130:6099–6113

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ambrose Z, Julias JG, Boyer PL, KewalRamani VN, Hughes SH (2006) The level of reverse transcriptase (RT) in human immunodeficiency virus type 1 particles affects susceptibility to nonnucleoside RT inhibitors but not to Lamivudine. J Virol 80:2578–2581

    PubMed Central  PubMed  Google Scholar 

  • Arfi V, Lienard J, Nguyen XN, Berger G, Rigal D, Darlix JL, Cimarelli A (2009) Characterization of the behavior of functional viral genomes during the early steps of human immunodeficiency virus type 1 infection. J Virol 83:7524–7535

    PubMed Central  CAS  PubMed  Google Scholar 

  • Arhel NJ, Souquere-Besse S, Munier S, Souque P, Guadagnini S, Rutherfod S, PrĂ©vost MC, Allen TD, Charneau P (2007) HIV-1 DNA flap formation promotes uncoating of the pre-integration complex at the nuclear pore. EMBO J 26:3025–3037

    PubMed Central  CAS  PubMed  Google Scholar 

  • Arribas JR, Horban A, Gerstoft J, Fätkenheuer G, Nelson M, Clumeck N, Pulido F, Hill A, van Delft Y, Stark T, Moecklinghoff C (2010) The MONET trial: darunavir/ritonavir with or without nucleoside analogues, for patients with HIV RNA below 50 copies/ml. AIDS 24:223–230

    CAS  PubMed  Google Scholar 

  • Arribas JR, Clumeck N, Nelson M, Hill A, Delft Y, Moecklinghoff C (2012) The MONET trial: week 144 analysis of the efficacy of darunavir/ritonavir (DRV/r) monotherapy versus DRV/r plus two nucleoside reverse transcriptase inhibitors, for patients with viral load <50 HIV-1 RNA copies/mL at baseline. HIV Med 13:398–405

    CAS  PubMed  Google Scholar 

  • Arrildt KT, Joseph SB, Swanstrom R (2012) The HIV-1 env protein: a coat of many colors. Curr HIV/AIDS Rep 9:52–63

    PubMed Central  PubMed  Google Scholar 

  • BabĂ© LM, RosĂ© J, Craik CS (1995) Trans-dominant inhibitory human immunodeficiency virus type 1 protease monomers prevent protease activation and virion maturation. Proc Natl Acad Sci 92:10069–10073

    PubMed Central  PubMed  Google Scholar 

  • Bally F, Martinez R, Peters S, Sudre P, Telenti A (2000) Polymorphism of HIV type 1 gag p7/p1 and p1/p6 cleavage sites: clinical significance and implications for resistance to protease inhibitors. AIDS Res Hum Retroviruses 16:1209–1213

    CAS  PubMed  Google Scholar 

  • Barat C, Schatz O, Le Grice S, Darlix JL (1993) Analysis of the interactions of HIV1 replication primer tRNALys,3 with nucleocapsid protein and reverse transcriptase. J Mol Biol 231:185–190

    CAS  PubMed  Google Scholar 

  • Bathurst IC, Moen LK, Lujan MA, Gibson HL, Feucht PH, Pichuantes S, Craik CS, Santi DV, Barr PJ (1990) Characterization of the human immunodeficiency virus type-1 reverse transcriptase enzyme produced in yeast. Biochem Biophys Res Commun 171:589–595

    CAS  PubMed  Google Scholar 

  • Bhattacharya J, Repik A, Clapham PR (2006) Gag regulates association of human immunodeficiency virus type 1 envelope with detergent-resistant membranes. J Virol 80:5292–5300

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bieniasz PD (2009) The cell biology of HIV-1 virion genesis. Cell Host Microbe 5:550–558

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bierman WFW, van Agtmael MA, Nijhuis M, Danner SA, Boucher CAB (2009) HIV monotherapy with ritonavir-boosted protease inhibitors: a systematic review. AIDS 23:279–291

    CAS  PubMed  Google Scholar 

  • Bleiber G, Munoz M, Ciuffi A, Meylan P, Telenti A (2001) Individual contributions of mutant protease and reverse transcriptase to viral infectivity, replication, and protein maturation of antiretroviral drug-resistant human immunodeficiency virus type 1. J Virol 75:3291–3300

    PubMed Central  CAS  PubMed  Google Scholar 

  • Blumenthal R, Durell S, Viard M (2012) HIV entry and envelope glycoprotein-mediated fusion. J Biol Chem 287:40841–40849

    PubMed Central  CAS  PubMed  Google Scholar 

  • Boyer PL, Sarafianos SG, Arnold E, Hughes SH (2001) Selective excision of AZTMP by drug-resistant human immunodeficiency virus reverse transcriptase. J Virol 75:4832–4842

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brandano L, Stevenson M (2012) A highly conserved residue in the C-terminal helix of HIV-1 matrix is required for envelope incorporation into virus particles. J Virol 86:2347–2359

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A, Xavier RJ, Lieberman J, Elledge SJ (2008) Identification of host proteins required for HIV infection through a functional genomic screen. Science 319:921–926

    CAS  PubMed  Google Scholar 

  • Braz VA, Holladay LA, Barkley MD (2010) Efavirenz binding to HIV-1 reverse transcriptase monomers and dimers. Biochemistry 49:601–610

    PubMed Central  CAS  PubMed  Google Scholar 

  • Briggs JAG, Simon MN, Gross I, Kräusslich H-G, Fuller SD, Vogt VM, Johnson MC (2004) The stoichiometry of gag protein in HIV-1. Nat Struct Mol Biol 11:672–675

    CAS  PubMed  Google Scholar 

  • Bryant M, Ratner L (1990) Myristoylation-dependent replication and assembly of human immunodeficiency virus 1. Proc Natl Acad Sci USA 87:523–527

    PubMed Central  CAS  PubMed  Google Scholar 

  • Buckman JS, Bosche WJ, Gorelick RJ (2003) Human immunodeficiency virus type 1 nucleocapsid Zn2+ fingers are required for efficient reverse transcription, initial integration processes, and protection of newly synthesized viral DNA. J Virol 77:1469–1480

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bukrinskaya A, Brichacek B, Mann A, Stevenson M (1998) Establishment of a functional human immunodeficiency virus type 1 (HIV-1) reverse transcription complex involves the cytoskeleton. J Exp Med 188:2113–2125

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bukrinsky MI, Sharova N, Dempsey MP, Stanwick TL, Bukrinskaya AG, Haggerty S, Stevenson M (1992) Active nuclear import of human immunodeficiency virus type 1 preintegration complexes. Proc Natl Acad Sci 89:6580–6584

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bukrinsky MI, Sharova N, McDonald TL, Pushkarskaya T, Tarpley WG, Stevenson M (1993) Association of integrase, matrix, and reverse transcriptase antigens of human immunodeficiency virus type 1 with viral nucleic acids following acute infection. Proc Natl Acad Sci USA 90:6125–6129

    PubMed Central  CAS  PubMed  Google Scholar 

  • Carlson L-A, Briggs JAG, Glass B, Riches JD, Simon MN, Johnson MC, MĂĽller B, GrĂĽnewald K, Kräusslich H-G (2008) Three-dimensional analysis of budding sites and released virus suggests a revised model for HIV-1 morphogenesis. Cell Host Microbe 4:592–599

    PubMed Central  CAS  PubMed  Google Scholar 

  • Carr JM, Coolen C, Davis AJ, Burrell CJ, Li P (2008) Human immunodeficiency virus 1 (HIV-1) virion infectivity factor (Vif) is part of reverse transcription complexes and acts as an accessory factor for reverse transcription. Virology 372:147–156

