Skip to main content

Comparative Studies of Actin- and Rho-Specific ADP-Ribosylating Toxins: Insight from Structural Biology

  • Chapter
  • First Online:
The Actin Cytoskeleton and Bacterial Infection

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 399))

Abstract

Mono-ADP-ribosylation is a major post-translational modification performed by bacterial toxins, which transfer an ADP-ribose moiety to a substrate acceptor residue. Actin- and Rho-specific ADP-ribosylating toxins (ARTs) are typical ARTs known to have very similar tertiary structures but totally different targets. Actin-specific ARTs are the A components of binary toxins, ADP-ribosylate actin at Arg177, leading to the depolymerization of the actin cytoskeleton. On the other hand, C3-like exoenzymes are Rho-specific ARTs, ADP-ribosylate Rho GTPases at Asn41, exerting an indirect effect on the actin cytoskeleton. This review focuses on the differences and similarities of actin- and Rho-specific ARTs, especially with respect to their substrate recognition and cell entry mechanisms, based on structural studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aktories K, Barmann M, Ohishi I, Tsuyama S, Jakobs KH, Habermann E (1986) Botulinum C2 toxin ADP-ribosylates actin. Nature 322:390–392

    Article  CAS  PubMed  Google Scholar 

  • Aktories K, Braun U, Rosener S, Just I, Hall A (1989) The rho gene product expressed in E. coli is a substrate of botulinum ADP-ribosyltransferase C3. Biochem Biophys Res Commun 158:209–213

    Article  CAS  PubMed  Google Scholar 

  • Aktories K, Lang AE, Schwan C, Mannherz HG (2011) Actin as target for modification by bacterial protein toxins. FEBS J 278:4526–4543

    Article  CAS  PubMed  Google Scholar 

  • Aktories K, Schmidt G, Lang AE (2015) Photorhabdus luminescens toxins TccC3 and TccC5: insecticidal ADP-ribosyltransferases that modify threonine and glutamine. Curr Top Microbiol Immunol 384:53–67

    CAS  PubMed  Google Scholar 

  • Aravind L, Zhang D, de Souza RF, Anand S, Iyer LM (2015) The natural history of ADP-ribosyltransferases and the ADP-ribosylation system. Curr Top Microbiol Immunol 384:3–32

    CAS  PubMed  Google Scholar 

  • Barth H, Preiss JC, Hofmann F, Aktories K (1998) Characterization of the catalytic site of the ADP-ribosyltransferase Clostridium botulinum C2 toxin by site-directed mutagenesis. J Biol Chem 273:29506–29511

    Article  CAS  PubMed  Google Scholar 

  • Barth H, Aktories K, Popoff MR, Stiles BG (2004) Binary bacterial toxins: biochemistry, biology, and applications of common Clostridium and Bacillus proteins. Microbiol Mol Biol Rev 68:373–402 (table of contents)

    Google Scholar 

  • Benson EL, Huynh PD, Finkelstein A, Collier RJ (1998) Identification of residues lining the anthrax protective antigen channel. Biochemistry 37:3941–3948

    Article  CAS  PubMed  Google Scholar 

  • Blocker D, Barth H, Maier E, Benz R, Barbieri JT, Aktories K (2000) The C terminus of component C2II of Clostridium botulinum C2 toxin is essential for receptor binding. Infect Immun 68:4566–4573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradley KA, Mogridge J, Mourez M, Collier RJ, Young JA (2001) Identification of the cellular receptor for anthrax toxin. Nature 414:225–229

    Article  CAS  PubMed  Google Scholar 

  • Brossier F, Sirard JC, Guidi-Rontani C, Duflot E, Mock M (1999) Functional analysis of the carboxy-terminal domain of Bacillus anthracis protective antigen. Infect Immun 67:964–967

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cunningham K, Lacy DB, Mogridge J, Collier RJ (2002) Mapping the lethal factor and edema factor binding sites on oligomeric anthrax protective antigen. Proc Natl Acad Sci USA 99:7049–7053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domenighini M, Rappuoli R (1996) Three conserved consensus sequences identify the NAD-binding site of ADP-ribosylating enzymes, expressed by eukaryotes, bacteria and T-even bacteriophages. Mol Microbiol 21:667–674

    Article  CAS  PubMed  Google Scholar 

  • Eckhardt M, Barth H, Blocker D, Aktories K (2000) Binding of Clostridium botulinum C2 toxin to asparagine-linked complex and hybrid carbohydrates. J Biol Chem 275:2328–2334

    Article  CAS  PubMed  Google Scholar 

  • Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420:629–635

    Article  CAS  PubMed  Google Scholar 

  • Evans HR, Sutton JM, Holloway DE, Ayriss J, Shone CC, Acharya KR (2003) The crystal structure of C3stau2 from Staphylococcus aureus and its complex with NAD. J Biol Chem 278:45924–45930

    Article  CAS  PubMed  Google Scholar 

  • Fahrer J, Kuban J, Heine K, Rupps G, Kaiser E, Felder E, Benz R, Barth H (2010) Selective and specific internalization of clostridial C3 ADP-ribosyltransferases into macrophages and monocytes. Cell Microbiol 12:233–247

    Article  CAS  PubMed  Google Scholar 

  • Gatsogiannis C, Lang AE, Meusch D, Pfaumann V, Hofnagel O, Benz R, Aktories K, Raunser S (2013) A syringe-like injection mechanism in Photorhabdus luminescens toxins. Nature 495:520–523

    Article  CAS  PubMed  Google Scholar 

  • Gibert M, Petit L, Raffestin S, Okabe A, Popoff MR (2000) Clostridium perfringens iota-toxin requires activation of both binding and enzymatic components for cytopathic activity. Infect Immun 68:3848–3853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han S, Craig JA, Putnam CD, Carozzi NB, Tainer JA (1999) Evolution and mechanism from structures of an ADP-ribosylating toxin and NAD complex. Nat Struct Biol 6:932–936

    Article  CAS  PubMed  Google Scholar 

  • Han S, Arvai AS, Clancy SB, Tainer JA (2001) Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis. J Mol Biol 305:95–107

    Article  CAS  PubMed  Google Scholar 

  • Holtje M, Just I, Ahnert-Hilger G (2011) Clostridial C3 proteins: recent approaches to improve neuronal growth and regeneration. Ann Anat Anatomischer Anzeiger: Official Organ Anatomische Ges 193:314–320

    Google Scholar 

  • Hottiger MO, Hassa PO, Luscher B, Schuler H, Koch-Nolte F (2010) Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci 35:208–219

    Article  CAS  PubMed  Google Scholar 

  • Irikura D, Monma C, Suzuki Y, Nakama A, Kai A, Fukui-Miyazaki A, Horiguchi Y, Yoshinari T, Sugita-Konishi Y, Kamata Y (2015) Identification and characterization of a new enterotoxin produced by Clostridium perfringens isolated from food poisoning outbreaks. PLoS ONE 10:e0138183

    Article  PubMed  PubMed Central  Google Scholar 

  • Jank T, Aktories K (2013) Strain-alleviation model of ADP-ribosylation. Proc Natl Acad Sci USA 110:4163–4164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang J, Pentelute BL, Collier RJ, Zhou ZH (2015) Atomic structure of anthrax protective antigen pore elucidates toxin translocation. Nature 521:545–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klimpel KR, Molloy SS, Thomas G, Leppla SH (1992) Anthrax toxin protective antigen is activated by a cell surface protease with the sequence specificity and catalytic properties of furin. Proc Natl Acad Sci USA 89:10277–10281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krska D, Ravulapalli R, Fieldhouse RJ, Lugo MR, Merrill AR (2015) C3larvin toxin, an ADP-ribosyltransferase from Paenibacillus larvae. J Biol Chem 290:1639–1653

    Article  PubMed  Google Scholar 

  • Lacy DB, Wigelsworth DJ, Melnyk RA, Harrison SC, Collier RJ (2004) Structure of heptameric protective antigen bound to an anthrax toxin receptor: a role for receptor in pH-dependent pore formation. Proc Natl Acad Sci USA 101:13147–13151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang AE, Schmidt G, Schlosser A, Hey TD, Larrinua IM, Sheets JJ, Mannherz HG, Aktories K. (2010) Photorhabdus luminescens toxins ADP-ribosylate actin and RhoA to force actin clustering. Science 327(5969):1139–1142.

    Google Scholar 

  • Lyras D, Rood JI (2014) Preface: ClostPath 2013 meeting on the molecular biology and pathogenesis of the Clostridia special issue. Anaerobe 30:183

    Article  PubMed  Google Scholar 

  • Margarit SM, Davidson W, Frego L, Stebbins CE (2006) A steric antagonism of actin polymerization by a salmonella virulence protein. Structure 14:1219–1229

    Article  CAS  PubMed  Google Scholar 

  • Marvaud JC, Smith T, Hale ML, Popoff MR, Smith LA, Stiles BG (2001) Clostridium perfringens iota-toxin: mapping of receptor binding and Ia docking domains on Ib. Infect Immun 69:2435–2441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menetrey J, Flatau G, Stura EA, Charbonnier JB, Gas F, Teulon JM, Le Du MH, Boquet P, Menez A (2002) NAD binding induces conformational changes in Rho ADP-ribosylating clostridium botulinum C3 exoenzyme. J Biol Chem 277:30950–30957

    Article  CAS  PubMed  Google Scholar 

  • Menetrey J, Flatau G, Boquet P, Menez A, Stura EA (2008) Structural basis for the NAD-hydrolysis mechanism and the ARTT-loop plasticity of C3 exoenzymes. Protein Sci 17:878–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meusch D, Gatsogiannis C, Efremov RG, Lang AE, Hofnagel O, Vetter IR, Aktories K, Raunser S (2014) Mechanism of Tc toxin action revealed in molecular detail. Nature 508:61–65

    Article  CAS  PubMed  Google Scholar 

  • Milne JC, Furlong D, Hanna PC, Wall JS, Collier RJ (1994) Anthrax protective antigen forms oligomers during intoxication of mammalian cells. J Biol Chem 269:20607–20612

    CAS  PubMed  Google Scholar 

  • Mogridge J, Mourez M, Collier RJ (2001) Involvement of domain 3 in oligomerization by the protective antigen moiety of anthrax toxin. J Bacteriol 183:2111–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molloy SS, Bresnahan PA, Leppla SH, Klimpel KR, Thomas G (1992) Human furin is a calcium-dependent serine endoprotease that recognizes the sequence Arg-X-X-Arg and efficiently cleaves anthrax toxin protective antigen. J Biol Chem 267:16396–16402

    CAS  PubMed  Google Scholar 

  • Monma C, Hatakeyama K, Obata H, Yokoyama K, Konishi N, Itoh T, Kai A (2015) Four foodborne disease outbreaks caused by a new type of enterotoxin-producing Clostridium perfringens. J Clin Microbiol 53:859–867

    Article  PubMed  PubMed Central  Google Scholar 

  • Mourez M, Yan M, Lacy DB et al (2003) Mapping dominant-negative mutations of anthrax protective antigen by scanning mutagenesis. Proc Natl Acad Sci USA 100:13803–13808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagahama M, Sakaguchi Y, Kobayashi K, Ochi S, Sakurai J (2000) Characterization of the enzymatic component of Clostridium perfringens iota-toxin. J Bacteriol 182:2096–2103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nassi S, Collier RJ, Finkelstein A (2002) PA63 channel of anthrax toxin: an extended beta-barrel. Biochemistry 41:1445–1450

    Article  CAS  PubMed  Google Scholar 

  • Papatheodorou P, Carette JE, Bell GW, Schwan C, Guttenberg G, Brummelkamp TR, Aktories K (2011) Lipolysis-stimulated lipoprotein receptor (LSR) is the host receptor for the binary toxin Clostridium difficile transferase (CDT). Proc Natl Acad Sci USA 108:16422–16427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papatheodorou P, Wilczek C, Nolke T, Guttenberg G, Hornuss D, Schwan C, Aktories K (2012) Identification of the cellular receptor of Clostridium spiroforme toxin. Infect Immun 80:1418–1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perelle S, Gibert M, Boquet P, Popoff MR (1993) Characterization of Clostridium perfringens iota-toxin genes and expression in Escherichia coli. Infect Immun 61:5147–5156

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perelle S, Gibert M, Boquet P, Popoff MR (1995) Characterization of Clostridium perfringens iota-toxin genes and expression in Escherichia coli. Infect Immun 63:4967

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perelle S, Domenighini M, Popoff MR (1996) Evidence that Arg-295, Glu-378, and Glu-380 are active-site residues of the ADP-ribosyltransferase activity of iota toxin. FEBS Lett 395:191–194

    Article  CAS  PubMed  Google Scholar 

  • Petosa C, Collier RJ, Klimpel KR, Leppla SH, Liddington RC (1997) Crystal structure of the anthrax toxin protective antigen. Nature 385:833–838

    Article  CAS  PubMed  Google Scholar 

  • Popoff MR, Rubin EJ, Gill DM, Boquet P (1988) Actin-specific ADP-ribosyltransferase produced by a Clostridium difficile strain. Infect Immun 56:2299–2306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Popoff MR, Milward FW, Bancillon B, Boquet P (1989) Purification of the Clostridium spiroforme binary toxin and activity of the toxin on HEp-2 cells. Infect Immun 57:2462–2469

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rohrbeck A, Kolbe T, Hagemann S, Genth H, Just I (2012) Distinct biological activities of C3 and ADP-ribosyltransferase-deficient C3-E174Q. FEBS J 279:2657–2671

    Article  CAS  PubMed  Google Scholar 

  • Rohrbeck A, von Elsner L, Hagemann S, Just I (2014a) Binding of Clostridium botulinum C3 exoenzyme to intact cells. Naunyn-Schmiedeberg’s Arch Pharmacol 387:523–532

    CAS  Google Scholar 

  • Rohrbeck A, Schroder A, Hagemann S, Pich A, Holtje M, Ahnert-Hilger G, Just I (2014b) Vimentin mediates uptake of C3 exoenzyme. PLoS ONE 9:e101071

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosovitz MJ, Schuck P, Varughese M, Chopra AP, Mehra V, Singh Y, McGinnis LM, Leppla SH (2003) Alanine-scanning mutations in domain 4 of anthrax toxin protective antigen reveal residues important for binding to the cellular receptor and to a neutralizing monoclonal antibody. J Biol Chem 278:30936–30944

    Article  CAS  PubMed  Google Scholar 

  • Rotsch J, Rohrbeck A, May M, Kolbe T, Hagemann S, Schelle I, Just I, Genth H, Huelsenbeck SC (2012) Inhibition of macrophage migration by C. botulinum exoenzyme C3. Naunyn-Schmiedeberg’s Arch Pharmacol 385:883–890

    Article  CAS  Google Scholar 

  • Santelli E, Bankston LA, Leppla SH, Liddington RC (2004) Crystal structure of a complex between anthrax toxin and its host cell receptor. Nature 430:905–908

    Article  CAS  PubMed  Google Scholar 

  • Schleberger C, Hochmann H, Barth H, Aktories K, Schulz GE (2006) Structure and action of the binary C2 toxin from Clostridium botulinum. J Mol Biol 364:705–715

    Article  CAS  PubMed  Google Scholar 

  • Scobie HM, Rainey GJ, Bradley KA, Young JA (2003) Human capillary morphogenesis protein 2 functions as an anthrax toxin receptor. Proc Natl Acad Sci USA 100:5170–5174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekine A, Fujiwara M, Narumiya S (1989) Asparagine residue in the rho gene product is the modification site for botulinum ADP-ribosyltransferase. J Biol Chem 264:8602–8605

    CAS  PubMed  Google Scholar 

  • Shniffer A, Visschedyk DD, Ravulapalli R, Suarez G, Turgeon ZJ, Petrie AA, Chopra AK, Merrill AR (2012) Characterization of an actin-targeting ADP-ribosyltransferase from aeromonas hydrophila. J Biol Chem

    Google Scholar 

  • Simon NC, Aktories K, Barbieri JT (2014) Novel bacterial ADP-ribosylating toxins: structure and function. Nat Rev Microbiol 12:599–611

    Article  CAS  PubMed  Google Scholar 

  • Stiles BG, Hale ML, Marvaud JC, Popoff MR (2000) Clostridium perfringens iota toxin: binding studies and characterization of cell surface receptor by fluorescence-activated cytometry. Infect Immun 68:3475–3484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundriyal A, Roberts AK, Shone CC, Acharya KR (2009) Structural basis for substrate recognition in the enzymatic component of ADP-ribosyltransferase toxin CDTa from Clostridium difficile. J Biol Chem 284:28713–28719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toda A, Tsurumura T, Yoshida T, Tsumori Y, Tsuge H (2015) Rho GTPase recognition by C3 exoenzyme based on C3-RhoA complex structure. J Biol Chem

    Google Scholar 

  • Tsuge H, Nagahama M, Nishimura H, Hisatsune J, Sakaguchi Y, Itogawa Y, Katunuma N, Sakurai J (2003) Crystal structure and site-directed mutagenesis of enzymatic components from Clostridium perfringens iota-toxin. J Mol Biol 325:471–483

    Article  CAS  PubMed  Google Scholar 

  • Tsuge H, Nagahama M, Oda M, Iwamoto S, Utsunomiya H, Marquez VE, Katunuma N, Nishizawa M, Sakurai J (2008) Structural basis of actin recognition and arginine ADP-ribosylation by Clostridium perfringens iota-toxin. Proc Natl Acad Sci USA 105:7399–7404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsurumura T, Tsumori Y, Qiu H, Oda M, Sakurai J, Nagahama M, Tsuge H (2013) Arginine ADP-ribosylation mechanism based on structural snapshots of iota-toxin and actin complex. Proc Natl Acad Sci USA 110:4267–4272

    Article  CAS  PubMed  Google Scholar 

  • van Damme J, Jung M, Hofmann F, Just I, Vandekerckhove J, Aktories K (1996) Analysis of the catalytic site of the actin ADP-ribosylating Clostridium perfringens iota toxin. FEBS Lett 380:291–295

    Article  PubMed  Google Scholar 

  • Vandekerckhove J, Schering B, Barmann M, Aktories K (1987) Clostridium perfringens iota toxin ADP-ribosylates skeletal muscle actin in Arg-177. FEBS Lett 225:48–52

    Article  CAS  PubMed  Google Scholar 

  • Varughese M, Teixeira AV, Liu S, Leppla SH (1999) Identification of a receptor-binding region within domain 4 of the protective antigen component of anthrax toxin. Infect Immun 67:1860–1865

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vogelsgesang M, Stieglitz B, Herrmann C, Pautsch A, Aktories K (2008) Crystal structure of the Clostridium limosum C3 exoenzyme. FEBS Lett 582:1032–1036

    Article  CAS  PubMed  Google Scholar 

  • Wilde C, Chhatwal GS, Schmalzing G, Aktories K, Just I (2001) A novel C3-like ADP-ribosyltransferase from Staphylococcus aureus modifying RhoE and Rnd3. J Biol Chem 276:9537–9542

    Article  CAS  PubMed  Google Scholar 

  • Wilde C, Vogelsgesang M, Aktories K (2003) Rho-specific Bacillus cereus ADP-ribosyltransferase C3cer cloning and characterization. Biochemistry 42:9694–9702

    Article  CAS  PubMed  Google Scholar 

  • Yonogi S, Matsuda S, Kawai T et al (2014) BEC, a novel enterotoxin of Clostridium perfringens found in human clinical isolates from acute gastroenteritis outbreaks. Infect Immun 82:2390–2399

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

H.T. appreciates Masataka Oda, Jun Sakurai, and Masahiro Nagahama, who support our work on the structure of toxin-substrate protein complex.

This work was supported in part by a Strategic Research Foundation Grant-aided Project for Private Universities and Grant-in-Aid for Scientific Research, KAKENHI Grant Number: 23121529, 25121733 and 15K08289 of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Tsuge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tsuge, H., Tsurumura, T., Toda, A., Murata, H., Toniti, W., Yoshida, T. (2016). Comparative Studies of Actin- and Rho-Specific ADP-Ribosylating Toxins: Insight from Structural Biology. In: Mannherz, H. (eds) The Actin Cytoskeleton and Bacterial Infection. Current Topics in Microbiology and Immunology, vol 399. Springer, Cham. https://doi.org/10.1007/82_2016_23

Download citation

Publish with us

Policies and ethics