Skip to main content

Nanocomposite Materials from Theory to Application

  • Chapter
  • First Online:
New Frontiers of Nanoparticles and Nanocomposite Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 4))

Abstract

The idea of the limiting size scale of a miniaturized technology is fundamentally interesting, appealing for several reasons. As sizes are limited to the atomic scale, the relevant physical laws change from the classical to the quantum-mechanical laws of nanophysics. A clear distinction between nanostructures and microstructures is given here arbitrarily using length measurements. Nanostructures are defined according to their geometrical dimensions. This definition addresses technical dimensions, induced by external shaping processes; with the key feature of shaping process, the orientation and the positioning are known in accordance to an external reference system, such as the geometry of a substrate. A narrow definition of nanostructures is that they include structures with at least two dimensions below 100 nm. An extended definition also suggests structures with one dimension below 100 nm and a second dimension below 1 μm. Following this definition, ultrathin layers with lateral submicrometer structure sizes are also considered as nanostructures

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wolf, E.L.: Nanophysics and Nanotechnology, An Introduction to Modern Concepts in Nanoscience. Wiley, Weinheim (2004)

    Google Scholar 

  2. Kohler, M., Fritzsche, W.: Nanotechnology, An Introduction to Nanostructuring Techniques. Wiley, Weinheim (2004)

    Google Scholar 

  3. Brechignac, C., Houdy, P., Lahmani, M.: Nanomaterials and Nanochemistry. Springer, Germany (2007)

    Google Scholar 

  4. .Shokuhfar, A., Mohebali, M.: Nanostructured Materials in Current Trends in Chemical Engineering. In: Delgado, J.M.P.Q (ed) Studium Press LLC, Houston, USA (2010)

    Google Scholar 

  5. Shokuhfar, A., Momeni, K.: An Introduction to Nanotechnology (In Persian). Nashr Gostar, Tehran (2005)

    Google Scholar 

  6. CaoSeattle, G.: Nanostructures and Nano Materials, Synthesis, Properties, and Applications. Imperial College Press, London (2004)

    Google Scholar 

  7. Patil, K.C., Hegde, M.S., Rattan, T., Aruna, S.T.: Chemistry of Nanocrystalline Oxide Materials Combustion Synthesis Properties and Applications. World Scientific Publishing, Singapore (2008)

    Book  Google Scholar 

  8. Dresselhaus, M.S., Dresselhaus, G., Eklund, P.C.: Science of Fullerenes and Carbon Nanotubes. Academic Press, San Diego (1996)

    Google Scholar 

  9. Tang, Z., Sheng, P.: Nano Science and Technology: Novel Structures and Phenomena. Taylor & Francis, New York (2003)

    Google Scholar 

  10. Poole, C.P., Owense, F.J.: Introduction to Nanotechnology. Wiley, New York (2003)

    Google Scholar 

  11. Koch, C.C., Ovidko, I.A., Seal, S., Veprek, S.: Structural Nanocrystalline Materials Fundamentals and Applications. Cambridge University Press, New York (2007)

    Book  Google Scholar 

  12. Soler-ILLia, G.J. de A.A., Sanchez, C., Lebeau, B., Patarin, J.: Chem. Rev. 102, 4093 (2002)

    Google Scholar 

  13. Galarneau, A., Di Renzo, F., Fajula, F., Vedrine, J.: Zeolites and Mesoporous, Materials at the Dawn of the 21st Century. Elsevier, Amsterdam (2001)

    Google Scholar 

  14. Yang, P.: Chemistry of Nanostructured Material. World Scientific Publishing, Singapore (2003)

    Google Scholar 

  15. Cantor, B.: Novel Nanocrystalline Alloys and Magnetic Nanomaterials. IOP Publishing Ltd, Bristol (2005)

    Google Scholar 

  16. Stroscio, M.A., Dutta, M.: Phonons in Nanostructures. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  17. Schmid, G.: Nanoparticles from Theory to Applications. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim (2004)

    Google Scholar 

  18. Nalwa, H.S.: Nanostructured Materials and Nanotechnology. Academic Press, San Diego (2000)

    Google Scholar 

  19. Kotlensky, W.V.: Chem. Phys. Carbon 9, 173 (1973)

    CAS  Google Scholar 

  20. Ajayan, P.M., Schadler, L.S., Braun, P.V.: Nanocomposite Science and Technology. Wiley, New York (2003)

    Google Scholar 

  21. Dupel, P., Bourrat, X., Pailler, R.: Carbon 33, 1193 (1995)

    Google Scholar 

  22. Caseri, W.: Macromol. Rapid Commun. 21, 705 (2000)

    Article  CAS  Google Scholar 

  23. Tjong, S.C.: Carbon Nanotube Reinforced Composites. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2009)

    Book  Google Scholar 

  24. Gusev, A.I., Rempel, A.A.: Nanocrystalline Materials. Cambridge International Science Publishing, Cambridge (2004)

    Google Scholar 

  25. Bucher, J.P., Douglas, D.C., Bloomfield, L.A.: Phys. Rev. Let. 66, 3052 (1991)

    Article  CAS  Google Scholar 

  26. Frankel, J., Dorfinan, J.: Nature 126, 274 (1930)

    Article  Google Scholar 

  27. Kittel, C.: Phys. Rev. 70, 965 (1946)

    Article  CAS  Google Scholar 

  28. Heukelom, W., Broeder, J.J., van Reijen, L.L.: J. Chim. Phys. 51, 474 (1954)

    CAS  Google Scholar 

  29. Bean, C.P., Jacobs, I.S.: Magnetic granulometry and super paramagnetism. J. Appl. Phys. 27, 1448 (1956)

    Article  CAS  Google Scholar 

  30. Bruus, H.: Introduction to Nanotechnology. Technical University of Denmark, Lyngby (2004)

    Google Scholar 

  31. Bower, C., Zhu, W., Jin, S., Zhou, 0.: Appl. Phys. Lett. 77, 830 (2000)

    Google Scholar 

  32. Lobo, R.F., Pan, M., Chan, I., Zones, S.I., Crozier, P.A., Davis, M.E.: 1 Phys. Chem. 98, 12040 (1994)

    Google Scholar 

  33. Koch, C.C.: Nanostructured Materials, Processing Properties and Potential Applications. Noyes Publications, Bracknell (2002)

    Google Scholar 

  34. Suryanarayana, C.: Prog. Mater Sci. 46, 1–184 (2000)

    Article  Google Scholar 

  35. Suryanarayana, C.: Bibliography on Mechanical Alloying and Milling. Cambridge International Science Publishing, Cambridge (1995)

    Google Scholar 

  36. Eckert, J., Holzer, J.C., Krill, C.E., Johnson, W.L.: Reversible grain size changes in ball-milled nanocrystalline Fe-Cu alloys. J. Mater. Res. 7(8), 1980–1983 (1992)

    Article  CAS  Google Scholar 

  37. Koch, C.C.: The synthesis and structure of nanocrystalline materials produced by mechanical attrition: A review. Nanostructured Mater. 2(2), 109–129 (1993)

    Article  CAS  Google Scholar 

  38. Corriu, R., Anh, N.T.: Molecular Chemistry of Sol–Gel derived Nanomaterials. Wiley, New York, (2009)

    Google Scholar 

  39. Kelsall, R.W., Hamley, I.W., Geoghegan, M.: Nanoscale Science and Technology. Wiley, New York (2005)

    Google Scholar 

  40. Lee, W.E., Rainforth, W.M.: Ceramic Microstructures, Property control by Processing. Chapman & Hall, London (1994)

    Google Scholar 

  41. Jones, R.W.: Fundamental Principles of Sol-Gel Technology. The Institute of Metals, London (1989)

    Google Scholar 

  42. Brinker, C.J.: Sol-Gel Science, the Physics and Chemistry of Sol-Gel Processing. Academic Press, London (1990)

    Google Scholar 

  43. Birdi, K.S.: Handbook of Surface and Colloid Chemistry, 2nd edn. CRC Press, New York (2003)

    Google Scholar 

  44. Sakka, S.: Handbook of Sol Gel Science and Technology. Kluwer Academic Publisher, Boston (2001)

    Google Scholar 

  45. Klein, L.C.: Sol Gel Technology for Thin films, Fibers, Preforms, Electronics and Specialty Shapes. Noyes Publications, New Jersey (1998)

    Google Scholar 

  46. Rezaie, H.R., Rahimi, R.M., Nemati, A., Samadani, M.: Synthesis of Al2O3-SiC nanocomposite by sol-gel method and effect of TiO2 on sintering. In: DLS Conference, Paris (2010)

    Google Scholar 

  47. Hajiali, H., Karbasi, S., Hosseinalipour, S.M., Rezaie, H.R.: Preparation of a novel biodegradable nanocomposite scaffold based on poly (3-hydroxybutyrate)/bioglass nanoparticles for bone tissue engineering. J. Mater. Sci. Mater. Med. 21, 2125–2132 (2010)

    Article  CAS  Google Scholar 

  48. Aminzare, M., Mazaheri, M., Golestani-Fard, F., Rezaie, H.R., Ejeian, R.: Sintering behavior of nano alumina powder shaped by pressure filtration. Ceram. Int. 37, 9–14 (2011)

    Article  CAS  Google Scholar 

  49. Aminzare, M., Golestani-Fard, F., Guillon, O., Mazaheri, M., Rezaie, H.R.: Sintering behavior of an ultrafine alumina powder shaped by pressure filtration and dry pressing. Mater. Sci. Eng., A 527, 3807–3812 (2010)

    Article  Google Scholar 

  50. Zargar, H.R., Bayati, M.R., Rezaie, H.R., Golestani-Fard, F., Molaei, R., Zanganeh, S., Kajbafvala, A.: Influence of nano boehmite on solid state reaction of alumina and magnesia. J. Alloy. Compd. 507(2), 443–447 (2010)

    Article  CAS  Google Scholar 

  51. Ebrahimi Basabi, M., Javadpour, J., Rezaie, H.R., Goodarzi, M.: Mechanochemical synthesis of alumina-zirconia nanocomposite powder. Adv. Appl. Ceram. 107(6), 318–321 (2008)

    Article  CAS  Google Scholar 

  52. Ebrahimi Basabi, M., Javadpour, J., Rezaie, H.R., Goodarzi, M.: Mechanochemical Synthesis of alumina nano particles. Iran. J. Mater. Sci. Eng. 6(1), 26–30 (2009)

    CAS  Google Scholar 

  53. Yazdani, A., Rezaie, H.R., Ghassai, H.: Investigation of hydrothermal synthesis of wollastonite using silica and nano silica at different pressures. J. Ceram. Process. Res. 11(3), 348–353 (2010)

    Google Scholar 

  54. Zadegan, S., Hossainalipour, M., Ghassai, H., Rezaie, H.R., Naimi-Jamal, M.R.: Synthesis of cellulose-nanohydroxyapatite composite in 1-n-Butyl-3-methylimidazolium chloride. Ceram. Int. 36(8), 2375–2381 (2010)

    Article  CAS  Google Scholar 

  55. Zadegan, S., Hosseinalipour, S.M., Rezaie, H.R. Naimi Jmal, M.R.: Synthesis cellulose-nano hydroxyapaptite composite in 1-N-butyl-3-methylimidazolium chloride. In: 2nd International Conference on Ultrafine grained and Nanostructured Materials, Nov. 14–15, Tehran, Iran (2009)

    Google Scholar 

  56. Bakhtiari, L., Rezaie, H.R., Hosseinalipour, S.M., Shokrgozar, M.A.: Preparation of porous biphasic calcium phosphate-gelatin nanocomposite for bone tissue engineering. J. Nano Res. 11, 67–72 (2010)

    Article  CAS  Google Scholar 

  57. Bakhtiari, L., Hosseinalipour, S.M., Rezaie, H.R.: Effect of Gelatin amount on properties of nano-BCP/Gel scaffolds. In: 2nd International Conference on Ultrafine grained and Nanostructured Materials, Nov. 14–15, Tehran, Iran (2009)

    Google Scholar 

  58. Bakhtiari, L., Rezaie, H.R., Hosseinalipour, S.M., Shokrgozar, M.A.: Investigation of biphasic calcium phosphate/gelatin nanocomposite scaffolds as bone tissue engineering. Ceram. Int. 36(8), 2421–2426 (2010)

    Article  CAS  Google Scholar 

  59. Nouri, E., Shahmiri, M., Sadeghian, Z., Rezaie, H.R., Vaghari, H.: Effects of thermal treatment on the crystal structure, mechanical properties and corrosion behavior of zirconia and zirconia-alumina nano coatings. In: International Conference on Materials Heat Treatment (ICMH), Isfahan, Iran (2010)

    Google Scholar 

  60. Sobhani, M., Rezaie, H.R., Naghizadeh, R.: Sol–gel synthesis of aluminum titanate (Al2TiO5) nano-particles. J. Mater. Process. Technol. 206, 282–285 (2008)

    Google Scholar 

  61. Ardestani, M., Arabi, H., Razavizadeh, H., Rezaie, H.R., Jankovic, B., Mentus, S.: An investigation about the activation energies of the reduction transitions of fine dispersed CuWO4-x/WO3-x oxide powders. Int. J. Refract. Met. Hard Mater. 28, 383–387 (2010)

    Article  CAS  Google Scholar 

  62. Ardestani, M., Rezaie, H.R., Arabi, H., Razavizadeh, H.: The effect of sintering temperature on densification of nanoscale dispersed W–20–40%wt Cu composite powders. Int. J. Refract. Met. Hard Mater. 27, 862–867 (2009)

    Article  CAS  Google Scholar 

  63. Ardestani, M., Arabi, H., Razavizadeh, H., Rezaie, H.R., Mehrjoo, H.: Synthesis of WC-20 wt% Cu composite powders using co-precipitation and carburization process. Mater. Sci. Pol. 28(2), 413–420 (2010)

    CAS  Google Scholar 

  64. Ardestani, M., Razavizadeh, H., Arabi, H.: HR> Rezaie, Preparation and sintering of W-20 %wt Cu composite powders produced by co-precipitation method. Iran. J. Mater. Sci. Eng. 6(2), 24–29 (2009)

    CAS  Google Scholar 

  65. Ardestani, M., Arabi, H., Rezaie, H.R., Razavizadeh, H.: Synthesis and densification of W–30 wt% Cu composite powders using ammonium meta tungstate and copper nitrate as precursors. Int. J. Refract. Met. Hard Mater. 27, 796–800 (2009)

    Article  CAS  Google Scholar 

  66. Nazarian Samani, M., Shokuhfar, A., Kamali, A.R., Hadi, M.: Production of a nanocrystalline Ni3Al-based alloy using mechanical alloying. J. Alloy. Compd. 500(1), 30–33 (2010)

    Article  CAS  Google Scholar 

  67. Rezvani, M.R., Shokuhfar, A.: Synthesis and characterization of nano structured Cu-Al-Mn shape memory alloy by mechanical alloying. Mater. Sci. Eng., A 532, 282–286 (2012)

    Article  CAS  Google Scholar 

  68. Ghadimi, M., Shokuhfar, A., Rostami, H.R., Ghaffaric, M.: Effects of milling and annealing on formation and structural characterization of nanocrystalline intermetallic compounds from Ni–Ti elemental powders. Mater. Lett. 80, 181–183 (2012)

    Article  CAS  Google Scholar 

  69. Shokuhfar, A., Zare-Shahabadi, A., Atai, A., Ebrahimi-Nejada, S., Termeha, M.: Predictive modeling of creep in polymer/layered silicate nanocomposites. Polym. Test. 31(2), 345–354 (2012)

    Article  CAS  Google Scholar 

  70. Knauth, P., Schoonman, J.: Nanostructured Materials Selected Synthesis Methods, Properties and Applications. Kluwer Academic Publisher, New York (2004)

    Google Scholar 

  71. Theodore, L., Kunz, R.G.: Nanotechnology, Environmental Implications and Solutions. Wiley, New York (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Rezaie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rezaie, H.R., Shokuhfar, A., Arianpour, F. (2012). Nanocomposite Materials from Theory to Application. In: Öchsner, A., Shokuhfar, A. (eds) New Frontiers of Nanoparticles and Nanocomposite Materials. Advanced Structured Materials, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8611_2012_66

Download citation

Publish with us

Policies and ethics