Skip to main content

The Mechanophysiololgy of Stress Fractures in Military Recruits

  • Chapter
  • First Online:
The Mechanobiology and Mechanophysiology of Military-Related Injuries

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 19))

  • 1151 Accesses

Abstract

Stress fractures (SFs) are of the most common and potentially serious overuse injuries. Many athletes, naïve exercisers, and military recruits who are engaged in frequent and repetitive activity may suffer a SF; the most common site for SF is the tibia. SF is regarded as fatigue fracture—when training yields bone strains in a range where the micro-damage formation in the bone exceeds the ability of a remodeling process to repair it and ultimately this cumulative tissue damage might result with a spontaneous fracture. The registry of SFs among athletes is incomplete, but in military recruits the incidence of SFs range between 5 and 12 % (female soldiers are 2–10 times more prone to SFs compared to their male counterparts). Recovery from a SF is primarily achieved by halting any load bearing activities and on rest. This might be detrimental to athletes and military recruits, as results in loss of training days and consequently a reduction in physical capacity. The ample risk factors for SFs can be categorized as internal factors depending on the individual (e.g. gender, bone geometry) and external factors (e.g. training volume). It follows that in many cases SFs are preventable. Recruits engaged in a reasonable level of physical activity, especially impact exercise in the years prior to joining the military, and also maintain adequate nutrition, may lower their risk for SFs. Yet, several fundamental issues in regard to SFs are still left unresolved. For example, how muscle forces provide a protective effect against SFs, how many cycles (i.e. steps or strides) can an individual perform before he or she will be at a risk of suffering a SF, or is it necessary to implement prophylactic interventions in order to protect those who are identified at a greater risk? New experimental tools and improved computational modeling frameworks for investigating and better addressing the above questions that are reviewed in this chapter can be used to improve the knowledge on the etiology and prevention of SFs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang, J., Tibbetts, A.S., Covassin, T., Cheng, G., Nayar, S., Heiden, E.: Epidemiology of overuse and acute injuries among competitive collegiate athletes. J. Athl. Train. 47(2), 198–204 (2012)

    Google Scholar 

  2. Hreljac, A.: Impact and overuse injuries in runners. Med. Sci. Sports Exerc. 36(5), 845–849 (2004)

    Article  Google Scholar 

  3. Tenforde, A.S., Sayres, L.C., McCurdy, M.L., Collado, H., Sainani, K.L., Fredericson, M.: Overuse injuries in high school runners: lifetime prevalence and prevention strategies. PM&R 3(2), 125–131 (2011). doi:10.1016/j.pmrj.2010.09.009

    Article  Google Scholar 

  4. Clarsen, B., Myklebust, G., Bahr, R.: Development and validation of a new method for the registration of overuse injuries in sports injury epidemiology: the Oslo Sports Trauma Research Centre (OSTRC) Overuse Injury Questionnaire. Br. J. Sports Med. 47(8), 495–502 (2013)

    Article  Google Scholar 

  5. Beck, T.J., Ruff, C.B., Shaffer, R.A., Betsinger, K., Trone, D.W., Brodine, S.K.: Stress fracture in military recruits: gender differences in muscle and bone susceptibility factors. Bone 27(3), 437–444 (2000). S8756-3282(00)00342-2 [pii]

    Article  Google Scholar 

  6. Givon, U., Friedman, E., Reiner, A., Vered, I., Finestone, A., Shemer, J.: Stress fractures in the Israeli defense forces from 1995 to 1996. Clin. Orthop. Relat. Res. 373, 227–232 (2000)

    Article  Google Scholar 

  7. Linenger, J., Shwayhat, A.: Epidemiology of podiatric injuries in US marine recruits undergoing basic training. J. Am. Podiatr. Med. Assoc. 82(5), 269 (1992)

    Article  Google Scholar 

  8. Milgrom, C., Finestone, A., Shlamkovitch, N., Rand, N., Lev, B., Simkin, A., Wiener, M.: Youth is a risk factor for stress fracture. A study of 783 infantry recruits. J. Bone Joint Surg British Volume 76(1), 20–22 (1994)

    Google Scholar 

  9. Scully, T., Besterman, G.: Stress fracture—a preventable training injury. Mil. Med. 147(4), 285 (1982)

    Google Scholar 

  10. Finestone, A., Milgrom, C.: How stress fracture incidence was lowered in the Israeli army: a 25-yr struggle. Med. Sci. Sports Exerc. 40(11 Suppl), S623–629 (2008). doi:10.1249/MSS.0b013e3181892dc2

    Article  Google Scholar 

  11. Armstrong 3rd, D.W., Rue, J.P., Wilckens, J.H., Frassica, F.J.: Stress fracture injury in young military men and women. Bone 35(3), 806–816 (2004). doi:10.1016/j.bone.2004.05.014, S8756328204002194 [pii]

    Google Scholar 

  12. Jones, B.H., Bovee, M.W., Harris, J.M., Cowan, D.N.: Intrinsic risk factors for exercise-related injuries among male and female army trainees. Am. J. Med. 21(5), 705–710 (1993)

    Google Scholar 

  13. Brudvig, T., Gudger, T., Obermeyer, L.: Stress fractures in 295 trainees: a one-year study of incidence as related to age, sex, and race. Mil. Med. 148(8), 666–667 (1983)

    Google Scholar 

  14. Bijur, P.E., Horodyski, M., Egerton, W., Kurzon, M., Lifrak, S., Friedman, S.: Comparison of injury during cadet basic training by gender. Arch. Pediatr. Adolesc. Med. 151(5), 456 (1997)

    Article  Google Scholar 

  15. Jones, B.H., Thacker, S.B., Gilchrist, J., Kimsey Jr, C.D., Sosin, D.M.: Prevention of lower extremity stress fractures in athletes and soldiers: a systematic review. Epidemiol. Rev. 24(2), 228–247 (2002)

    Article  Google Scholar 

  16. Moran, D.S., Finestone, A., Arbel, Y., Shabshin, N., Laor, A.: Simplified model to predict stress fracture in young elite combat recruits. J. Strength Cond. Res. (2011). doi:10.1519/JSC.0b013e31823f2733

    Google Scholar 

  17. Friedl, K.E., Evans, R.K., Moran, D.S.: Stress fracture and military medical readiness: bridging basic and applied research. Med. Sci. Sports Exerc. 40(11 Suppl), S609–622 (2008). doi:10.1249/MSS.0b013e3181892d53

    Article  Google Scholar 

  18. Jordaan, G., Schwellnus, M.P.: The incidence of overuse injuries in military recruits during basic military training. Mil. Med. 159(6), 421–426 (1994)

    Google Scholar 

  19. Devas, M.: Stress fractures of the tibia in athletes. Children 2(20), 22 (1958)

    Google Scholar 

  20. Dobrindt, O., Hoffmeyer, B., Ruf, J., Seidensticker, M., Steffen, I., Fischbach, F., Zarva, A., Wieners, G., Ulrich, G., Lohmann, C.: Estimation of return-to-sports-time for athletes with stress fracture—an approach combining risk level of fracture site with severity based on imaging. BMC Musculoskelet. Disord. 13(1), 139 (2012)

    Article  Google Scholar 

  21. Lee, C.-H., Huang, G.-S., Chao, K.-H., Jean, J.-L., Wu, S.-S.: Surgical treatment of displaced stress fractures of the femoral neck in military recruits: a report of 42 cases. Arch. Orthop. Trauma Surg. 123(10), 527–533 (2003)

    Article  Google Scholar 

  22. Larson, C.M., Traina, S.M., Fischer, D.A., Arendt, E.A.: Recurrent complete proximal tibial stress fracture in a basketball player. Am. J. Sports Med. 33(12), 1914–1917 (2005)

    Article  Google Scholar 

  23. Boden, B.P., Osbahr, D.C.: High-risk stress fractures: evaluation and treatment. J. Am. Acad. Orthop. Surg. 8(6), 344–353 (2000)

    Article  Google Scholar 

  24. Finestone, A.S., Milgrom, C.: Diagnosis and treatment of stress fractures. In: Doral, M.N., Tandoğan, R.N., Mann, G., Verdonk, R. (eds.) Sports Injuries, pp. 775–785. Springer, Heidelberg (2012). doi:10.1007/978-3-642-15630-4_101

    Google Scholar 

  25. Currey, J.D.: Bones: structure and mechanics. Princeton University Press, Princeton (2002)

    Google Scholar 

  26. D’Lima, D.D., Fregly, B.J., Patil, S., Steklov, N., Colwell Jr, C.W.: Knee joint forces: prediction, measurement, and significance. Proc. Inst. Mech. Eng. H. 226(2), 95–102 (2012)

    Article  Google Scholar 

  27. Hurwitz, D.E., Sumner, D.R., Andriacchi, T.P., Sugar, D.A.: Dynamic knee loads during gait predict proximal tibial bone distribution. J. Biomech. 31(5), 423–430 (1998). S0021-9290(98)00028-1 [pii]

    Article  Google Scholar 

  28. Taylor, S.J., Walker, P.S., Perry, J.S., Cannon, S.R., Woledge, R.: The forces in the distal femur and the knee during walking and other activities measured by telemetry. J. Arthroplasty 13(4), 428–437 (1998)

    Article  Google Scholar 

  29. Wehner, T., Claes, L., Simon, U.: Internal loads in the human tibia during gait. Clin. Biomech. 24(3), 299–302 (2009). doi:10.1016/j.clinbiomech.2008.12.007

    Article  Google Scholar 

  30. Edwards, W.B., Taylor, D., Rudolphi, T.J., Gillette, J.C., Derrick, T.R.: Effects of stride length and running mileage on a probabilistic stress fracture model. Med. Sci. Sports Exerc. 41(12), 2177–2184 (2009). doi:10.1249/MSS.0b013e3181a984c4

    Article  Google Scholar 

  31. Burr, D.B., Milgrom, C., Fyhrie, D., Forwood, M., Nyska, M., Finestone, A., Hoshaw, S., Saiag, E., Simkin, A.: In vivo measurement of human tibial strains during vigorous activity. Bone 18(5), 405–410 (1996). 8756328296000282 [pii]

    Article  Google Scholar 

  32. Currey, J.: Effects of differences in mineralization on the mechanical properties of bone. Phil. Trans. R. Soc. Lond. B, Biol. Sci. 304(1121), 509–518 (1984)

    Article  Google Scholar 

  33. Prentice, A., Parsons, T.J., Cole, T.J.: Uncritical use of bone mineral density in absorptiometry may lead to size-related artifacts in the identification of bone mineral determinants. Am. J. Clin. Nutr. 60(6), 837–842 (1994)

    Google Scholar 

  34. Milgrom, C., Giladi, M., Simkin, A., Rand, N., Kedem, R., Kashtan, H., Stein, M.: An analysis of the biomechanical mechanism of tibial stress fractures among Israeli infantry recruits. A prospective study. Clin. Orthop. Relat. Res. 231, 216–221 (1988)

    Google Scholar 

  35. Milgrom, C., Giladi, M., Simkin, A., Rand, N., Kedem, R., Kashtan, H., Stein, M., Gomori, M.: The area moment of inertia of the tibia: a risk factor for stress fractures. J. Biomech. 22(11–12), 1243–1248 (1989)

    Article  Google Scholar 

  36. Giladi, M., Milgrom, C., Simkin, A., Stein, M., Kashtan, H., Margulies, J., Rand, N., Chisin, R., Steinberg, R., Aharonson, Z., et al.: Stress fractures and tibial bone width. A risk factor. J. Bone Joint Surg. Br. 69(2), 326–329 (1987)

    Google Scholar 

  37. Giladi, M., Milgrom, C., Simkin, A., Danon, Y.: Stress fractures. Identifiable risk factors. Am. J. Sports Med. 19(6), 647–652 (1991)

    Article  Google Scholar 

  38. Schnackenburg, K.E., Macdonald, H.M., Ferber, R., Wiley, J.P., Boyd, S.K.: Bone quality and muscle strength in female athletes with lower limb stress fractures. Med. Sci. Sports Exerc. 43(11), 2110–2119 (2011). doi:10.1249/MSS.0b013e31821f8634

    Article  Google Scholar 

  39. Jepsen, K.J., Centi, A., Duarte, G.F., Galloway, K., Goldman, H., Hampson, N., Lappe, J.M., Cullen, D.M., Greeves, J., Izard, R., Nindl, B.C., Kraemer, W.J., Negus, C.H., Evans, R.K.: Biological constraints that limit compensation of a common skeletal trait variant lead to inequivalence of tibial function among healthy young adults. J. Bone Miner. Res. 26(12), 2872–2885 (2011). doi:10.1002/jbmr.497

    Article  Google Scholar 

  40. Jepsen, K.J., Evans, R., Negus, C.H., Gagnier, J.J., Centi, A., Erlich, T., Hadid, A., Yanovich, R., Moran, D.S.: Variation in tibial functionality and fracture susceptibility among healthy, young adults arises from the acquisition of biologically distinct sets of traits. J. Bone Miner. Res. 28(6), 1290–1300 (2013). doi:10.1002/jbmr.1879

    Article  Google Scholar 

  41. Frost, H.M.: A brief review for orthopedic surgeons: Fatigue damage (microdamage) in bone (its determinants and clinical implications). J. Orthop. Sci. 3(5), 272–281 (1998). doi:10.1007/s007760050053

    Article  Google Scholar 

  42. Martin, R.B.: Toward a unifying theory of bone remodeling. Bone 26(1), 1–6 (2000). doi:10.1016/S8756-3282(99)00241-0

    Article  Google Scholar 

  43. Frost, H.: Skeletal structural adaptations to mechanical usage (SATMU): 1. Redefining Wolff’s law: the bone modeling problem. Anat. Rec. 226(4), 403–413 (1990)

    Article  Google Scholar 

  44. Jee, W., Frost, H.: Skeletal adaptations during growth. Triangle; Sandoz J. Med. Sci. 31(2/3), 77 (1992)

    Google Scholar 

  45. Warden, S.J., Burr, D.B., Brukner, P.D.: Stress fractures: pathophysiology, epidemiology, and risk factors. Curr. Osteoporos. Rep. 4(3), 103–109 (2006)

    Article  Google Scholar 

  46. Zioupos, P., Currey, J.D., Casinos, A.: Tensile fatigue in bone: are cycles-, or time to failure, or both, important? J. Theor. Biol. 210(3), 389–399 (2001). doi:10.1006/jtbi.2001.2316

    Article  Google Scholar 

  47. Schaffler, M.B., Radin, E.L., Burr, D.B.: Mechanical and morphological effects of strain rate on fatigue of compact bone. Bone 10(3), 207–214 (1989). doi:10.1016/8756-3282(89)90055-0

    Article  Google Scholar 

  48. Zadpoor, A.A., Nikooyan, A.A.: The relationship between lower-extremity stress fractures and the ground reaction force: A systematic review. Clin. Biomech. 26(1), 23–28 (2011). doi:10.1016/j.clinbiomech.2010.08.005

    Article  Google Scholar 

  49. Fredericson, M., Bergman, A.G., Hoffman, K.L., Dillingham, M.S.: Tibial stress reaction in runners. Correlation of clinical symptoms and scintigraphy with a new magnetic resonance imaging grading system. Am. J. Sports Med. 23(4), 472–481 (1995)

    Article  Google Scholar 

  50. Daffner, R.H., Pavlov, H.: Stress fractures: current concepts. AJR Am. J. Roentgenol. 159(2), 245–252 (1992)

    Article  Google Scholar 

  51. Devas, M.: Stress fractures in athletes. J. R. Coll. Gen. Pract. 19(90), 34 (1970)

    Google Scholar 

  52. Zwas, S.T., Elkanovitch, R., Frank, G.: Interpretation and classification of bone scintigraphic findings in stress fractures. J. Nucl. Med. 28(4), 452–457 (1987)

    Google Scholar 

  53. Lin, E.C.: Radiation risk from medical imaging. Mayo Clin. Proc. 85(12), 1142–1146 (2010). doi:10.4065/mcp.2010.0260

    Article  Google Scholar 

  54. Batt, M.E., Ugalde, V., Anderson, M.W., Shelton, D.K.: A prospective controlled study of diagnostic imaging for acute shin splints. Med. Sci. Sports Exerc. 30(11), 1564–1571 (1998)

    Article  Google Scholar 

  55. Kiuru, M.J., Pihlajamaki, H.K., Hietanen, H.J., Ahovuo, J.A.: MR imaging, bone scintigraphy, and radiography in bone stress injuries of the pelvis and the lower extremity. Acta Radiol. 43(2), 207–212 (2002). ard430222 [pii]

    Article  Google Scholar 

  56. Hadid, A., Moran, D.S., Evans, R.K., Fuks, Y., Schweitzer, M.E., Shabshin, N.: Tibial stress changes in new combat recruits for special forces: patterns and timing at MR imaging. Radiology 273(2), 483–490 (2014)

    Article  Google Scholar 

  57. Visuri, T., Hietaniemi, K.: Displaced stress fracture of the femoral shaft: a report of three cases. Mil. Med. 157(6), 325–327 (1992)

    Google Scholar 

  58. Visuri, T., Vara, A., Meurman, K.O.: Displaced stress fractures of the femoral neck in young male adults: a report of twelve operative cases. J. Trauma Acute Care Surg. 28(11), 1562–1569 (1988)

    Article  Google Scholar 

  59. Patel, D.R.: Stress fractures: diagnosis and management in the primary care setting. Pediatr. Clin. North Am. 57(3), 819–827 (2010). doi:10.1016/j.pcl.2010.03.004. S0031-3955(10)00069-6 [pii]

    Article  Google Scholar 

  60. Milgrom, C., Giladi, M., Stein, M., Kashtan, H., Margulies, J.Y., Chisin, R., Steinberg, R., Aharonson, Z.: Stress fractures in military recruits. A prospective study showing an unusually high incidence. J. Bone Joint Surg. Br. 67(5), 732–735 (1985)

    Google Scholar 

  61. Bennell, K.L., Malcolm, S.A., Thomas, S.A., Wark, J.D., Brukner, P.D.: The incidence and distribution of stress fractures in competitive track and field athletes. Am. J. Sports Med. 24(2), 211–217 (1996). doi:10.1177/036354659602400217

    Article  Google Scholar 

  62. Kadel, N.J., Teitz, C.C., Kronmal, R.A.: Stress fractures in ballet dancers. Am. J. Sports Med. 20(4), 445–449 (1992)

    Article  Google Scholar 

  63. Warren, M.P., Gunn, J.B., Hamilton, L.H., Warren, L.F., Hamilton, W.G.: Scoliosis and fractures in young ballet dancers. N. Engl. J. Med. 314(21), 1348–1353 (1986)

    Article  Google Scholar 

  64. Dixon, M., Fricker, P.: Injuries to elite gymnasts over 10 yr. Med. Sci. Sports Exerc. 25(12), 1322–1328 (1993)

    Article  Google Scholar 

  65. Pećina, M., Bojanić, I., Dubravčić, S.: Stress fractures in figure skaters. Am. J. Sports Med. 18(3), 277–279 (1990)

    Article  Google Scholar 

  66. Snyder, R.A., Koester, M.C., Dunn, W.R.: Epidemiology of stress fractures. Clin. Sports Med. 25(1), 37–52 (2006)

    Article  Google Scholar 

  67. Milgrom, C., Giladi, M., Chisin, R., Dizian, R.: The long-term followup of soldiers with stress fractures. Am. J. Sports Med. 13(6), 398–400 (1985)

    Article  Google Scholar 

  68. Rauh, M.J., Macera, C.A., Trone, D.W., Shaffer, R.A., Brodine, S.K.: Epidemiology of stress fracture and lower-extremity overuse injury in female recruits. Med. Sci. Sports Exerc. 38(9):1571–1577 (2006). doi:10.1249/01.mss.0000227543.51293.9d

    Google Scholar 

  69. Hallel, T., Amit, S., Segal, D.: Fatigue fractures of tibial and femoral shaft in soldiers. Clin. Orthop. Relat. Res. 118, 35–43 (1976)

    Google Scholar 

  70. Khosla, S., Melton III, L.J., Atkinson, E.J., O’fallon, W.: Relationship of serum sex steroid levels to longitudinal changes in bone density in young versus elderly men. J. Clin. Endocrinol. Metab. 86(8), 3555–3561 (2001)

    Article  Google Scholar 

  71. Szulc, P., Munoz, F., Claustrat, B., Garnero, P., Marchand, F., Duboeuf, F., Delmas, P.: Bioavailable estradiol may be an important determinant of osteoporosis in men: the MINOS study 1. J. Clin. Endocrinol. Metab. 86(1), 192–199 (2001)

    Google Scholar 

  72. Falahati-Nini, A., Riggs, B.L., Atkinson, E.J., O’Fallon, W.M., Eastell, R., Khosla, S.: Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men. J. Clin. Investig. 106(12), 1553 (2000)

    Article  Google Scholar 

  73. Riggs, B.L., Khosla, S., Melton, L.J.: A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J. Bone Miner. Res. 13(5), 763–773 (1998)

    Article  Google Scholar 

  74. Seeman, E.: Pathogenesis of bone fragility in women and men. Lancet 359(9320), 1841–1850 (2002). doi:10.1016/S0140-6736(02)08706-8

    Article  Google Scholar 

  75. Bennell, K.L., Malcolm, S.A., Thomas, S.A., Ebeling, P.R., McCrory, P.R., Wark, J.D., Brukner, P.D.: Risk factors for stress fractures in female track-and-field athletes: a retrospective analysis. Clin. J. Sport Med. 5(4), 229–235 (1995)

    Article  Google Scholar 

  76. Barrow, G.W., Saha, S.: Menstrual irregularity and stress fractures in collegiate female distance runners. Am. J. Sports Med. 16(3), 209–216 (1988)

    Article  Google Scholar 

  77. Jones, B., Cowan, D., Tomlinson, J., Robinson, J., Polly, D., Frykman, P.: Epidemiology of injuries associated with physical training among young men in the army. Med. Sci. Sports Exerc. 25(2), 197 (1993)

    Article  Google Scholar 

  78. Shaffer, R.A., Brodine, S.K., Almeida, S.A., Williams, K.M., Ronaghy, S.: Use of simple measures of physical activity to predict stress fractures in young men undergoing a rigorous physical training program. Am. J. Epidemiol. 149(3), 236–242 (1999)

    Article  Google Scholar 

  79. Milgrom, C., Simkin, A., Eldad, A., Nyska, M., Finestone, A.: Using bone’s adaptation ability to lower the incidence of stress fractures. Am. J. Sports Med. 28(2), 245–251 (2000)

    Google Scholar 

  80. Gardner Jr, L.I., Dziados, J.E., Jones, B.H., Brundage, J.F., Harris, J.M., Sullivan, R., Gill, P.: Prevention of lower extremity stress fractures: a controlled trial of a shock absorbent insole. Am. J. Public Health 78(12), 1563–1567 (1988)

    Article  Google Scholar 

  81. Brunet, M.E., Cook, S.D., Brinker, M., Dickinson, J.: A survey of running injuries in 1505 competitive and recreational runners. J. Sports Med. Phys Fit. 30(3), 307–315 (1990)

    Google Scholar 

  82. Cowan, D.N., Jones, B.H., Frykman, P.N., Polly Jr, D.W., Harman, E.A., Rosenstein, R.M., Rosenstein, M.T.: Lower limb morphology and risk of overuse injury among male infantry trainees. Med. Sci. Sports Exerc. 28(8), 945–952 (1996)

    Article  Google Scholar 

  83. Finestone, A., Shlamkovitch, N., Eldad, A., Wosk, J., Laor, A., Danon, Y.L., Milgrom, C.: Risk factors for stress fractures among Israeli infantry recruits. Mil. Med. 156(10), 528–530 (1991)

    Google Scholar 

  84. Simkin, A., Leichter, I., Giladi, M., Stein, M., Milgrom, C.: Combined effect of foot arch structure and an orthotic device on stress fractures. Foot Ankle Int. 10(1), 25–29 (1989)

    Article  Google Scholar 

  85. Lappe, J.M., Stegman, M.R., Recker, R.R.: The impact of lifestyle factors on stress fractures in female Army recruits. Osteoporos. Int. 12(1), 35–42 (2001)

    Article  Google Scholar 

  86. Lappe, J., Cullen, D., Haynatzki, G., Recker, R., Ahlf, R., Thompson, K.: Calcium and vitamin D supplementation decreases incidence of stress fractures in female navy recruits. J. Bone Miner. Res. 23(5), 741–749 (2008). doi:10.1359/jbmr.080102

    Article  Google Scholar 

  87. Altarac, M., Gardner, J.W., Popovich. R.M., Potter. R., Knapik, J.J., Jones, B.H.: Cigarette smoking and exercise-related injuries among young men and women. Am. J. Prevent. Med. 18(3, Supplement 1), 96–102 (2000). doi:10.1016/S0749-3797(99)00166-X

    Google Scholar 

  88. Bray, R.M., Marsden, M.E., Peterson, M.R.: Standardized comparisons of the use of alcohol, drugs, and cigarettes among military personnel and civilians. Am. J. Public Health 81(7), 865–869 (1991). doi:10.2105/AJPH.81.7.865

    Article  Google Scholar 

  89. Slemenda, C.W., Christian, J.C., Reed, T., Reister, T.K., Williams, C.J., Johnston, C.C.: Long-term bone loss in men: effects of genetic and environmental factors. Ann. Intern. Med. 117(4), 286–291 (1992)

    Article  Google Scholar 

  90. Giladi, M., Milgrom, C., Danon, Y., Aharonson, Z.: The correlation between cumulative march training and stress fractures in soldiers. Mil. Med. 150(11), 600–601 (1985)

    Google Scholar 

  91. Mann, G., Constantini, N., Nyska, M., Dolev, E., Barchilon, V., Shabat, S., Finsterbush, A., Mei-Da, O., Hetsroni, I.: Stress fractures: overview. In: Doral, M.N., Tandoğan R.N., Mann, G., Verdonk, R. (eds.) Sports Injuries: Prevention, Diagnosis, Treatment and Rehabilitation. Springer, Heidelberg (2012)

    Google Scholar 

  92. Gillespie, L.D., Robertson, M.C., Gillespie, W.J., Lamb, S.E., Gates, S., Cumming, R.G., Rowe, B.H.: Interventions for preventing falls in older people living in the community. Cochrane Database Syst Rev 2(CD007146) (2009)

    Google Scholar 

  93. Finestone, A., Giladi, M., Elad, H., Salmon, A., Mendelson, S., Eldad, A., Milgrom, C.: Prevention of stress fractures using custom biomechanical shoe orthoses. Clin. Orthop. Relat. Res. 360, 182–190 (1999)

    Article  Google Scholar 

  94. Brunet, M.E., Cook, S.D., Brinker, M.R., Dickinson, J.A.: A survey of running injuries in 1505 competitive and recreational runners. J. Sports Med. Phys. Fit. 30(3), 307–315 (1990)

    Google Scholar 

  95. Milgrom, C., Finestone, A., Segev, S., Olin, C., Arndt, T., Ekenman, I.: Are overground or treadmill runners more likely to sustain tibial stress fracture? Br. J. Sports Med. 37(2), 160–163 (2003)

    Article  Google Scholar 

  96. Corbeil, P., Blouin, J.-S., Bégin, F., Nougier, V., Teasdale, N.: Perturbation of the postural control system induced by muscular fatigue. Gait Posture 18(2), 92–100 (2003). doi:10.1016/S0966-6362(02)00198-4

    Article  Google Scholar 

  97. Arndt, A., Ekenman, I., Westblad, P., Lundberg, A.: Effects of fatigue and load variation on metatarsal deformation measured in vivo during barefoot walking. J. Biomech. 35(5), 621–628 (2002). doi:10.1016/S0021-9290(01)00241-X

    Article  Google Scholar 

  98. Bisiaux, M., Moretto, P.: The effects of fatigue on plantar pressure distribution in walking. Gait Posture 28(4), 693–698 (2008). doi:10.1016/j.gaitpost.2008.05.009

    Article  Google Scholar 

  99. Gefen, A.: Biomechanical analysis of fatigue-related foot injury mechanisms in athletes and recruits during intensive marching. Med. Biol. Eng. Comput. 40(3), 302–310 (2002). doi:10.1007/BF02344212

    Article  Google Scholar 

  100. Mizrahi, J., Verbitsky, O., Isakov, E.: Fatigue-related loading imbalance on the shank in running: a possible factor in stress fractures. Ann. Biomed. Eng. 28(4), 463–469 (2000). doi:10.1114/1.284

    Article  Google Scholar 

  101. Milgrom, C., Radeva-Petrova, D.R., Finestone, A., Nyska, M., Mendelson, S., Benjuya, N., Simkin, A., Burr, D.: The effect of muscle fatigue on in vivo tibial strains. J. Biomech. 40(4), 845–850 (2007). doi:10.1016/j.jbiomech.2006.03.006

    Article  Google Scholar 

  102. Knapik, J.J., Harman, E.A., Steelman, R.A., Graham, B.S.: A systematic review of the effects of physical training on load carriage performance. J. Strength Cond. Res. 26(2), 585–597 (2012). doi:10.1519/JSC.1510b1013e3182429853

    Article  Google Scholar 

  103. Rome, K., Handoll, H.H., Ashford, R.L.: Interventions for Preventing and Treating Stress Fractures and Stress Reactions of Bone of the Lower Limbs in Young Adults. The Cochrane Library (2005)

    Google Scholar 

  104. Schwellnus, M.P., Jordaan, G.: Does calcium supplementation prevent bone stress injuries? A clinical trial. Int. J. Sport Nutr. 2(2), 165–174 (1992)

    Google Scholar 

  105. Warden, S.J., Hurst, J.A., Sanders, M.S., Turner, C.H., Burr, D.B., Li, J.: Bone adaptation to a mechanical loading program significantly increases skeletal fatigue resistance. J. Bone Miner. Res. 20(5), 809–816 (2005). doi:10.1359/jbmr.041222

    Article  Google Scholar 

  106. Seeman, E.: An exercise in geometry. J. Bone Miner. Res. 17(3), 373–380 (2002). doi:10.1359/jbmr.2002.17.3.373

    Article  Google Scholar 

  107. Meyer, U., Romann, M., Zahner, L., Schindler, C., Puder, J.J., Kraenzlin, M., Rizzoli, R., Kriemler, S.: Effect of a general school-based physical activity intervention on bone mineral content and density: a cluster-randomized controlled trial. Bone 48(4), 792–797 (2011). doi:10.1016/j.bone.2010.11.018

    Article  Google Scholar 

  108. Lorentzon, M., Mellström, D., Ohlsson, C.: Association of amount of physical activity with cortical bone size and trabecular volumetric BMD in young adult men: the GOOD study. J. Bone Miner. Res. 20(11), 1936–1943 (2005). doi:10.1359/JBMR.050709

    Article  Google Scholar 

  109. Iuliano-Burns, S., Stone, J., Hopper, J., Seeman, E.: Diet and exercise during growth have site-specific skeletal effects: a co-twin control study. Osteoporos. Int. 16(10), 1225–1232 (2005). doi:10.1007/s00198-004-1830-z

    Article  Google Scholar 

  110. Julián-Almárcegui, C., Gómez-Cabello, A., Huybrechts, I., González-Agüero, A., Kaufman, J.M., Casajús, J.A., Vicente-Rodríguez, G. Combined effects of interaction between physical activity and nutrition on bone health in children and adolescents: a systematic review 73(3) (2015). doi:10.1093/nutrit/nuu065

    Google Scholar 

  111. Lanyon, L.E., Hampson, W.G., Goodship, A.E., Shah, J.S.: Bone deformation recorded in vivo from strain gauges attached to the human tibial shaft. Acta Orthop. Scand. 46(2), 256–268 (1975)

    Article  Google Scholar 

  112. Stern-Perry, M., Gefen, A., Shabshin, N., Epstein, Y.: Experimentally tested computer modeling of stress fractures in rats. J. Appl. Physiol. 110(4), 909–916 (2011). doi:10.1152/japplphysiol.01468.2010. [pii]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Hadid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hadid, A., Epstein, Y., Shabshin, N., Gefen, A. (2016). The Mechanophysiololgy of Stress Fractures in Military Recruits. In: Gefen, A., Epstein, Y. (eds) The Mechanobiology and Mechanophysiology of Military-Related Injuries. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 19. Springer, Cham. https://doi.org/10.1007/8415_2016_190

Download citation

  • DOI: https://doi.org/10.1007/8415_2016_190

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33010-5

  • Online ISBN: 978-3-319-33012-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics