Skip to main content

Micropatterned Hydrogels for Stem Cell Culture

  • Chapter
  • First Online:
Biomaterials as Stem Cell Niche

Abstract

Stem cells represent a new frontier in tissue engineering and regenerative medicine, due, in large part, to their ability to proliferate and differentiate along multiple lineages for use in a myriad of clinical applications. Efforts are currently underway to understand the molecular mechanisms underlying the decision of stem cells to enter mitotic dormancy, undergo self-renewal, or terminally differentiate. Recent advances in the field of micropatterned biomaterials, specifically hydrogels, have generated new approaches that may allow scientists to more easily address the complex questions commonly encountered in stem cell biology. Given the potential power of the combination of hydrogel biomaterials and micropatterning techniques applied to areas of stem cell biology, this chapter begins with a brief overview of important characteristics of stem cells that could be further understood using micropattered hydrogels, as well as a review of basics of hydrogels and micropatterning technologies. The second half of the chapter provides a summary of particular micropatterned gels that have been applied to in vitro cell-based work, with specific attention paid to how these techniques could be applied toward stem cell research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ECM:

Extracellular matrix

3D:

Three-dimensional

ESCs:

Embryonic stem cells

HSCs:

Hematopoietic stem cells

MSCs:

Mesenchymal stem cells

NSCs:

Neural stem cells

BMPs:

Bone morphogenetic proteins

TGF-βs:

Transforming growth factor-βs

GDFs:

Growth and differentiation factors

HA:

Hyaluronic acid

PEG:

Poly(ethylene glycol)

PVA:

Poly(vinyl alcohol)

RGD:

Arg-Gly-Asp

MMP:

Matrix metalloproteinase

MEMS:

Microelectromechanical systems

LSL:

Laser-scanning lithography

SFL:

Stop-flow lithography

OFML:

Optofluidic maskless lithography

SLMs:

Spatial light modulators

PDMS:

Polydimethylsiloxane

GPQG:

Gly-Pro-Gln-Gly

TPLS:

Two-photon laser scanning

LGPA:

Leu-Gly-Pro-Ala

HDF:

Human dermal fibroblast

PEG-DA:

PEG-diacrylate

PEG-mA:

PEG-methacrylate

Hep G2:

Human hepatoblastoma cells

References

  1. Kolf, C.M., Cho, E., Tuan, R.S.: Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res. Ther. 9, 204–213 (2007)

    Google Scholar 

  2. Chen, F.H., Rousche, K.T., Tuan, R.S.: Technology insight: adult stem cells in cartilage regeneration and tissue engineering. Nat. Clin. Pract. Rheumatol. 2, 373–382 (2006)

    Google Scholar 

  3. Discher, D., Dong, C., Fredberg, J.J., Guilak, F., Ingber, D., Janmey, P., Kamm, R.D., Schmid-Schönbein, G.W., Weinbaum, S.: Biomechanics: cell research and applications for the next decade. Ann. Biomed. Eng. 37, 847–859 (2009)

    Google Scholar 

  4. Baksh, D., Song, L., Tuan, R.S.: Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J. Cell. Mol. Med. 8, 301–316 (2004)

    Google Scholar 

  5. Chai, C., Leong, K.W.: Biomaterials approach to expand and direct differentiation of stem cells. Mol. Ther. 15, 467–480 (2007)

    Google Scholar 

  6. Nuttelman, C., Rice, M., Rydholm, A., Salinas, C., Shah, D., Anseth, K.: Macromolecular monomers for the synthesis of hydrogel niches and their application in cell encapsulation and tissue engineering. Prog. Polym. Sci. 33, 167–179 (2008)

    Google Scholar 

  7. Pirone, D.M., Chen, C.S.: Strategies for engineering the adhesive microenvironment. J. Mammary Gland Biol. Neoplasia 9, 405–417 (2004)

    Google Scholar 

  8. Kloxin, A.M., Kasko, A.M., Salinas, C.N., Anseth, K.S.: Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324, 59–63 (2009)

    Google Scholar 

  9. Liu Tsang, V., Chen, A.A., Cho, L.M., Jadin, K.D., Sah, R.L., DeLong, S., West, J.L., Bhatia, S.N.: Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels. Fed. Am. Soc. Exp. Biol. J. 21, 790–801 (2007)

    Google Scholar 

  10. Panda, P., Ali, S., Lo, E., Chung, B.G., Hatton, T.A., Khademhosseini, A., Doyle, P.S.: Stop-flow lithography to generate cell-laden microgel particles. Lab Chip 8, 1056–1061 (2008)

    Google Scholar 

  11. Lund, A.W., Yener, B., Stegemann, J.P., Plopper, G.E.: The natural and engineered 3D microenvironment as a regulatory cue during stem cell fate determination. Tissue Eng. Part B Rev. 15, 371–380 (2009)

    Google Scholar 

  12. Lutolf, M.P., Blau, H.M.: Artificial stem cell niches. Adv. Mater. 21, 3255–3268 (2009)

    Google Scholar 

  13. Khademhosseini, A., Langer, R., Borenstein, J., Vacanti, J.P.: Microscale technologies for tissue engineering and biology. Proc. Natl. Acad. Sci. U.S.A. 103, 2480–2487 (2006)

    Google Scholar 

  14. Reilly, G., Engler, A.: Intrinsic extracellular matrix properties regulate stem cell differentiation. J. Biomech. 43, 55–62 (2010)

    Google Scholar 

  15. Khetani, S.R., Bhatia, S.N.: Engineering tissues for in vitro applications. Curr. Opin. Biotech. 17, 524–531 (2006)

    Google Scholar 

  16. McGuigan, A.P., Bruzewicz, D.A., Glavan, A., Butte, M., Whitesides, G.M.: Cell encapsulation in sub-mm sized gel modules using replica molding. PLoS One 3, e2258 (2008)

    Google Scholar 

  17. Tan, W.H., Takeuchi, S.: Dynamic microarray system with gentle retrieval mechanism for cell-encapsulating hydrogel beads. Lab Chip 8, 259–266 (2008)