    CAS  PubMed  Google Scholar 

  • Chan DC, Fass D, Berger JM, Kim PS (1997) Core structure of gp41 from the HIV envelope glycoprotein. Cell 89:263–273

    CAS  PubMed  Google Scholar 

  • Chattopadhyay D, Evans DB, Deibel MR Jr, Vosters AF, Eckenrode FM, Einspahr HM, Hui JO, Tomasselli AG, Zurcher-Neely HA, Heinrikson RL, Sharma SK (1992) Purification and characterization of heterodimeric human immunodeficiency virus type 1 (HIV-1) reverse transcriptase produced by in vitro processing of p66 with recombinant HIV-1 protease. J Biol Chem 267:14227–14232

    CAS  PubMed  Google Scholar 

  • Checkley MA, Luttge BG, Soheilian F, Nagashima K, Freed EO (2010) The capsid-spacer peptide 1 gag processing intermediate is a dominant-negative inhibitor of HIV-1 maturation. Virology 400:137–144

    PubMed Central  CAS  PubMed  Google Scholar 

  • Checkley MA, Luttge BG, Freed EO (2011) HIV-1 envelope glycoprotein biosynthesis, trafficking, and incorporation. J Mol Biol 410:582–608

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chertova E, Bess JW, Crise BJ, Sowder Ii RC, Schaden TM, Hilburn JM, Hoxie JA, Benveniste RE, Lifson JD, Henderson LE, Arthur LO (2002) Envelope glycoprotein incorporation, not shedding of surface envelope glycoprotein (gp120/SU), is the primary determinant of SU content of purified human immunodeficiency virus type 1 and simian immunodeficiency virus. J Virol 76:5315–5325

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chojnacki J, Staudt T, Glass B, Bingen P, Engelhardt J, Anders M, Schneider J, Muller B, Hell SW, Krausslich HG (2012) Maturation-dependent HIV-1 surface protein redistribution revealed by fluorescence nanoscopy. Science 338:524–528

    CAS  PubMed  Google Scholar 

  • Coren LV, Thomas JA, Chertova E, Sowder RC, Gagliardi TD, Gorelick RJ, Ott DE (2007) Mutational analysis of the C-terminal gag cleavage sites in human immunodeficiency virus type 1. J Virol 81:10047–10054

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cruceanu M, Gorelick RJ, Musier-Forsyth K, Rouzina I, Williams MC (2006a) Rapid kinetics of protein–nucleic acid interaction is a major component of HIV-1 nucleocapsid protein’s nucleic acid chaperone function. J Mol Biol 363:867–877

    CAS  PubMed  Google Scholar 

  • Cruceanu M, Urbaneja MA, Hixson CV, Johnson DG, Datta SA, Fivash MJ, Stephen AG, Fisher RJ, Gorelick RJ, Casas-Finet JR, Rein A, Rouzina I, Williams MC (2006b) Nucleic acid binding and chaperone properties of HIV-1 gag and nucleocapsid proteins. Nucleic Acids Res 34:593–605

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dam E, Quercia R, Glass B, Descamps D, Launay O, Duval X, Kräusslich HG, Hance AJ, Clavel F, Group AS (2009) Gag mutations strongly contribute to HIV-1 resistance to protease inhibitors in highly drug-experienced patients besides compensating for fitness loss. PLoS Pathog 5: e1000345

    Google Scholar 

  • Darke PL, Nutt RF, Brady SF, Garsky VM, Ciccarone TM, Leu CT, Lumma PK, Freidinger RM, Veber DF, Sigal IS (1988) HIV-1 protease specificity of peptide cleavage is sufficient for processing of gag and pol polyproteins. Biochem Biophys Res Commun 156:297–303

    CAS  PubMed  Google Scholar 

  • Davis DA, Soule EE, Davidoff KS, Daniels SI, Naiman NE, Yarchoan R (2012) Activity of human immunodeficiency virus type 1 protease inhibitors against the initial autocleavage in Gag-Pol polyprotein processing. Antimicrob Agents Chemother 56:3620–3628

    PubMed Central  CAS  PubMed  Google Scholar 

  • de la CarriĂ©re LC, Paulous S, Clavel F, Mammano F (1999) Effects of human immunodeficiency virus type 1 resistance to protease inhibitors on reverse transcriptase processing, activity, and drug sensitivity. J Virol 73:3455–3459

    PubMed Central  PubMed  Google Scholar 

  • de Marco A, MĂĽller B, Glass B, Riches JD, Kräusslich HG, Briggs JAG (2010) Structural analysis of HIV-1 maturation using cryo-electron tomography. PLoS Pathog 6:e1001215

    PubMed Central  PubMed  Google Scholar 

  • de Marco A, Heuser AM, Glass B, Krausslich HG, Muller B, Briggs JAG (2012) Role of the SP2 domain and its proteolytic cleavage in HIV-1 structural maturation and infectivity. J Virol 86:13708–13716

    PubMed Central  PubMed  Google Scholar 

  • de Rocquigny H, Petitjean P, Tanchou V, Decimo D, Drouot L, Delaunay T, Darlix JL, Roques BP (1997) The zinc fingers of HIV nucleocapsid protein NCp7 direct interacts with the viral regulatory protein vpr. J Biol Chem 272:30753–30759

    PubMed  Google Scholar 

  • Dorfman T, Mammano F, Haseltine WA, Göttlinger HG (1994) Role of the matrix protein in the virion association of the human immunodeficiency virus type 1 envelope glycoprotein. J Virol 68:1689–1696

    PubMed Central  CAS  PubMed  Google Scholar 

  • Doyon L, Croteau G, Thibeault D, Poulin F, Pilote L, Lamarre D (1996) Second locus involved in human immunodeficiency virus type 1 resistance to protease inhibitors. J Virol 70:3763

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dreyer GB, Metcalf BW, Tomaszek TA Jr, Carr TJ, Chandler AC III, Hyland L, Fakhoury SA, Magaard VW, Moore ML, Strickler JE, Debouck C, Meek TD (1989) Inhibition of human immunodeficiency virus 1 protease in vitro: rational design of substrate analogue inhibitors. Proc Natl Acad Sci USA 86:9752–9756

    PubMed Central  CAS  PubMed  Google Scholar 

  • Edwards TG, Wyss S, Reeves JD, Zolla-Pazner S, Hoxie JA, Doms RW, Baribaud F (2002) Truncation of the cytoplasmic domaini Induces exposure of conserved regions in the ectodomain of human immunodeficiency virus type 1 envelope protein. J Virol 76:2683–2691

    PubMed Central  CAS  PubMed  Google Scholar 

  • Engelman A, Englund G, Orenstein JM, Martin MA, Craigie R (1995) Multiple effects of mutations in human immunodeficiency virus type 1 integrase on viral replication. J Virol 69:2729–2736

    PubMed Central  CAS  PubMed  Google Scholar 

  • Erickson-Viitanen S, Manfredi J, Viitanen P, Tribe DE, Tritch R, Hutchinson CA III, Loeb DD, Swanstrom R (1989) Cleavage of HIV-1 gag polyprotein synthesized in vitro: sequential cleavage by the viral protease. AIDS Res Hum Retroviruses 5:577–591

    CAS  PubMed  Google Scholar 

  • Fassati A (2012) Multiple roles of the capsid protein in the early steps of HIV-1 infection. Virus Res 170:15–24

    CAS  PubMed  Google Scholar 

  • Fassati A, Goff SP (2001) Characterization of intracellular reverse transcription complexes of human immunodeficiency virus type 1. J Virol 75:3626–3635

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fitzon T, Leschonsky B, Bieler K, Paulus C, Schröder J, Wolf H, Wagner R (2000) Proline residues in the HIV-1 NH2-terminal capsid domain: structure determinants for proper core assembly and subsequent steps of early replication. Virology 268:294–307

    CAS  PubMed  Google Scholar 

  • Fletcher RS, Holleschak G, Nagy E, Arion D, Borkow G, Gu Z, Wainbeg MA, Parniak MA (1996) Single-step purification of recombinant wild-type and mutant HIV-1 reverse transcriptase. Protein Expr Purif 7:27–32

    CAS  PubMed  Google Scholar 

  • Forshey BM, Aiken C (2003) Disassembly of human immunodeficiency virus type 1 cores in vitro reveals association of Nef with the subviral ribonucleoprotein complex. J Virol 77:4409–4414

    PubMed Central  CAS  PubMed  Google Scholar 

  • Forshey BM, von Schwedler U, Sundquist WI, Aiken C (2002) Formation of a human immunodeficiency virus type 1 core of optimal stability is crucial for viral replication. J Virol 76:5667–5677

    PubMed Central  CAS  PubMed  Google Scholar 

  • Forshey BM, Shi J, Aiken C (2005) Structural requirements for recognition of the human immunodeficiency virus type 1 core during host restriction in owl monkey cells. J Virol 79:869–875

    PubMed Central  CAS  PubMed  Google Scholar 

  • Freed EO, Martin MA (1995) Virion incorporation of envelope glycoproteins with long but not short cytoplasmic tails is blocked by specific, single amino acid substitutions in the human immunodeficiency virus type 1 matrix. J Virol 69:1984–1989

    PubMed Central  CAS  PubMed  Google Scholar 

  • Freed EO, Myers DJ, Risser R (1990) Characterization of the fusion domain of the human immunodeficiency virus type 1 envelope glycoprotein gp41. Proc Natl Acad Sci USA 87:4650–4654

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ganser BK, Li S, Klishko VY, Finch JT, Sundquist WI (1999) Assembly and analysis of conical models for the HIV-1 core. Science 283:80–83

    CAS  PubMed  Google Scholar 

  • Ganser-Pornillos BK, Yeager M, Sundquist WI (2008) The structural biology of HIV assembly. Curr Opin Struct Biol 18:203–217

    PubMed Central  CAS  PubMed  Google Scholar 

  • GarcĂ­a Lerma JG, Yamamoto S, GĂłmez-Cano M, Soriano V, Green TA, Busch MP, Folks TM, Heneine W (1998) Measurement of human immunodeficiency virus type 1 plasma virus load based on reverse transcriptase (RT) activity: evidence of variabilities in levels of virion-associated RT. J Infect Dis 177:1221–1229

    PubMed  Google Scholar 

  • Gartner S, Markovits P, Markovitz DM, Kaplan MH, Gallo RC, Popovic M (1986) The role of mononuclear phagocytes in HTLV-III/LAV infection. Science 233:215–219

    CAS  PubMed  Google Scholar 

  • Gelderblom HR, Hausmann EHS, Ă–zel M, Pauli G, Koch MA (1987) Fine structure of human immunodeficiency virus (HIV) and immunolocalization of structural proteins. Virology 156:171–176

    CAS  PubMed  Google Scholar 

  • Göttlinger HG, Sodroski JG, Haseltine WA (1989) Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 86:5781–5785

    PubMed Central  PubMed  Google Scholar 

  • Gulick RM, Mellors JW, Havlir D, Eron JJ, Gonzalez C, McMahon D, Richman DD, Valentine FT, Jonas L, Meibohm A, Emini EA, Chodakewitz JA (1997) Treatment with indinavir, zidovudine, and lamivudine in adults with human immunodeficiency virus infection and prior antiretroviral therapy. N Engl J Med 337:735–739

    Google Scholar 

  • Haffar OK, Dowbenko DJ, Berman PW (1988) Topogenic analysis of the human immunodeficiency virus type 1 envelope glycoprotein, gp160, in microsomal membranes. J Cell Biol 107:1677–1687

    CAS  PubMed  Google Scholar 

  • Hallenberger S, Bosch V, Angliker H, Shaw E, Klenk HD, Garten W (1992) Inhibition of furin-mediated cleavage activation of HIV-1 glycoprotein gp160. Nature 360:358–361

    CAS  PubMed  Google Scholar 

  • Heinzinger NK, Bukrinsky MI, Haggerty SA, Ragland AM, Kewalramani V, Lee MA, Gendelman HE, Ratner L, Stevenson M, Emerman M (1994) The vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells. Proc Natl Acad Sci 91:7311–7315

    PubMed Central  CAS  PubMed  Google Scholar 

  • Henderson GJ, Lee SK, Irlbeck DM, Harris J, Kline M, Pollom E, Parkin N, Swanstrom R (2012) Interplay between single resistance-associated mutations in the HIV-1 protease and viral infectivity, protease activity, and inhibitor sensitivity. Antimicrob Agents Chemother 56:623–633

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hill CP, Worthylake D, Bancroft DP, Christensen AM, Sudquist WI (1996) Crystal structures of the trimeric human immunodeficiency virus type 1 matrix protein: implications for membrane association and assembly. Proc Natl Acad Sci USA 93:3099–3104

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hogue IB, Grover JR, Soheilian F, Nagashima K, Ono A (2011) Gag induces the coalescence of clustered lipid rafts and tetraspanin-enriched microdomains at HIV-1 assembly sites on the plasma membrane. J Virol 85:9749–9766

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hu WS, Hughes SH (2012) HIV-1 reverse transcription. Cold Spring Harb Perspect Med 2:a006882

    PubMed Central  PubMed  Google Scholar 

  • Hulme AE, Perez O, Hope TJ (2011) Complementary assays reveal a relationship between HIV-1 uncoating and reverse transcription. Proc Natl Acad Sci 108:9975–9980

    PubMed Central  CAS  PubMed  Google Scholar 

  • Iordanskiy S, Berro R, Altieri M, Kashanchi F, Bukrinsky M (2006) Intracytoplasmic maturation of the human immunodeficiency virus type 1 reverse transcription complexes determines their capacity to integrate into chromatin. Retrovirology 3:4

    PubMed Central  PubMed  Google Scholar 

  • Jacks T, Power MD, Masiarz FR, Luciw PA, Barr PJ, Varmus HE (1988) Characterization of ribosomal frameshifting in HIV-1 Gag-Pol expression. Nature 331:280–283

    CAS  PubMed  Google Scholar 

  • Jiang J, Aiken C (2006) Maturation of the viral core enhances the fusion of HIV-1 particles with primary human T cells and monocyte-derived macrophages. Virology 346:460–468

    CAS  PubMed  Google Scholar 

  • Jilek BL, Zarr M, Sampah ME, Rabi SA, Bullen CK, Lai J, Shen L, Siliciano RF (2012) A quantitative basis for antiretroviral therapy for HIV-1 infection. Nature Med 18:446–451

    PubMed Central  CAS  PubMed  Google Scholar 

  • Joyner AS, Willis JR, Crowe JE Jr, Aiken C (2011) Maturation-induced cloaking of neutralization epitopes on HIV-1 particles. PLoS Pathog 7:e1002234

    PubMed Central  CAS  PubMed  Google Scholar 

  • Julias JG, Ferris AL, Boyer PL, Hughes SH (2001) Replication of phenotypically mixed human immunodeficiency virus type 1 virions containing catalytically active and catalytically inactive reverse transcriptase. J Virol 75:6537–6546

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kafaie J, Dolatshahi M, Ajamian L, Song R, Mouland AJ, Rouiller I, Laughrea M (2009) Role of capsid sequence and immature nucleocapsid proteins p9 and p15 in human immunodeficiency virus type 1 genomic RNA dimerization. Virology 385:233–244

    CAS  PubMed  Google Scholar 

  • Kaldor SW, Kalish VJ, Davis JF, Shetty BV, Fritz JE, Appelt K, Burgess JA, Campanale KM, Chirgadze NY, Clawson DK, Dressman BA, Hatch SD, Khalil DA, Kosa MB, Lubbehusen PP, Muesing MA, Patick AK, Reich SH, Su KS, Tatlock JH (1997) Viracept (Nelfinavir mesylate, AG1343): a potent, orally bioavailable inhibitor of HIV-1 protease. J Med Chem 40:3979–3985

    CAS  PubMed  Google Scholar 

  • Kalia V, Sarkar S, Gupta P, Montelaro RC (2005) Antibody neutralization escape mediated by point mutations in the intracytoplasmic tail of human immunodeficiency virus type 1 gp41. J Virol 79:2097–2107

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kaplan AH, Zack JA, Knigge M, Paul DA, Kempf DJ, Norbeck DW, Swanstrom R (1993) Partial inhibition of the human immunodeficiency virus type 1 protease results in aberrant virus assembly and the formation of noninfectious particles. J Virol 67:4050–4055

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kaplan AH, Manchester M, Swanstrom R (1994) The activity of the protease of human immunodeficiency virus type 1 is initiated at the membrane of infected cells before the release of viral proteins and is required for release to occur with maximum efficiency. J Virol 68:6782–6786

    PubMed Central  CAS  PubMed  Google Scholar 

  • Karageorgos L, Li P, Burrell C (1993) Characterization of HIV replication complexes early after cell-to-cell infection. AIDS Res Hum Retroviruses 9:817–823

    CAS  PubMed  Google Scholar 

  • Kawamura M, Shimano R, Inubushi R, Amano K, Ogasawara T, Akari H, Adachi A (1997) Cleavage of gag precursor is required for early replication phase of HIV-1. FEBS Lett 415:227–230

    CAS  PubMed  Google Scholar 

  • Keller PW, Adamson CS, Heymann JB, Freed EO, Steven AC (2011) HIV-1 maturation inhibitor Bevirimat stabilizes the immature gag lattice. J Virol 85:1420–1428

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kempf DJ, Marsh KC, Denissen JF, McDonald E, Vasavanonda S, Flentge CA, Green BE, Fino L, Park CH, Kong XP, Wideburg NE, Saldivar A, Ruiz L, Kati WM, Sham HL, Robins T, Stewart KD, Hsu A, Plattner JJ, Leonard JM, Norbeck DW (1995) ABT-538 is a potent inhibitor of human immunodeficiency virus protease and has high oral bioavailability. Proc Natl Acad Sci USA 92:2484–2488

    PubMed Central  CAS  PubMed  Google Scholar 

  • Khorchid A, Halwani R, Wainberg MA, Kleiman L (2002) Role of RNA in facilitating Gag/Gag-Pol interaction. J Virol 76:4131–4137

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kolli M, Stawiski E, Chappey C, Schiffer CA (2009) Human immunodeficiency virus type 1 protease-correlated cleavage site mutations enhance inhibitor resistance. J Virol 83:11027–11042

    PubMed Central  CAS  PubMed  Google Scholar 

  • König R, Zhou Y, Elleder D, Diamond TL, Bonamy GMC, Irelan JT, Chiang C-Y, Tu BP, De Jesus PD, Lilley CE, Seidel S, Opaluch AM, Caldwell JS, Weitzman MD, Kuhen KL, Bandyopadhyay S, Ideker T, Orth AP, Miraglia LJ, Bushman FD, Young JA, Chanda SK (2008) Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell 135:49–60

    PubMed Central  PubMed  Google Scholar 

  • Kotov A, Zhou J, Flicker P, Aiken C (1999) Association of Nef with the human immunodeficiency virus type 1 core. J Virol 73:8824–8830

    PubMed Central  CAS  PubMed  Google Scholar 

  • Krishnan L, Engelman A (2012) Retroviral integrase proteins and HIV-1 DNA integration. J Biol Chem 287:40858–40866

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kröhn A, Redshaw S, Ritchie JC (1991) Novel binding mode of highly potent HIV-proteinase inhibitors incorporating the (R)-hydroxyethylamine isotere. J Med Chem 34:3340–3342

    PubMed  Google Scholar 

  • Kutluay SB, Bieniasz PD (2010) Analysis of the initiating events in HIV-1 particle assembly and genome packaging. PLoS Pathog 6:e1001200

    PubMed Central  PubMed  Google Scholar 

  • Le Grice SFJ (2012) Human immunodeficiency virus reverse transcriptase: 25 years of research, drug discovery, and promise. J Biol Chem 287:40850–40857

    PubMed Central  PubMed  Google Scholar 

  • Lee SK, Harris J, Swanstrom R (2009) A strongly transdominant mutation in the human immunodeficiency virus type 1 gag gene defines an achilles heel in the virus life cycle. J Virol 83:8536–8543

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee SK, Potempa M, Kolli M, Ozen A, Schiffer CA, Swanstrom R (2012) Context surrounding processing sites is crucial in determining cleavage rate of a subset of processing sites in HIV-1 gag and gag-pro-pol polyprotein precursors by viral protease. J Biol Chem 287:13279–13290

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li F, Goila-Gaur R, Salzwedel K, Kilgore NR, Reddick M, Matallana C, Castillo A, Zoumplis D, Martin DE, Orenstein JM, Allaway GP, Freed EO, Wild CT (2003) PA-457: A potent HIV inhibitor that disrupts core condensation by targeting a late step in gag processing. Proc Natl Acad Sci 100:13555–13560

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lindhofer H, von der Helm K, Nitschko H (1995) In vivo processing of Pr160 Gag-Pol from human immunodeficiency virus type 1 (HIV) in acutely infected, cultured human T-lymphocytes. Virology 214:624–627

    CAS  PubMed  Google Scholar 

  • Liu J, Bartesaghi A, Borgnia MJ, Sapiro G, Subramaniam S (2008) Molecular architecture of native HIV-1 gp120 trimers. Nature 455:109–113

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lori F, Scovassi AI, Zella D, Achilli G, Cattaneo E, Casoli C, Bertazzoni U (1998) Enzymatically active forms of reverse transcriptase of the human immunodeficiency virus. AIDS Res Hum Retroviruses 4:393–398

    Google Scholar 

  • Louis JM, Clore GM, Gronenborn AM (1999a) Autoprocessing of HIV-1 protease is tightly coupled to protein folding. Nat Struct Biol 6:868–875

    CAS  PubMed  Google Scholar 

  • Louis JM, Wondrak EM, Kimmel AR, Wingfield PT, Nashed NT (1999b) Proteolytic processing of HIV-1 protease precursor, kinetics and mechanism. J Biol Chem 274:23437–23442

    CAS  PubMed  Google Scholar 

  • Louis JM, Aniana A, Weber IT, Sayer JM (2011) Inhibition of autoprocessing of natural variants and multidrug resistant mutant precursors of HIV-1 protease by clinical inhibitors. Proc Natl Acad Sci 108:9072–9077

    PubMed Central  PubMed  Google Scholar 

  • Lowe DM, Aitken A, Bradley C, Darby GK, Larder BA, Powell KL, Purifoy DJM, Tisdale M, Stammers DK (1988) HIV-1 reverse transcriptase: crystallization and analysis of domain structure by limited proteolysis. Biochemistry 27:8884–8889

    CAS  PubMed  Google Scholar 

  • Lucas TM, Lyddon TD, Grosse SA, Johnson MC (2010) Two distinct mechanisms regulate recruitment of murine leukemia virus envelope protein to retroviral assembly sites. Virology 405:548–555

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lyonnais S, Gorelick RJ, Heniche-Boukhalfa F, Bouaziz S, Parissi V, Mouscadet J-F, Restle T, Gatell JM, Le Cam E, Mirambeau G (2013) A protein ballet around the viral genome orchestrated by HIV-1 reverse transcriptase leads to an architectural switch: from nucleocapsid-condensed RNA to Vpr-bridged DNA. Virus Res 171:287–303

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mammano F, Kondo E, Sodroski J, Bukovsky A, Göttlinger HG (1995) Rescue of human immunodeficiency virus type 1 matrix protein mutants by envelope glycoproteins with short cytoplasmic domains. J Virol 69:3824–3830

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mammano F, Petit C, Clavel F (1998) Resistance-associated loss of viral fitness in human immunodeficiency virus type 1: phenotypic analysis of protease and gag coevolution in protease inhibitor-treated patients. J Virol 72:7632–7637

    PubMed Central  CAS  PubMed  Google Scholar 

  • Marozsan AJ, Fraundorf E, Abraha A, Baird H, Moore D, Troyer R, Nankja I, Arts EJ (2004) Relationships between infectious titer, capsid protein levels, and reverse transcriptase activities of diverse human immunodeficiency virus type 1 isolates. J Virol 78:11130–11141

    PubMed Central  CAS  PubMed  Google Scholar 

  • Matreyek KA, Engelman A (2011) The requirement for nucleoporin NUP153 during human immunodeficiency virus type 1 infection Is determined by the viral capsid. J Virol 85:7818–7827

    PubMed Central  CAS  PubMed  Google Scholar 

  • Matreyek KA, Engelman A (2013) Viral and cellular requirements for the nuclear entry of retroviral preintegration nucleoprotein complexes. Viruses 5:2483–2511

    PubMed Central  PubMed  Google Scholar 

  • McDonald D, Vodicka MA, Svitkina TM, Borisy GG, Emerman M, Hope TJ (2002) Visualization of the intracellular behavior of HIV in living cells. J Cell Biol 159:441–452

    PubMed Central  CAS  PubMed  Google Scholar 

  • Meek TD, Lambert DM, Dreyer GB, Carr TJ, Tomaszek TA, Moore ML, Strickler JE, Debouck C, Hyland LJ, Matthews TJ, Metcalf BW, Petteway SR (1990) Inhibition of HIV-1 protease in infected T-lymphocytes by synthetic peptide analogues. Nature 343:90–92

    CAS  PubMed  Google Scholar 

  • Mehandru S, Markowitz M (2003) Tipranavir: a novel non-peptidic protease inhibitor for the treatment of HIV infection. Expert Opin Investig Drugs 12:1821–1828

    CAS  PubMed  Google Scholar 

  • Meyer PR, Matsuura SE, Mian AM, So AG, Scott WA (1999) A mechanism of AZT resistance: an increase in nucleotide-dependent primer unblocking by mutant HIV-1 reverse transcriptase. Mol Cell 4:35–43

    CAS  PubMed  Google Scholar 

  • Miller M (2010) The early years of retroviral protease crystal structures. Biopolymers 94:521–529

    PubMed Central  CAS  PubMed  Google Scholar 

  • Miller M, Scheneider J, Sathyanarayana BK, Toth MV, Marshall GR, Clawson L, Selk L, Kent SBH, Wlodawer A (1989) Structure of complex of synthetic HIV-1 protease with a substrate-based inhibitor at 2.3 Ă… resolution. Science 246:1149–1152

    CAS  PubMed  Google Scholar 

  • Miller MD, Farnet CM, Bushman FD (1997) Human immunodeficiency virus type 1 preintegration complexes: studies of organization and composition. J Virol 71:5382–5390

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mirambeau G, Lyonnais S, Coulaud D, Hameau L, Lafosse S, Jeusset J, Justome A, Delain E, Gorelick RJ, Le Cam E (2006) Transmission electron microscopy reveals an optimal HIV-1 nucleocapsid aggregation with single-stranded nucleic acids and the mature HIV-1 nucleocapsid protein. J Mol Biol 364:496–511

    CAS  PubMed  Google Scholar 

  • Mirambeau G, Lyonnais S, Coulaud D, Hameau L, Lafosse S, Jeusset J, Borde I, Reboud-Ravaux M, Restle T, Gorelick RJ, Le Cam E (2007) HIV-1 protease and reverse transcriptase control the architecture of their nucleocapsid partner. PLoS ONE 2:e669

    PubMed Central  PubMed  Google Scholar 

  • Mirambeau G, Lyonnais S, Gorelick RJ (2010) Features, processing states, and heterologous protein interactions in the modulation of the retroviral nucleocapsid protein function. RNA Biol 7:724–734

    PubMed Central  CAS  PubMed  Google Scholar 

  • Monroe KM, Yang Z, Johnson JR, Geng X, Doitsh G, Krogan NJ, Greene WC (2014) IFI16 DNA sensor is required for death of lymphoid CD4 T cells abortively infected with HIV. Science 343:428–432

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moore MD, Fu W, Soheilian F, Nagashima K, Ptak RG, Pathak VK, Hu W-S (2008) Suboptimal inhibition of protease activity in human immunodeficiency virus type 1: effects on virion morphogenesis and RNA maturation. Virology 379:152–160

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moore MD, Nikolaitchik OA, Chen J, Hammarskjöld ML, Rekosh D, Hu WS (2009) Probing the HIV-1 genomic RNA trafficking pathway and dimerization by genetic recombination and single virion analyses. PLoS Pathog 5:e1000627

    PubMed Central  PubMed  Google Scholar 

  • MĂĽller B, Anders M, Akiyama H, Welsch S, Glass B, Nikovics K, Clavel F, Tervo HM, Keppler OT, Krausslich HG (2009) HIV-1 gag processing intermediates trans-dominantly interfere with HIV-1 infectivity. J Biol Chem 284:29692–29703

    PubMed Central  PubMed  Google Scholar 

  • Murakami T, Freed EO (2000) Genetic evidence for an interaction between human immunodeficiency virus type 1 matrix and α-helix 2 of the gp41 cytoplasmic tail. J Virol 74:3548–3554

    PubMed Central  CAS  PubMed  Google Scholar 

  • Murakami T, Ablan S, Freed EO, Tanaka Y (2004) Regulation of human immunodeficiency virus type 1 Env-mediated membrane fusion by viral protease activity. J Virol 78:1026–1031

    PubMed Central  CAS  PubMed  Google Scholar 

  • Muranyi W, Malkusch S, MĂĽller B, Heilemann M, Kräusslich H-G (2013) Super-resolution microscopy reveals specific recruitment of HIV-1 envelope proteins to viral assembly sites dependent on the envelope C-terminal tail. PLoS Pathog 9:e1003198

    PubMed Central  PubMed  Google Scholar 

  • Muriaux D, Mirro J, Harvin D, Rein A (2001) RNA is a structural element in retrovirus particles. Proc Natl Acad Sci 98:5246–5251

    PubMed Central  CAS  PubMed  Google Scholar 

  • Navia MA, Fitzgerald PMD, McKeever BM, Leu CT, Heimbach JC, Herber WK, Sigal IS, Darke PL, Springer JP (1989) Three-dimensional structure of aspartyl protease from human immunodeficiency virus HIV-1. Nature 337:615–620

    CAS  PubMed  Google Scholar 

  • Nermut MV, Fassati A (2003) Structural analyses of purified human immunodeficiency virus type 1 intracellular reverse transcription complexes. J Virol 77:8196–8206

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ohishi M, Nakano T, Sakuragi S, Shioda T, Sano K, Sakuragi JI (2011) The relationship between HIV-1 genome RNA dimerization, virion maturation and infectivity. Nucleic Acids Res 39:3404–3417

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ono A, Freed EO (2001) Plasma membrane rafts play a critical role in HIV-1 assembly and release. Proc Natl Acad Sci 98:13925–13930

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ă–zen A, HaliloÄźlu T, Schiffer CA (2011) Dynamics of preferential substrate recognition in HIV-1 protease: redefining the substrate envelope. J Mol Biol 410:726–744

    PubMed Central  PubMed  Google Scholar 

  • Paine PL, Moore LC, Horowitz SB (1975) Nuclear envelop permeability. Nature 254:109–114

    CAS  PubMed  Google Scholar 

  • Palella FJ, Delaney KM, Moorman AC, Loveless MO, Fuhrer J, Satten GA, Aschman DJ, Holmberg SD, Investigators HOS (1998) Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. N Engl J Med 338:853–860

    PubMed  Google Scholar 

  • PantĂ© N, Kann M (2002) Nuclear pore complex is able to transport macromolecules with diameters of ~39 nm. Mol Biol Cell 13:425–434

    PubMed Central  PubMed  Google Scholar 

  • Partin K, Zybarth G, Ehrlich L, DeCrombrugghe M, Wimmer E, Carter C (1991) Deletion of sequences upstream of the proteinase improves the proteolytic processing of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 88:4776–4780

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pearl LH, Taylor WR (1987) A structural model for the retroviral proteases. Nature 329:351–354

    CAS  PubMed  Google Scholar 

  • Pettit SC, Simsic J, Loeb DD, Everitt L, Hutchison CA III, Swanstrom R (1991) Analysis of retroviral protease cleavage sites reveals two types of cleavage sites and the structural requirements of the P1 amino acid. J Biol Chem 266:14539–14547

    CAS  PubMed  Google Scholar 

  • Pettit SC, Moody MD, Wehbie RS, Kaplan AH, Nantermet PV, Klein CA, Swanstrom R (1994) The p2 domain of human immunodeficiency virus type 1 gag regulates sequential proteolytic processing and is required to produce fully infectious virions. J Virol 68:8017–8027

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pettit SC, Henderson GJ, Schiffer CA, Swanstrom R (2002) Replacement of the P1 amino acid of human immunodeficiency virus type 1 gag processing sites can inhibit or enhance the rate of cleavage by the viral protease. J Virol 76:10226–10233

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pettit SC, Everitt LE, Choudhury S, Dunn BM, Kaplan AH (2004) Initial cleavage of the human immunodeficiency virus type 1 GagPol precursor by Its activated protease occurs by an intramolecular mechanism. J Virol 78:8477–8485

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pettit SC, Lindquist JN, Kaplan AH, Swanstrom R (2005) Processing sites in the human immunodeficiency virus type 1 (HIV-1) gag-pro-pol precursor are cleaved by the viral protease at different rates. Retrovirology 2:66–71

    PubMed Central  PubMed  Google Scholar 

  • Prabu-Jeyabalan M, Nalivaika E, Schiffer CA (2002) Substrate shape determines specificity of recognition for HIV-1 protease: analysis of crystal structures of six substrate complexes. Structure 10:369–381

    CAS  PubMed  Google Scholar 

  • Qi M, Yang R, Aiken C (2008) Cyclophilin A-dependent restriction of human immunodeficiency virus type 1 capsid mutants for infection of nondividing cells. J Virol 82:12001–12008

    PubMed Central  CAS  PubMed  Google Scholar 

  • Quashie PK, Mesplede T, Han YS, Veres T, Osman N, Hassounah S, Sloan RD, Xu HT, Wainberg MA (2013) Biochemical analysis of the role of G118R-linked dolutegravir drug resistance substitutions in HIV-1 integrase. Antimicrob Agents Chemother 57:6223–6235

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rabi SA, Laird GM, Durand CM, Laskey S, Shan L, Bailey JR, Chioma S, Moore RD, Siliciano RF (2013) Multi-step inhibition explains HIV-1 protease inhibitor pharmacodynamics and resistance. J Clin Invest 123:3848–3860

    CAS  PubMed  Google Scholar 

  • Radzicka A, Wolfenden R (1996) Rates of uncatalyzed peptide bond hydrolysis in neutral solution and the transition state affinities of proteases. J Am Chem Soc 118:6105–6109

    CAS  Google Scholar 

  • Rein A, Mirro J, Haynes JG, Ernst SM, Nagashima K (1994) Function of the cytoplasmic domain of a retroviral transmembrane protein: p15E-p2E cleavage activates the membrane fusion capability of the murine leukemia virus env protein. J Virol 68:1773–1781

    PubMed Central  CAS  PubMed  Google Scholar 

  • Roberts NA, Martin JA, Kinchington D, Broadhurst AV, Craig JC, Duncan IB, Galpin SA, Handa BK, Kay J, Kröhn A, Lambert RW, Merrett JH, Mills JS, Parkes KEB, Redshaw S, Ritchie AJ, Taylor DL, Thomas GJ, Machin PJ (1990) Rational design of peptide-based HIV proteinase inhibitors. Science 248:358–361

    CAS  PubMed  Google Scholar 

  • Roy NH, Chan J, Lambele M, Thali M (2013) Clustering and mobility of HIV-1 env at viral assembly sites predict its propensity to induce cell-cell fusion. J Virol 87:7516–7525

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rulli SJ, Muriaux D, Nagashima K, Mirro J, Oshima M, Baumann JG, Rein A (2006) Mutant murine leukemia virus gag proteins lacking proline at the N-terminus of the capsid domain block infectivity in virions containing wild-type gag. Virology 347:364–371

    CAS  PubMed  Google Scholar 

  • Sampah MES, Shen L, Jilek BL, Siliciano RF (2011) Dose–response curve slope is a missing dimension in the analysis of HIV-1 drug resistance. Proc Natl Acad Sci 108:7613–7618

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sattentau QJ, Moore JP (1991) Conformational changes induced in the human immunodeficiency virus envelope glycoprotein by soluble CD4 binding. J Exp Med 174:407–415

    CAS  PubMed  Google Scholar 

  • Schaller T, Ocwieja KE, Rasaiyaah J, Price AJ, Brady TL, Roth SL, HuĂ© S, Fletcher AJ, Lee K, KewalRamani VN, Noursadeghi M, Jenner RG, James LC, Bushman FD, Towers GJ (2011) HIV-1 capsid-cyclophilin interactions determine nuclear import pathway, integration targeting and replication efficiency. PLoS Pathog 7:e1002439

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schatz O, Cromme FV, GrĂĽninger-Leitch F, Le Grice SFJ (1989) Point mutations in conserved amino acid residues within the C-terminal domain of HIV-1 reverse transcriptase specifically repress RNase H function. FEBS Lett 257:311–314

    CAS  PubMed  Google Scholar 

  • Schuckmann MM, Marchand B, Hachiya A, Kodama EN, Kirby KA, Singh K, Sarafianos SG (2010) The N348I mutation at the connection subdomain of HIV-1 reverse transcriptase decreases binding to Nevirapine. J Biol Chem 285:38700–38709

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sekar V, Lavreys L, Van de Casteele T, Berckmans C, Spinosa-Guzman S, Vangeneugden T, De Pauw M, Hoetelmans R (2010) Pharmacokinetics of darunavir/ritonavir and rifabutin coadministered in HIV-negative healthy volunteers. Antimicrob Agents Chemother 54:4440–4445

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shehu-Xhilaga M, Kraeusslich HG, Pettit S, Swanstrom R, Lee JY, Marshall JA, Crowe SM, Mak J (2001) Proteolytic processing of the p2/nucleocapsid cleavage site is critical for human immunodeficiency virus type 1 RNA dimer maturation. J Virol 75:9156–9164

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shehu-Xhilaga M, Hill M, Marshall JA, Kappes J, Crowe SM, Mak J (2002) The conformation of the mature dimeric human immunodeficiency virus type 1 RNA genome requires packaging of pol protein. J Virol 76:4331–4340

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shen L, Peterson S, Sedaghat AR, McMahon MA, Callender M, Zhang H, Zhou Y, Pitt E, Anderson KS, Acosta EP, Siliciano RF (2008) Dose-response curve slope sets class-specific limits on inhibitory potential of anti-HIV drugs. Nat Med 14:762–766

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shen L, Rabi SA, Sedaghat AR, Shan L, Lai J, Xing S, Siliciano RF (2011) A critical subset model provides a conceptual basis for the high antiviral activity of major HIV drugs. Sci Transl Med 3: 91ra63

    Google Scholar 

  • Singh K, Marchand B, Rai DK, Sharma B, Michailidis E, Ryan EM, Matzek KB, Leslie MD, Hagedorn AN, Li Z, Norden PR, Hachiya A, Parniak MA, Xu HT, Wainberg MA, Sarafianos SG (2012) Biochemical mechanism of HIV-1 resistance to rilpivirine. J Biol Chem 287:38110–38123

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sluis-Cremer N, Arion D, Abram ME, Parniak MA (2004) Proteolytic processing of an HIV-1 pol polyprotein precursor: insights into the mechanism of reverse transcriptase p66/p51 heterodimer formation. Int J Biochem Cell Biol 36:1836–1847

    CAS  PubMed  Google Scholar 

  • Steckbeck JD, Craigo JK, Barnes CO, Montelaro RC (2011) Highly conserved structural properties of the C-terminal tail of HIV-1 gp41 protein despite substantial sequence variation among diverse clades: implications for functions in viral replication. J Biol Chem 286:27156–27166

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stoll V, Qin W, Stewart KD, Jakob C, Park C, Walter K, Simmer RL, Helfrich R, Bussiere D, Kao J, Kempf D, Sham HL, Norbeck DW (2002) X-ray crystallographic structure of ABT-378 (Lopinavir) bound to HIV-1 protease. Bioorg Med Chem 10:2803–2806

    CAS  PubMed  Google Scholar 

  • Stremlau M, Owens CM, Perron MJ, Klessling M, Autissler P, Sodroski J (2004) The cytoplasmic body component TRIM5α restricts HIV-1 infection in old world monkeys. Nature 427:848–853

    CAS  PubMed  Google Scholar 

  • Stremlau M, Perron M, Lee M, Li Y, Song B, Javanbakht H, Diaz-Griffero F, Anderson DJ, Sundquist WI, Sodroski J (2006) Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5 restriction factor. Proc Natl Acad Sci 103:5514–5519

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sundquist WI, Krausslich HG (2012) HIV-1 assembly, budding, and maturation. Cold Spring Harb Perspect Med 2:a006924

    PubMed Central  PubMed  Google Scholar 

  • Suzuki Y, Craigie R (2007) The road to chromatin— nuclear entry of retroviruses. Nat Rev Microbiol 5:187–196

    CAS  PubMed  Google Scholar 

  • Swanstrom R, Wills JW (1997) Synthesis, assembly, and processing of viral proteins. In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Tang S, Murakami T, Agresta BE, Campbell S, Freed EO, Levin JG (2001) Human immunodeficiency virus type 1 N-terminal capsid mutants that exhibit aberrant core morphology and are blocked in initiation of reverse transcription in infected cells. J Virol 75:9357–9366

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tang C, Louis JM, Aniana A, Suh J-Y, Clore GM (2008) Visualizing transient events in amino-terminal autoprocessing of HIV-1 protease. Nature 455:693–696

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tedbury PR, Ablan SD, Freed EO (2013) Global rescue of defects in HIV-1 envelope glycoprotein incorporation: implications for matrix structure. PLoS Pathog 9:e1003739

    PubMed Central  PubMed  Google Scholar 

  • Thaisrivongs S, Strohbach JW (1999) Structure-based discovery of Tipranavir disodium (PNU-140690E): a potent, orally bioavailable, nonpeptidic HIV proteased inhibitors. Biopolymers 51:51–58

    CAS  PubMed  Google Scholar 

  • Thomas JA, Gagliardi TD, Alvord WG, Lubomirski M, Bosche WJ, Gorelick RJ (2006) Human immunodeficiency virus type 1 nucleocapsid zinc-finger mutations cause defects in reverse transcription and integration. Virology 353:41–51

    CAS  PubMed  Google Scholar 

  • TözsĂ©r J, Bláha I, Copeland TD, Wondrak EM, Oroszlan S (1991) Comparison of the HIV-1 and HIV-2 proteinases using oligopeptide substrates representing cleavage sites in gag and gag-pol polyproteins. FEBS Lett 281:77–80

    PubMed  Google Scholar 

  • Turner SR, Strohbach JW, Tommasi RA, Aristoff PA, Johnson PD, Skulnick HI, Dolak LA, Seest EP, Tomich PK, Bohanon MJ, Horng MM, Lynn JC, Chong KT, Hinshow RR, Watenpaugh KD, Janakiraman MN, Thaisrivongs S (1998) Tirpanavir (PNU-140690): a potent, orally bioavailable nonpeptidic HIV protease inhibitor of the 5,6-dihydro-4-hydroxy-2-pyrone sulfonamide class. J Med Chem 41:3467–3476

    CAS  PubMed  Google Scholar 

  • Venezia CF, Howard KJ, Ignatov ME, Holladay LA, Barkley MD (2006) Effects of Efavirenz binding on the subunit equilibria of HIV-1 reverse transcriptase. Biochemistry 45:2779–2789

    CAS  PubMed  Google Scholar 

  • Venezia CF, Meany BJ, Braz VA, Barkley MD (2009) Kinetics of association and dissociation of HIV-1 reverse transcriptase subunits. Biochemistry 48:9084–9093

    PubMed Central  CAS  PubMed  Google Scholar 

  • von Schwedler UK, Stemmler TL, Klishko VY, Li S, Albertine KH, Davis DR, Sundquist WI (1998) Proteolytic refolding of the HIV-1 capsid protein amino-terminus facilitates viral core assembly. EMBO J 17:1555–1568

    Google Scholar 

  • Wang J, Bambara RA, Demeter LM, Dykes C (2010) Reduced fitness in cell culture of HIV-1 with nonnucleoside reverse transcriptase inhibitor-resistant mutations correlates with relative levels of reverse transcriptase content and RNase H activity in virions. J Virol 84:9377–9389

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wapling J, Moore KL, Sonza S, Mak J, Tachedjian G (2005) Mutations that abrogate human immunodeficiency virus type 1 reverse transcriptase dimerization affect maturation of the reverse transcriptase heterodimer. J Virol 79:10247–10257

    PubMed Central  CAS  PubMed  Google Scholar 

  • Warren K, Wei T, Li D, Qin F, Warrilow D, Lin MH, Sivakumaran H, Apolloni A, Abbott CM, Jones A, Anderson JL, Harrich D (2012) Eukaryotic elongation factor 1 complex subunits are critical HIV-1 reverse transcription cofactors. Proc Natl Acad Sci 109:9587–9592

    PubMed Central  CAS  PubMed  Google Scholar 

  • Weiss ER, Göttlinger H (2011) The role of cellular factors in promoting HIV budding. J Mol Biol 410:525–533

    PubMed Central  CAS  PubMed  Google Scholar 

  • Weissenhorn W, Dessen A, Harrison SC, Skehel JJ, Wiley DC (1997) Atomic structure of the ectodomain from HIV-1 gp41. Nature 387:426–430

    CAS  PubMed  Google Scholar 

  • Welker R, Hohenberg H, Tessmer U, Huckagel C, Kräusslich HG (2000) Biochemical and structural analysis of isolated mature cores of human immunodeficiency virus type 1. J Virol 74:1168–1177

    PubMed Central  CAS  PubMed  Google Scholar 

  • White KL, Margot NA, Ly JK, Chen JM, Ray AS, Pavelko M, Wang R, McDermott M, Swaminathan S, Miller MD (2005) A combination of decreased NRTI incorporation and decreased excision determines the resistance profile of HIV-1 K65R RT. AIDS 19:1751–1760

    CAS  PubMed  Google Scholar 

  • White TA, Bartesaghi A, Borgnia MJ, Meyerson JR, de la Cruz MJV, Bess JW, Nandwani R, Hoxie JA, Lifson JD, Milne JLS, Subramaniam S (2010) Molecular architectures of trimeric SIV and HIV-1 envelope glycoproteins on intact viruses: strain-dependent variation in quaternary structure. PLoS Pathog 6:e1001249

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wiegers K, Rutter G, Kottler H, Tessmer U, Hohenberg H, Kräusslich HG (1998) Sequential steps in human immunodeficiency virus particle maturation revealed by alterations of individual gag polyprotein cleavage sites. J Virol 72:2846–2854

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wilen CB, Tilton JC, Doms RW (2012) HIV: cell binding and entry. Cold Spring Harb Perspect Med 2:a006866

    PubMed Central  PubMed  Google Scholar 

  • Wlodawer A, Erickson JW (1993) Structure-based inhibitors of HIV-1 protease. Annu Rev Biochem 62:543–585

    CAS  PubMed  Google Scholar 

  • Wolfenden R (1972) Analog approaches to the structure of the transition state in enzyme reactions. Acc Chem Res 5:10–18

    CAS  Google Scholar 

  • Wondrak WM, Nashed NT, Haber MT, Jerina DM, Louis JM (1996) A transient precursor of the HIV-1 protease: isolation, characterization, and kinetics of maturation. J Biol Chem 271:4477–4481

    CAS  PubMed  Google Scholar 

  • Wu X, Liu H, Xiao H, Conway JA, Hehl E, Kalpana GV, Prasad V, Kappes JC (1999) Human immunodeficiency virus type 1 integrase protein promotes reverse transcription through interactions with the nucleoprotein reverse transcription complex. J Virol 73:2126–2135

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wu T, Datta SAK, Mitra M, Gorelick RJ, Rein A, Levin JG (2010) Fundamental differences between the nucleic acid chaperone activities of HIV-1 nucleocapsid protein and gag or gag-derived proteins: biological implications. Virology 405:556–567

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wyma DJ, Kotov A, Aiken C (2000) Evidence for a stable interaction of gp41 with Pr55Gag in immature human immunodeficiency virus type 1 particles. J Virol 74:9381–9387

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wyma DJ, Jiang J, Shi J, Zhou J, Lineberger JE, Miller MD, Aiken C (2004) Coupling of human immunodeficiency virus type 1 fusion to virion maturation: a novel role of the gp41 cytoplasmic tail. J Virol 78:3429–3435

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wyss S, Dimitrov AS, Baribaud F, Edwards TG, Blumenthal R, Hoxie JA (2005) Regulation of human immunodeficiency virus type 1 envelope glycoprotein fusion by a membrane-interactive domain in the gp41 cytoplasmic tail. J Virol 79:12231–12241

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yamashita M, Emerman M (2004) Capsid is a dominant determinant of retrovirus infectivity in nondividing cells. J Virol 78:5670–5678

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yamashita M, Emerman M (2009) Cellular restriction targeting viral capsids perturbs human immunodeficiency virus type 1 infection of nondividing cells. J Virol 83:9835–9843

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yamashita M, Perez O, Hope TJ, Emerman M (2007) Evidence for direct involvement of the capsid protein in HIV infection of nondividing cells. PLoS Pathog 3:e156

    PubMed Central  Google Scholar 

  • Yang Y, Fricke T, Diaz-Griffero F (2013) Inhibition of reverse transcriptase activity increases stability of the HIV-1 core. J Virol 87:683–687

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yeung ML, Houzet L, Yedavalli VSRK, Jeang KT (2009) A genome-wide short hairpin RNA screening of Jurkat T-cells for human proteins contributing to productive HIV-1 replication. J Biol Chem 284:19463–19473

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yu X, Yuan X, Matsuda Z, Lee TH, Essex M (1992) The matrix protein of human immunodeficiency virus type 1 is required for incorporation of viral envelope protein into mature virions. J Virol 66:4966–4971

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zennou V, Mammano F, Paulous S, Mathez D, Clavel F (1998) Loss of viral fitness associated with multiple gag and gag-pol processing defects in human immunodeficiency virus type 1 variants selected for resistance to protease inhibitors in vivo. J Virol 72:3300–3306

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang H, Dornadula G, Pomerantz RJ (1996) Endogenous reverse transcription of human immunodeficiency virus type 1 in physiological microenvironments: an important stage for viral infection of nondividing cells. J Virol 79:2809–2824

    Google Scholar 

  • Zhang S, Pointer D, Singer G, Feng Y, Park K, Zhao LJ (1998) Direct binding to nucleic acids by vpr of human immunodeficiency virus type 1. Gene 212:157–166

    CAS  PubMed  Google Scholar 

  • Zheng X, Pedersen LC, Gabel SA, Mueller GA, Cuneo MJ, DeRose EF, Krahn JM, London RE (2014) Selective unfolding of one ribonuclease H domain of HIV reverse transcriptase is linked to homodimer formation. Nucleic Acids Res 2:5361–5377

    Google Scholar 

  • Zhou H, Xu M, Huang Q, Gates AT, Zhang XD, Castle JC, Stec E, Ferrer M, Strulovici B, Hazuda DJ, Espeseth AS (2008) Genome-scale RNAi screen for host factors required for HIV replication. Cell Host Microbe 4:495–504

    CAS  PubMed  Google Scholar 

  • Zhou L, Sokolskaja E, Jolly C, James W, Cowley SA, Fassati A (2011) Transportin 3 promotes a nuclear maturation step required for efficient HIV-1 integration. PLoS Pathog 7:e1002194

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu P, Chertova E, Bess J, Lifson JD, Arthur LO, Liu J, Taylor KA, Roux KH (2003) Electron tomography analysis of envelope glycoprotein trimers on HIV and simian immunodeficiency virus virions. Proc Natl Acad Sci 100:15812–15817

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu P, Liu J, Bess J, Chertova E, Lifson JD, GrisĂ© H, Ofek GA, Taylor KA, Roux KH (2006) Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature 441:847–852

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Nicolas Sluis-Cremer for providing NNRTI and NRTI Ki values. Our own work is supported by the National Institutes of Health (NIH). M.P. is supported, in part, by NIH Training Grant T32 AI 07001-36. We also thank Dr. Celia Schiffer for many helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald Swanstrom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Potempa, M., Lee, SK., Wolfenden, R., Swanstrom, R. (2015). The Triple Threat of HIV-1 Protease Inhibitors. In: Torbett, B., Goodsell, D., Richman, D. (eds) The Future of HIV-1 Therapeutics. Current Topics in Microbiology and Immunology, vol 389. Springer, Cham. https://doi.org/10.1007/82_2015_438

Download citation

Publish with us

Policies and ethics