    Google Scholar 

  18. Vickerman, V., Blundo, J., Chung, S., Kamm, R.: Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Lab Chip 8, 1468–1477 (2008)

    Google Scholar 

  19. Chung, S., Sudo, R., Mack, P.J., Wan, C.R., Vickerman, V., Kamm, R.D.: Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab Chip 9, 269–275 (2009)

    Google Scholar 

  20. Lii, J., Hsu, W.J., Parsa, H., Das, A., Rouse, R., Sia, S.K.: Real-time microfluidic system for studying mammalian cells in 3D microenvironments. Anal. Chem. 80, 3640–3647 (2008)

    Google Scholar 

  21. Murtuza, B., Nichol, J.W., Khademhosseini, A.: Micro- and nanoscale control of the cardiac stem cell niche for tissue fabrication. Tissue Eng. Part B Rev. 15, 443–454 (2009)

    Google Scholar 

  22. Karp, J.M., Yeh, J., Eng, G., Fukuda, J., Blumling, J., Suh, K.Y., Cheng, J., Mahdavi, A., Borenstein, J., Langer, R., Khademhosseini, A.: Controlling size, shape and homogeneity of embryoid bodies using poly(ethylene glycol) microwells. Lab Chip 7, 786–794 (2007)

    Google Scholar 

  23. Moeller, H.-C., Mian, M.K., Shrivastava, S., Chung, B.G., Khademhosseini, A.: A microwell array system for stem cell culture. Biomaterials 29, 752–763 (2008)

    Google Scholar 

  24. Mapili, G., Lu, Y., Chen, S., Roy, K.: Laser-layered microfabrication of spatially patterned functionalized tissue-engineering scaffolds, J. Biomed. Mater. Res. 75, 414–424 (2005)

    Google Scholar 

  25. Lu, Y., Mapili, G., Suhali, G., Chen, S., Roy, K.: A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds. J. Biomed. Mater. Res. 77, 396–405 (2006)

    Google Scholar 

  26. Burdick, J.A., Anseth, K.S.: Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials 23, 4315–4323 (2002)

    Google Scholar 

  27. Bryant, S.J., Davis-Arehart, K.A., Luo, N., Shoemaker, R.K., Arthur, J.A., Anseth, K.S. Synthesis and characterization of photopolymerized multifunctional hydrogels: water-soluble poly(vinyl alcohol) and chondroitin sulfate macromers for chondrocyte encapsulation. Macromolecules 37, 6726–6733 (2004)

    Google Scholar 

  28. Simms, H.M., Bowman, C.M., Anseth, K.S.: Using living radical polymerization to enable facile incorporation of materials in microfluidic cell culture devices. Biomaterials 29, 2228–2236 (2008)

    Google Scholar 

  29. Nicodemus, G.D., Bryant, S.J.: Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng. Part B Rev. 14, 149–165 (2008)

    Google Scholar 

  30. Gillette, B.M., Jensen, J.A., Tang, B., Yang, G.J., Bazargan-Lari, A., Zhong, M., Sia, S.K.: In situ collagen assembly for integrating microfabricated three-dimensional cell-seeded matrices. Nat. Mater. 7, 636–640 (2008)

    Google Scholar 

  31. Watt, F.M., Hogan, B.L.: Out of eden: stem cells and their niches. Science 287, 1427–1430 (2000)

    Google Scholar 

  32. Ringe, J., Sittinger, M.: Tissue engineering in the rheumatic diseases. Arthritis Res. Ther. 11, 211 (2009)

    Google Scholar 

  33. Gerecht-Nir, S., Cohen, S., Itskovitz-Eldor, J.: Bioreactor cultivation enhances the efficiency of human embryoid body (hEB) formation and differentiation. Biotechnol. Bioeng. 86, 493–502 (2004)

    Google Scholar 

  34. Adams, G.B., Scadden, D.T.: A niche opportunity for stem cell therapeutics. Gene Ther. 15, 96–99 (2008)

    Google Scholar 

  35. Jackson, K.A., Majka, S.M., Wulf, G.G., Goodell, M.A.: Stem cells: a minireview. J. Cell. Biochem. Suppl. 38, 1–6 (2002)

    Google Scholar 

  36. Cordey, M., Limacher, M., Kobel, S., Taylor, V., Lutolf, M.P.: Enhancing the reliability and throughput of neurosphere culture on hydrogel microwell arrays. Stem Cells 26, 2586–2594 (2008)

    Google Scholar 

  37. Ashton, R.S., Banerjee, A., Punyani, S., Schaffer, D.V., Kane, R.S.: Scaffolds based on degradable alginate hydrogels and poly(lactide-co-glycolide) microspheres for stem cell culture. Biomaterials 28, 5518–5525 (2007)

    Google Scholar 

  38. Hwang, N.S., Varghese, S., Elisseeff, J.: Controlled differentiation of stem cells. Adv. Drug Deliv. Rev. 60, 199–214 (2008)

    Google Scholar 

  39. Kobel, S., Limacher, M., Gobaa, S., Laroche, T., Lutolf, M.: Micropatterning of hydrogels by soft embossing. Langmuir 25, 8774–8779 (2009)

    Google Scholar 

  40. Saha, K., Keung, A.J., Irwin, E.F., Li, Y., Little, L., Schaffer, D.V., Healy, K.E.: Substrate modulus directs neural stem cell behavior. Biophys. J. 95, 4426–4438 (2008)

    Google Scholar 

  41. Temenoff, J.S., Mikos, A.G.: Biomaterials: The Intersection of Biology and Materials Science. Pearson Prentice-Hall, Upper Saddle River (2007)

    Google Scholar 

  42. McBeath, R., Pirone, D.M., Nelson, C.M., Bhadriraju, K., Chen, C.S.: Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004)

    Google Scholar 

  43. Lee, I.-C., Wang, J.-H., Lee, Y.-T., Young, T.-H.: The differentiation of mesenchymal stem cells by mechanical stress or/and co-culture system. Biochem. Biophys. Res. Commun. 352, 147–152 (2007)

    Google Scholar 

  44. Tuan, R.S., Boland, G., Tuli, R.: Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res. Ther. 5, 32–45 (2003)

    Google Scholar 

  45. Colter, D.C., Class, R., DiGirolamo, C.M., Prockop, D.J.: Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc. Natl. Acad. Sci. U.S.A. 97, 3213–3218 (2000)

    Google Scholar 

  46. Bruder, S.P., Jaiswal, N., Haynesworth, S.E.: Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J. Cell. Biochem. 64, 278–294 (1997)

    Google Scholar 

  47. Tsutsumi, S., Shimazu, A., Miyazaki, K., Pan, H., Koike, C., Yoshida, E., Takagishi, K., Kato, Y.: Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF. Biochem. Biophys. Res. Commun. 288, 413–419 (2001)

    Google Scholar 

  48. Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S., Marshak, D.R.: Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147 (1999)

    Google Scholar 

  49. Drury, J.L., Mooney, D.J.: Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24, 4337–4351 (2003)

    Google Scholar 

  50. Liu Tsang, V., Bhatia, S.N.: Three-dimensional tissue fabrication. Adv. Drug Deliv. Rev. 56, 1635–1647 (2004)

    Google Scholar 

  51. Jia, X., Yeo, Y., Clifton, R.J., Jiao, T., Kohane, D.S., Kobler, J.B., Zeitels, S.M., Langer, R.: Hyaluronic acid-based microgels and microgel networks for vocal fold regeneration. Biomacromolecules 7, 3336–3344 (2006)

    Google Scholar 

  52. Schofield, R.: The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4, 7–25 (1978)

    Google Scholar 

  53. Morrison, S.J., Spradling, A.C.: Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132, 598–611 (2008)

    Google Scholar 

  54. Scadden, D.T.: The stem-cell niche as an entity of action. Nature 441, 1075–1079 (2006)

    Google Scholar 

  55. Hartmann, C.: A Wnt canon orchestrating osteoblastogenesis. Trends Cell Biol. 16, 151–158 (2006)

    Google Scholar 

  56. Gooch, K.J., Blunk, T., Courter, D.L., Sieminski, A.L., Vunjak-Novakovic, G., Freed, L.E.: Bone morphogenetic proteins-2, -12, and -13 modulate in vitro development of engineered cartilage. Tissue Eng. 8, 591–601 (2002)

    Google Scholar 

  57. Massague, J., Blain, S.W., Lo, R.S.: TGFβ signaling in growth control, cancer, and heritable disorders. Cell 103, 295–309 (2000)

    Google Scholar 

  58. Johnstone, B., Hering, T.M., Caplan, A.I., Goldberg, V.M., Yoo, J.U.: In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp. Cell. Res. 238, 265–272 (1998)

    Google Scholar 

  59. Qi, H., Aguiar, D.J., Williams, S.M., La Pean, A., Pan, W., Verfaillie, C.M.: Identification of genes responsible for osteoblast differentiation from human mesodermal progenitor cells. Proc. Natl. Acad. Sci. U.S.A. 100, 3305–3310 (2003)

    Google Scholar 

  60. Ruiz, S.A., Chen, C.S.: Emergence of patterned stem cell differentiation within multicellular structures. Stem Cells 26, 2921–2927 (2008)

    Google Scholar 

  61. Glossop, J.R., Cartmell, S.H.: Effect of fluid flow-induced shear stress on human mesenchymal stem cells: differential gene expression of IL1B and MAP3K8 in MAPK signaling. Gene Expr. Patterns 9, 381–388 (2009)

    Google Scholar 

  62. Kisiday, J.D., Frisbie, D.D., McIlwraith, C.W., Grodzinsky, A.J.: Dynamic compression stimulates proteoglycan synthesis by mesenchymal stem cells in the absence of chondrogenic cytokines. Tissue Eng. Part A 15, 2817–2824 (2009)

    Google Scholar 

  63. Ward, D.F., Jr., Salasznyk, R.M., Klees, R.F., Backiel, J., Agius, P., Bennett, K., Boskey, A., Plopper, G.E.: Mechanical strain enhances extracellular matrix-induced gene focusing and promotes osteogenic differentiation of human mesenchymal stem cells through an extracellular-related kinase-dependent pathway. Stem Cells Dev. 16, 467–480 (2007)

    Google Scholar 

  64. Simmons, C.A., Matlis, S., Thornton, A.J., Chen, S., Wang, C.Y., Mooney, D.J.: Cyclic strain enhances matrix mineralization by adult human mesenchymal stem cells via the extracellular signal-regulated kinase (ERK1/2) signaling pathway. J. Biomech. 36, 1087–1096 (2003)

    Google Scholar 

  65. Liu, J., Zhao, Z., Li, J., Zou, L., Shuler, C., Zou, Y., Huang, X., Li, M., Wang, J.: Hydrostatic pressures promote initial osteodifferentiation with ERK1/2 not p38 MAPK signaling involved. J. Cell. Biochem. 107, 224–232 (2009)

    Google Scholar 

  66. Patwari, P., Lee, R.T.: Mechanical control of tissue morphogenesis. Circ. Res. 103, 234–243 (2008)

    Google Scholar 

  67. Engler, A.J., Sen, S., Sweeney, H.L., Discher, D.E.: Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006)

    Google Scholar 

  68. Angele, P., Yoo, J.U., Smith, C., Mansour, J., Jepsen, K.J., Nerlich, M., Johnstone, B.: Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro. J. Orthop. Res. 21, 451–457 (2003)

    Google Scholar 

  69. Scherer, K., Schunke, M., Sellckau, R., Hassenpflug, J., Kurz, B.: The influence of oxygen and hydrostatic pressure on articular chondrocytes and adherent bone marrow cells in vitro. Biorheology 41, 323–333 (2004)

    Google Scholar 

  70. Altman, G.H., Horan, R.L., Martin, I., Farhadi, J., Stark, P.R.H., Volloch, V., Richmond, J.C., Vunjak-Novakovic, G., Kaplan, D.L.: Cell differentiation by mechanical stress. Fed. Am. Soc. Exp. Biol. J. 16, 270–272 (2002)

    Google Scholar 

  71. De Bari, C., Dell’Accio, F., Tylzanowski, P., Luyten, F.P.: Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 44, 1928–1942 (2001)

    Google Scholar 

  72. Mezey, E., Chandross, K.J., Harta, G., Maki, R.A., McKercher, S.R.: Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290, 1779–1782 (2000)

    Google Scholar 

  73. Wada, M.R., Inagawa-Ogashiwa, M., Shimizu, S., Yasumoto, S., Hashimoto, N.: Generation of different fates from multipotent muscle stem cells. Development 129, 2987–2995 (2002)

    Google Scholar 

  74. Filip, S., English, D., Mokry, J.: Issues in stem cell plasticity. J. Cell Mol. Med. 8, 572–577 (2004)

    Google Scholar 

  75. Weissman, I.L., Anderson, D.J., Gage, F.: Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu. Rev. Cell Dev. Biol. 17, 387–403 (2001)

    Google Scholar 

  76. Cho, E., Kutty, J.K., Datar, K., Lee, J.S., Vyavahare, N.R., Webb, K.: A novel synthetic route for the preparation of hydrolytically degradable synthetic hydrogels. J. Biomed. Mater. Res. Part A 90, 1073–1082 (2009)

    Google Scholar 

  77. Lin, C.-C., Metters, A.T.: Hydrogels in controlled release formulations: network design and mathematical modeling. Adv. Drug Deliv. Rev. 58, 1379–1408 (2006)

    Google Scholar 

  78. Peppas, N.A., Huang, Y., Torres-Lugo, M., Ward, J.H., Zhang, J.: Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu. Rev. Biomed. Eng. 2, 9–29 (2000)

    Google Scholar 

  79. Lowman, A.M., Peppas, N.A.: Hydrogels. Wiley, New York (1999)

    Google Scholar 

  80. Tessmar, J.K., Göpferich, A.M.: Customized PEG-derived copolymers for tissue-engineering applications. Macromol. Biosci. 7, 23–39 (2007)

    Google Scholar 

  81. Ratner, B.D., Hoffman, A.S.: Synthetic Hydrogels for Biomedical Applications. American Chemical Society, Washington, DC (1976)

    Google Scholar 

  82. Buxton, A.N., Zhu, J., Marchant, R., West, J.L., Yoo, J.U., Johnstone, B.: Design and characterization of poly(ethylene glycol) photopolymerizable semi-interpenetrating networks for chondrogenesis of human mesenchymal stem cells. Tissue Eng. 13, 2549–2560 (2007)

    Google Scholar 

  83. Mano, J.F., Silva, G.A., Azevedo, H.S., Malafaya, P.B., Sousa, R.A., Silva, S.S., Boesel, L.F., Oliveira, J.M., Santos, T.C., Marques, A.P., Neves, N.M., Reis, R.L.: Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J. R. Soc. Interface 4, 999–1030 (2007)

    Google Scholar 

  84. Peppas, N.A., Bures, P., Leobandung, W., Ichikawa, H.: Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 50, 27–46 (2000)

    Google Scholar 

  85. Jia, X., Kiick, K.L.: Hybrid multicomponent hydrogels for tissue engineering. Macromol. Biosci. 9, 140–156 (2009)

    Google Scholar 

  86. Tabata, Y.: Tissue regeneration based on tissue engineering technology. Congenit. Anom. 44, 111–124 (2004)

    Google Scholar 

  87. Peppas, N., Hilt, J., Khademhosseini, A., Langer, R.: Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv. Mater. 18, 1345–1360 (2006)

    Google Scholar 

  88. Davis, K.A., Anseth, K.S.: Controlled release from crosslinked degradable networks. Crit. Rev. Ther. Drug Carr. Syst. 19, 385–423 (2002)

    Google Scholar 

  89. Lee, K.Y., Mooney, D.J.: Hydrogels for tissue engineering. Chem. Rev. 101, 1869–1879 (2001)

    Google Scholar 

  90. Yang, S., Leong, K.F., Du, Z., Chua, C.K.: The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng. 7, 679–689 (2001)

    Google Scholar 

  91. Lee, C.H., Singla, A., Lee, Y.: Biomedical applications of collagen. Int. J. Pharm. 221, 1–22 (2001)

    Google Scholar 

  92. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J.D.: Molecular Biology of the Cell. 3rd ed., Garland Publishing, Inc., New York, 1994

    Google Scholar 

  93. Suh, J.K., Matthew, H.W.: Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21, 2589–2598 (2000)

    Google Scholar 

  94. Smidsrød, O., Skjåk-Braek, G.: Alginate as immobilization matrix for cells. Trends Biotechnol. 8, 71–78 (1990)

    Google Scholar 

  95. Khademhosseini, A., Ferreira, L., Blumling, III J., Yeh, J., Karp, J.M., Fukuda, J., Langer, R.: Co-culture of human embryonic stem cells with murine embryonic fibroblasts on microwell-patterned substrates. Biomaterials 27, 5968–5977 (2006)

    Google Scholar 

  96. Thomson, R., Wake, M., Yaszemski, M., Mikos, A.: Biodegradable polymer scaffolds to regenerate organs. Adv. Polym. Sci. 122, 245–274 (1995)

    Google Scholar 

  97. Cruise, G.M., Scharp, D.S., Hubbell, J.A.: Characterization of permeability and network structure of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels. Biomaterials 19, 1287–1294 (1998)

    Google Scholar 

  98. Hassan, C., Peppas, N.: Structure and morphology of freeze/thawed PVA hydrogels. Macromolecules 33, 2472–2479 (2000)

    Google Scholar 

  99. Brink, K.S., Yang, P.J., Temenoff, J.S.: Degradative properties and cytocompatibility of a mixed-mode hydrogel containing oligo[poly(ethylene glycol) fumarate] and poly(ethylene glycol)dithiol. Acta Biomater. 5, 570–579 (2009)

    Google Scholar 

  100. Nuttelman, C.R., Mortisen, D.J., Henry, S.M., Anseth, K.S.: Attachment of fibronectin to poly(vinyl alcohol) hydrogels promotes NIH3T3 cell adhesion, proliferation, and migration. J. Biomed. Mater. 57, 217–223 (2001)

    Google Scholar 

  101. Ratner, B.D., Hoffman, A.S., Schoen, F.J., Lemons, J.E.: Biomaterials Science: An Introduction to Materials in Medicine. 2nd edn. Elsevier, Amsterdam (2004)

    Google Scholar 

  102. Hubbell, J.A.: Materials as morphogenetic guides in tissue engineering. Curr. Opin. Biotech. 14, 551–558 (2003)

    Google Scholar 

  103. Stevens, M.M., Qanadilo, H.F., Langer, R., Prasad Shastri, V.: A rapid-curing alginate gel system: utility in periosteum-derived cartilage tissue engineering. Biomaterials 25, 887–894 (2004)

    Google Scholar 

  104. Temenoff, J.S., Park, H., Jabbari, E., Conway, D.E., Sheffield, T.L., Ambrose, C.G., Mikos, A.G.: Thermally cross-linked oligo(poly(ethylene glycol) fumarate) hydrogels support osteogenic differentiation of encapsulated marrow stromal cells in vitro. Biomacromolecules 5, 5–10 (2004)

    Google Scholar 

  105. Temenoff, J.S., Park, H., Jabbari, E., Sheffield, T.L., LeBaron, R.G., Ambrose, C.G., Mikos, A.G.: In vitro osteogenic differentiation of marrow stromal cells encapsulated in biodegradable hydrogels. J. Biomed. Mater. Res. A 70, 235–244 (2004)

    Google Scholar 

  106. Hong, Y., Song, H., Gong, Y., Mao, Z., Gao, C., Shen, J.: Covalently crosslinked chitosan hydrogel: Properties of in vitro degradation and chondrocyte encapsulation. Acta Biomater. 3, 23–31 (2007)

    Google Scholar 

  107. Bryant, S.J., Anseth, K.S.: Controlling the spatial distribution of ECM components in degradable PEG hydrogels for tissue engineering cartilage. J. Biomed. Mater. Res. Part A 64, 70–79 (2003)

    Google Scholar 

  108. Williams, C.G., Kim, T.K., Taboas, A., Malik, A., Manson, P., Elisseeff, J.: In vitro chondrogenesis of bone marrow-derived mesenchymal stem cells in a photopolymerizing hydrogel. Tissue Eng. 9, 679–688 (2003)

    Google Scholar 

  109. Temenoff, J.S., Shin, H., Conway, D.E., Engel, P.S., Mikos, A.G.: In vitro cytotoxicity of redox radical initiators for cross-linking of oligo(poly(ethylene glycol) fumarate) macromers. Biomacromolecules 4, 1605–1613 (2003)

    Google Scholar 

  110. Bryant, S.J., Nuttelman, C.R., Anseth, K.S.: Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J. Biomater. Sci. Polym. Ed. 11, 439–457 (2000)

    Google Scholar 

  111. Williams, C.G., Malik, A.N., Kim, T.K., Manson, P.N., Elisseeff, J.H.: Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials 26, 1211–1218 (2005)

    Google Scholar 

  112. Mann, B.K., Gobin, A.S., Tsai, A.T., Schmedlen, R.H., West, J.L.: Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials 22, 3045–3051 (2001)

    Google Scholar 

  113. Park, Y., Lutolf, M.P., Hubbell, J.A., Hunziker, E.B., Wong, M.: Bovine primary chondrocyte culture in synthetic matrix metalloproteinase-sensitive poly(ethylene glycol)-based hydrogels as a scaffold for cartilage repair. Tissue Eng. 10, 515–522 (2004)

    Google Scholar 

  114. Shu, X.Z., Liu, Y., Luo, Y., Roberts, M.C., Prestwich, G.D.: Disulfide cross-linked hyaluronan hydrogels. Biomacromolecules 3, 1304–1311 (2002)

    Google Scholar 

  115. Shu, X.Z., Liu, Y.C., Palumbo, F.S., Lu, Y., Prestwich, G.D.: In situ crosslinkable hyaluronan hydrogels for tissue engineering. Biomaterials 25, 1339–1348 (2004)

    Google Scholar 

  116. Tabata, Y.: Biomaterial technology for tissue engineering applications. J. R. Soc. Interface 6, S311–S324 (2009)

    Google Scholar 

  117. Metters, A.T., Anseth, K.S., Bowman, C.N.: Fundamental studies of a novel, biodegradable. PEG-b-PLA hydrogel. Polymer 41, 3993–4004 (2000)

    Google Scholar 

  118. West, J.L., Hubbell, J.A.: Photopolymerized hydrogel materials for drug-delivery applications. React. Polym. 25, 139–147 (1995)

    Google Scholar 

  119. Lutolf, M.P., Lauer-Fields, J.L., Schmoekel, H.G., Metters, A.T., Weber, F.E., Fields, G.B., Hubbell, J.A.: Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc. Natl. Acad. Sci. U.S.A. 100, 5413–5418 (2003)

    Google Scholar 

  120. Hu, B.H., Messersmith, P.B.: Rational design of transglutaminase substrate peptides for rapid enzymatic formation of hydrogels. J. Am. Chem. Soc. 125, 14298–14299 (2003)

    Google Scholar 

  121. Shin, H., Jo, S., Mikos, A.: Biomimetic materials for tissue engineering. Biomaterials 24, 4353–4364 (2003)

    Google Scholar 

  122. Hern, D.L., Hubbell, J.A.: Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J. Biomed. Mater. Res. Part A 39, 266–276 (1998)

    Google Scholar 

  123. Yang, F., Williams, C.G., Wang, D.-A., Lee, H., Manson, P.N., Elisseeff, J.: The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells. Biomaterials 26, 5991–5998 (2005)

    Google Scholar 

  124. DeLong, S.A., Gobin, A.S., West, J.L.: Covalent immobilization of RGDS on hydrogel surfaces to direct cell alignment and migration. J. Control. Release 109, 139–148 (2005)

    Google Scholar 

  125. Benoit, D.S.W., Tripodi, M.C., Blanchette, J.O., Langer, S.J., Leinwand, L.A., Anseth, K.S.: Integrin-linked kinase production prevents anoikis in human mesenchymal stem cells. J. Biomed. Mater. Res. Part A 81, 259–268 (2007)

    Google Scholar 

  126. Lin, C.-C., Anseth, K.S.: PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm. Res. 26, 631–643 (2009)

    Google Scholar 

  127. Nuttelman, C.R., Tripodi, M.C., Anseth, K.S.: In vitro osteogenic differentiation of human mesenchymal stem cells photoencapsulated in PEG hydrogels. J. Biomed. Mater. Res. 68, 773–782 (2004)

    Google Scholar 

  128. Gobin, A.S., West, J.L.: Effects of epidermal growth factor on fibroblast migration through biomimetic hydrogels. Biotechnol. Prog. 19, 1781–1785 (2003)

    Google Scholar 

  129. Raeber, G.P., Lutolf, M.P., Hubbell, J.A.: Molecularly engineered PEG hydrogels: a novel model system for proteolytically mediated cell migration. Biophys. J. 89, 1374–1388 (2005)

    Google Scholar 

  130. Lee, S.-H., Miller, J.S., Moon, J.J., West, J.L.: Proteolytically degradable hydrogels with a fluorogenic substrate for studies of cellular proteolytic activity and migration. Biotechnol. Prog. 21, 1736–1741 (2005)

    Google Scholar 

  131. Seliktar, D., Zisch, A.H., Lutolf, M.P., Wrana, J.L., Hubbell, J.A.: MMP-2 sensitive, VEGF-bearing bioactive hydrogels for promotion of vascular healing. J. Biomed. Mater. Res. A 68, 704–716 (2004)

    Google Scholar 

  132. Yu, Q., Bauer, J.M., Moore, J.S., Beebe, D.J.: Responsive biomimetic hydrogel valve for microfluidics. Appl. Phys. Lett. 78, 2589–2591 (2001)

    Google Scholar 

  133. Bhatia, S.N., Balis, U.J., Yarmush, M.L., Toner, M.: Probing heterotypic cell interactions: hepatocyte function in microfabricated co-cultures. J. Biomater. Sci, Polym. Ed. 9, 1137–1160 (1998)

    Google Scholar 

  134. Yeh, J., Ling, Y., Karp, J.M., Gantz, J., Chandawarkar, A., Eng, G., Blumling, J., Langer, R., Khademhosseini, A.: Micromolding of shape-controlled, harvestable cell-laden hydrogels. Biomaterials 27, 5391–5398 (2006)

    Google Scholar 

  135. Lee, S.A., Chung, S.E., Park, W., Lee, S.H., Kwon, S.: Three-dimensional fabrication of heterogeneous microstructures using soft membrane deformation and optofluidic maskless lithography. Lab Chip 9, 1670–1675 (2009)

    Google Scholar 

  136. Bruzewicz, D.A., McGuigan, A.P., Whitesides, G.M.: Fabrication of a modular tissue construct in a microfluidic chip. Lab Chip 8, 663–671 (2008)

    Google Scholar 

  137. Koh, W.G., Pishko, M.V.: Fabrication of cell-containing hydrogel microstructures inside microfluidic devices that can be used as cell-based biosensors. Anal. Bioanal. Chem. 385, 1389–1397 (2006)

    Google Scholar 

  138. Spradling, A., Drummond-Barbosa, D., Kai, T.: Stem cells find their niche. Nature 414, 98–104 (2001)

    Google Scholar 

  139. Voldman, J., Gray, M.L., Schmidt, M.A.: Microfabrication in biology and medicine. Annu. Rev. Biomed. Eng. 1, 401–425 (1999)

    Google Scholar 

  140. Whitesides, G., Ostuni, E., Takayama, S., Jiang, X., Ingber, D.: Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 3, 335–373 (2001)

    Google Scholar 

  141. Kim, S.M., Lee, S.H., Suh, K.Y.: Cell research with physically modified microfluidic channels: a review. Lab Chip 8, 1015–1023 (2008)

    Google Scholar 

  142. Semino, C.: Can we build artificial stem cell compartments? J. Biomed. Biotechnol. 2003, 164–169 (2003)

    Google Scholar 

  143. Czyz, J., Wobus, A.: Embryonic stem cell differentiation: the role of extracellular factors. Differentiation 68, 167–174 (2001)

    Google Scholar 

  144. Zandstra, P.W., Nagy, A.: Stem cell bioengineering. Annu. Rev. Biomed. Eng. 3, 275–305 (2001)

    Google Scholar 

  145. Kovacs, G.T.A., Maluf, N.I., Petersen, K.E.: Bulk micromachining of silicon. Proc IEEE 86, 1536–1551 (1998)

    Google Scholar 

  146. Bustillo, J.M., Howe, R.T., Muller, R.S.: Surface micromachining for microelectromechanical systems. Proc IEEE 86, 1552–1574 (1998)

    Google Scholar 

  147. Park, T.H., Shuler, M.L.: Integration of cell culture and microfabrication technology. Biotechnol. Prog. 19, 243–253 (2003)

    Google Scholar 

  148. Revzin, A., Russell, R.J., Yadavalli, V.K., Koh, W.G., Deister, C., Hile, D.D., Mellott, M.B., Pishko, M.V.: Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography. Langmuir 17, 5440–5447 (2001)

    Google Scholar 

  149. Hahn, M.S., Taite, L.J., Moon, J.J., Rowland, M.C., Ruffino, K.A., West, J.L.: Photolithographic patterning of polyethylene glycol hydrogels. Biomaterials 27, 2519–2524 (2006)

    Google Scholar 

  150. Kim, E., Xia, Y., Whitesides, G.M.: Polymer microstructures formed by molding in capillaries. Nature 376, 581–584 (1995)

    Google Scholar 

  151. Xia, Y., Whitesides, G.M.: Soft lithography. Annu. Rev. Mater. Sci. 28, 153–184 (1998)

    Google Scholar 

  152. Stevens, M.M., Mayer, M., Anderson, D.G., Weibel, D.B., Whitesides, G.M., Langer, R.: Direct patterning of mammalian cells onto porous tissue engineering substrates using agarose stamps. Biomaterials 26, 7636–7641 (2005)

    Google Scholar 

  153. Weibel, D.B., Lee, A., Mayer, M., Brady, S.F., Bruzewicz, D., Yang, J., DiLuzio, W.R., Clardy, J., Whitesides, G.M.: Bacterial printing press that regenerates its ink: contact-printing bacteria using hydrogel stamps. Langmuir 21, 6436–6442 (2005)

    Google Scholar 

  154. Tan, W., Desai, T.A.: Microfluidic patterning of cells in extracellular matrix biopolymers: effects of channel size, cell type, and matrix composition on pattern integrity. Tissue Eng. 9, 255–267 (2003)

    Google Scholar 

  155. Liu, V., Bhatia, S.: Three-dimensional photopatterning of hydrogels containing living cells. Biomed. Microdev. 4, 257–266 (2002)

    Google Scholar 

  156. Yu, T., Ober, C.K.: Methods for the topographical patterning and patterned surface modification of hydrogels based on hydroxyethyl methacrylate. Biomacromolecules 4, 1126–1131 (2003)

    Google Scholar 

  157. Hahn, M., Miller, J., West, J.: Laser scanning lithography for surface micropatterning on hydrogels. Adv. Mater. 17, 2939–2942 (2005)

    Google Scholar 

  158. Miller, J.S., Béthencourt, M.I., Hahn, M., Lee, T.R., West, J.L.: Laser-scanning lithography (LSL) for the soft lithographic patterning of cell-adhesive self-assembled monolayers. Biotechnol. Bioeng. 93, 1060–1068 (2006)

    Google Scholar 

  159. Dendukuri, D., Gu, S.S., Pregibon, D.C., Hatton, T.A., Doyle, P.S.: Stop-flow lithography in a microfluidic device. Lab Chip 7, 818–828 (2007)

    Google Scholar 

  160. Khademhosseini, A., Eng, G., Yeh, J., Fukuda, J., Blumling, J., Langer, R., Burdick, J.A.: Micromolding of photocrosslinkable hyaluronic acid for cell encapsulation and entrapment. J. Biomed. Mater. Res. Part A 79, 522–532 (2006)

    Google Scholar 

  161. Chung, K.-Y., Mishra, N.C., Wang, C.-C., Lin, F.-H., Lin, K.-H.: Fabricating scaffolds by microfluidics. Biomicrofluidics 3, 022403/1–022403/8 (2009)

    Google Scholar 

  162. Chung, S,E,, Park, W., Park, H., Yu, K., Park, N., Kwon. S.: Optofluidic maskless lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels. Appl. Phys. Lett. 91, 041106/1-041106/3 (2007)

    Google Scholar 

  163. Rivest, C., Morrison, D., Ni, B., Rubin, J.: Microscale hydrogels for medicine and biology: synthesis, characteristics and applications. J. Mech. Mater. Struct. 2, 1103–1119 (2007)

    Google Scholar 

  164. Koh, W.-G., Itle, L.J., Pishko, M.V.: Molding of hydrogel microstructures to create multiphenotype cell microarrays. Anal. Chem. 75, 5783–5789 (2003)

    Google Scholar 

  165. DeForest, C.A., Polizzotti, B.D., Anseth, K.S.: Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nat. Mater. 8, 659–664 (2009)

    Google Scholar 

  166. Fukuda, J., Khademhosseini, A., Yeo, Y., Yang, X., Yeh, J., Eng, G., Blumling, J., Wang, C.- F., Kohane, D.S., Langer, R.: Micromolding of photocrosslinkable chitosan hydrogel for spheroid microarray and co-cultures. Biomaterials 27, 5259–5267 (2006)

    Google Scholar 

  167. Hahn, M.S., Miller, J.S., West, J.L.: Three-dimensional biochemical and biomechanical patterning of hydrogels for guiding cell behavior. Adv. Mater. 18, 2679–2684 (2006)

    Google Scholar 

  168. Jang, J.-H., Dendukuri, D., Hatton, T.A., Thomas, E.L., Doyle, P.S.: A route to three-dimensional structures in a microfluidic device: stop-flow interference lithography. Angew. Chem. Int. Ed. 46, 9027–9031 (2007)

    Google Scholar 

  169. Hwang, D.K., Oakey, J., Toner, M., Arthur, J.A., Anseth, K.S., Lee, S., Zeiger, A., Van Vliet, K.J., Doyle, P.S.: Stop-flow lithography for the production of shape-evolving degradable microgel particles. J. Am. Chem. Soc. 131, 4499–4504 (2009)

    Google Scholar 

  170. Dendukuri, D., Hatton, T.A., Doyle, P.S.: Synthesis and self-assembly of amphiphilic polymeric microparticles. Langmuir 23, 4669–4674 (2007)

    Google Scholar 

  171. Chung, S.E., Park, W., Shin, S., Lee, S.A., Kwon, S.: Guided and fluidic self-assembly of microstructures using railed microfluidic channels. Nat. Mater. 7, 581–587 (2008)

    Google Scholar 

  172. Chung, K., Cho, J.K., Park, E.S., Breedveld, V., Lu, H.: Three-dimensional in situ temperature measurement in microsystems using Brownian motion of nanoparticles. Anal. Chem. 81, 991–999 (2009)

    Google Scholar 

  173. Chung, S.E., Lee, S.A., Kim, J., Kwon, S.: Optofluidic encapsulation and manipulation of silicon microchips using image processing based optofluidic maskless lithography and railed microfluidics. Lab Chip 9, 2845–2850 (2009)

    Google Scholar 

  174. Kloxin, A., Tibbitt, M., Kasko, A.: Tunable hydrogels for external manipulation of cellular microenvironments through controlled photodegradation. Adv. Mater. 22, 61–66 (2010)

    Google Scholar 

  175. Luo, Y., Shoichet, M.S.: A photolabile hydrogel for guided three-dimensional cell growth and migration. Nat. Mater. 3, 249–253 (2004)

    Google Scholar 

  176. Ling, Y., Rubin, J., Deng, Y., Huang, C., Demirci, U., Karp, J.M., Khademhosseini, A.: A cell-laden microfluidic hydrogel. Lab Chip 7, 756–762 (2007)

    Google Scholar 

  177. Khademhosseini, A., Yeh, J., Jon, S., Eng, G., Suh, K.Y., Burdick, J.A., Langer, R.: Molded polyethylene glycol microstructures for capturing cells within microfluidic channels. Lab Chip 4, 425–430 (2004)

    Google Scholar 

  178. Tang, M.D., Golden, A.P., Tien, J.: Molding of three-dimensional microstructures of gels. J. Am. Chem. Soc. 125, 12988–12989 (2003)

    Google Scholar 

  179. Huang, C.P., Lu, J., Seon, H., Lee, A.P., Flanagan, L.A., Kim, H.-Y., Putnam, A.J., Jeon, N.L.: Engineering microscale cellular niches for three-dimensional multicellular co-cultures. Lab Chip 9, 1740–1748 (2009)

    Google Scholar 

  180. Xia, Y., McClelland, J.J., Gupta, R., Qin, D., Zhao, X.M., Sohn, L.L., Celotta, R.J., Whitesides, G.M.: Replica molding using polymeric materials: a practical step toward nanomanufacturing. Adv. Mater. 9, 147–149 (1997)

    Google Scholar 

  181. Flaim, C.J., Chien, S., Bhatia, S.N.: An extracellular matrix microarray for probing cellular differentiation. Nat. Methods 2, 119–125 (2005)

    Google Scholar 

  182. Di Benedetto, F., Biasco, A., Pisignano, D., Cingolani, R.: Patterning polyacrylamide hydrogels by soft lithography. Nanotechnology 16, S165–S170 (2005)

    Google Scholar 

  183. Ilkhanizadeh, S., Teixeira, A.I., Hermanson, O.: Inkjet printing of macromolecules on hydrogels to steer neural stem cell differentiation. Biomaterials 28, 3936–3943 (2007)

    Google Scholar 

  184. Nagase, H., Fields, G.B.: Human matrix metalloproteinase specificity studies using collagen sequence-based synthetic peptides. Biopolymer 40, 399–416 (1996)

    Google Scholar 

  185. Lee, S.H., Moon, J.J., West, J.L.: Three-dimensional micropatterning of bioactive hydrogels via two-photon laser scanning photolithography for guided 3D cell migration. Biomaterials 29, 2962–2968 (2008)

    Google Scholar 

  186. Tapp, H., Deepe, R., Ingram, J.A., Kuremsky, M., Hanley, E.N., Gruber, H.E.: Adipose-derived mesenchymal stem cells from the sand rat: transforming growth factor beta and 3D co-culture with human disc cells stimulate proteoglycan and collagen type I rich extracellular matrix. Arthritis Res. Ther. 10, R89 (2008)

    Google Scholar 

  187. Song, I.-H., Caplan, A.I., Dennis, J.E.: Dexamethasone inhibition of confluence-induced apoptosis in human mesenchymal stem cells. J. Orthop. Res. 27, 216–221 (2009)

    Google Scholar 

  188. Mo, X.- t., Guo, S.-c., Xie, H.-q., Deng, L., Zhi, W., Xiang, Z., Li, X.-q., Yang, Z.-m.: Variations in the ratios of co-cultured mesenchymal stem cells and chondrocytes regulate the expression of cartilaginous and osseous phenotype in alginate constructs. Bone 45, 42–51 (2009)

    Google Scholar 

  189. Hwang, N.S., Varghese, S., Elisseeff, J.: Derivation of chondrogenically-committed cells from human embryonic cells for cartilage tissue regeneration. PLoS One 3, e2498 (2008)

    Google Scholar 

  190. Bandara, G., Georgescu, H.I., Lin, C.W., Evans, C.H.: Synovial activation of chondrocytes: evidence for complex cytokine interactions. Agents Actions 34, 285–288 (1991)

    Google Scholar 

  191. Gleghorn, J.P., Jones, A.R.C., Flannery, C.R., Bonassar, L.J.: Boundary mode frictional properties of engineered cartilaginous tissues. Eur. Cell Mater. 14, 20–29 (2007)

    Google Scholar 

  192. Lima, E.G., Tan, A.R., Tai, T., Bian, L., Stoker, A.M., Ateshian, G.A., Cook, J.L., Hung, C.T.: Differences in interleukin-1 response between engineered and native cartilage. Tissue Eng. Part A 14, 1721–1730 (2008)

    Google Scholar 

  193. Rydholm, A.E., Bowman, C.N., Anseth, K.S.: Degradable thiol-acrylate photopolymers: polymerization and degradation behavior of an in situ forming. Biomaterials 26, 4495–4506 (2005)

    Google Scholar 

  194. Tsai, M.F., Tsai, H.Y., Peng, Y.S., Wang, L.F., Chen, J.S., Lu, S.C.: Characterization of hydrogels prepared from copolymerization of the different degrees of methacrylate-grafted chondroitin sulfate macromers and acrylic acid. J. Biomed. Mater. Res. A 84, 727–739 (2008)

    Google Scholar 

  195. Du, Y., Lo, E., Ali, S., Khademhosseini, A.: Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. Proc. Natl. Acad. Sci. U.S.A. 105, 9522–9527 (2008)

    Google Scholar 

  196. Koh, W.G., Revzin, A., Pishko, M.V.: Poly(ethylene glycol) hydrogel microstructures encapsulating living cells. Langmuir 18, 2459–2462 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johnna S. Temenoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hamilton, S.K., Lu, H., Temenoff, J.S. (2010). Micropatterned Hydrogels for Stem Cell Culture. In: Roy, K. (eds) Biomaterials as Stem Cell Niche. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2010_6

Download citation

  • DOI: https://doi.org/10.1007/8415_2010_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13892-8

  • Online ISBN: 978-3-642-13893-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics