Skip to main content

Relationship Between Redox Regulation and β-Adrenergic Responses in the Heart

  • Chapter
Signal Transduction in the Cardiovascular System in Health and Disease

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 3))

  • 870 Accesses

Abstract

Catecholamines have physiologically important effects on the performance of the heart through the activation of adrenergic receptors. In general, it is known that sympathetic nervous system activation modulates the signaling pathway that controls excitation-contraction coupling (ECC) in the heart. Coordinated myocyte handling of Ca2+ is essential for efficient ECC in the heart. A growing body of knowledge on cardiac β-adrenergic receptor (β-AR) signal transduction demonstrates that the agonist-bound β-AR selectively interacts with the stimulatory G protein (Gs), which activates adenylyl cyclase (AC), catalyzing cAMP formation. Subsequently, activation of cAMP-dependent protein kinase A (PKA) leads to phosphorylation of regulatory proteins involved in cardiac ECC and energy metabolism. Published data have shown that the altered cardiac responses in pathological conditions are closely related to the function of the β-AR system. From the current literature it is clear that the β-AR system and its importance in regulating cardiac function under both physiological and pathophysiological situations has attracted the attention of many investigators. Ca2+ functions as a critical second messenger in mediating fast intracellular responses in all tissues through signaling proteins to coordinate cell function with different intracellular mechanisms. In addition, the identification of oxidatively sensitive proteins that modulate intracellular signaling mechanisms and the associated generation of reactive oxygen species (ROS) are critical to understanding how cells respond to oxidative stress. Therefore, any disturbance in the intracellular ionic homeostasis due to the excess ROS, was shown to result in the occurrence of impaired cardiac contractile activity. Since β-ARs and AC are known to participate in the regulation of cardiac function, it is possible that the β-AR-linked signal transduction pathway is also affected by ROS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ayaz, M., and Turan, B. 2006. Selenium prevents diabetes-induced alterations in [Zn2+ ]i and met-allothionein level of rat heart via restoration of cell redox cycle. Am. J. Physiol. Heart Circ. Physiol. 290: H1071-H1080.

    Article  CAS  PubMed  Google Scholar 

  • Ayaz, M., Ozdemir, S., Ugur, M., Vassort, G., and Turan, B. 2004. Effects of selenium on altered mechanical and electrical cardiac activities of diabetic rat. Arch. Biochem. Biophys. 426:83-90.

    Article  CAS  PubMed  Google Scholar 

  • Ayaz, M., Ozdemir, S., Yaras, N., Vassort, G., and Turan, B. 2005. Selenium-induced alterations in ionic currents of rat cardiomyocytes. Biochem. Biophys. Res. Commun. 327:163-173.

    Article  CAS  PubMed  Google Scholar 

  • Bettger, W. J. 1993. Zinc and selenium, site-specific versus general antioxidation. Can. J. Pharma-col. 71:721-724.

    CAS  Google Scholar 

  • Bigelow, D. J., and Squier, T. C. 2005. Redox modulation of cellular signaling and metabolism through reversible oxidation of methionine sensors in calcium regulatory proteins. Biochim. Biophys. Acta 1703:121-134.

    CAS  PubMed  Google Scholar 

  • Bj örnstedt, M., Kumar, S., and Holgren, A. 1995. Selenite and selenodiglutathione. Reactions with thioredoxin systems. Methods Enzymol. 252:209-219.

    Article  Google Scholar 

  • Bohm, M. 1995. Alterations of beta-adrenoceptor-G-protein-regulated adenylyl cyclase in heart failure. Mol. Cell. Biochem. 147:147-160.

    Article  CAS  PubMed  Google Scholar 

  • Bohm, M., and Lohse, M. J. 1994. Quantification of beta-adrenoceptors and beta-adrenoceptor kinase on protein and mRNA levels in heart failure. Eur. Heart J. 15:30-34.

    PubMed  Google Scholar 

  • Bolli, R., and Marban, E. 1999. Molecular and cellular mechanisms of myocardial stunning. Physiol. Rev. 79:609-634.

    CAS  PubMed  Google Scholar 

  • Bowie, A., and O’Neill, L. A. 2000. Oxidative stress and nuclear factor kappaB activation: a reassessment of the evidence in the light of recent discoveries. Biochem. Pharmacol. 59:13-23.

    Article  PubMed  Google Scholar 

  • Bristow, M. R., Cubicciotti, R., Ginsburg, R., Stinson, E. B., and Johnson, C. 1982. Histamine-mediated adenylate cyclase stimulation in human myocardium. Mol. Pharmacol. 21:671-679.

    CAS  PubMed  Google Scholar 

  • Brodde, O.-E., Hillemann, S., Kunde, K., Vogesang, M., and Zerkowski, H.-R. 1992. Receptor systems affecting force of contraction in the human heart and their alterations in chronic heart failure. J. Heart Lung Transplant. 11:S164-S174.

    CAS  PubMed  Google Scholar 

  • Brodde, O.-E., Michel, M. C., and Zerkowski, H.-R. 1995. Signal transduction mechanisms con-trolling cardiac contractility and their alterations in chronic heart failure. Cardiovasc. Res. 30: 570-584.

    CAS  PubMed  Google Scholar 

  • Cargnoni, A., Ceconi, C., Gaia, G., Agnoletti, L., and Ferrari, R. 2002. Cellular thiols redox sta-tus: a switch for NF-κB activation during myocardial post-ischemic reperfusion. J. Mol. Cell. Cardiol. 34: 997-1005.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, H. J., Zhang, Z. S., Onishi, K., Ukai, T., Sane, D. C., and Cheng, C. P. 2001. Upregulation of functional beta(3)-adrenergic receptor in the failing canine myocardium. Circ. Res. 89:599-606.

    Article  CAS  PubMed  Google Scholar 

  • Choi, K. M., Zhong; Y., Hoit, B. D., Grupp, I. L., Hahn, H., Dilly, K. W., Guatimosim, S., Lederer, W. J., and Matlib, M. A. 2002. Defective intracellular Ca(2+) signaling contributes to car-diomyopathy in Type 1 diabetic rats. Am. J. Physiol. Heart Circ. Physiol. 283:H1398-H1408.

    CAS  PubMed  Google Scholar 

  • Chu, S. H., Sutherland, K., Beck, J., Kowalski, J., Goldspink, P., and Schwertz, D. 2005. Sex differences in expression of calcium-handling proteins and beta-adrenergic receptors in rat heart ventricle. Life Sci. 76:2735-2749.

    Article  CAS  PubMed  Google Scholar 

  • Coppey, L. J., Gellett, J. S., Davidson, E. P., Dunlap, J. A., Lund, D. D., and Yorek, M. A. 2001. Effect of antioxidant treatment of streptozotocin-induced diabetic rats on endoneurial blood flow, motor nerve conduction velocity, and vascular reactivity of epineurial arterioles of the sciatic nerve. Diabetes 50:1927-1937.

    Article  CAS  PubMed  Google Scholar 

  • Cruzado, M. C., Risler, N. R., Miatello, R. M., Yao, G., Schiffrin, E. L., and Touyz, R. M. 2005. Vascular smooth muscle cell NAD(P)H oxidase activity during the development of hyperten-sion: effect of angiotensin II and role of insulinlike growth factor-1 receptor transactivation. Am. J. Hypertens. 18:81-87.

    Article  CAS  PubMed  Google Scholar 

  • Da Ros, R., Assaloni, R., and Ceriello, A. 2004. Antioxidant therapy in diabetic complications: what is new? Curr. Vasc. Pharmacol. 2:335-341.

    Article  CAS  PubMed  Google Scholar 

  • Das, D. K., Maulik, N., and Engelman, R. M. 2004. Redox regulation of angiotensin II signaling in the heart. J. Cell. Mol. Med. 8(1):144-152.

    Article  CAS  PubMed  Google Scholar 

  • Das, P. K., Temsah, R., Panagia, V., and Dhalla, N. S. 1997. Beta-adrenergic linked signal trans-duction mechanisms in developing and aging hearts. Heart Fail. Rev. 2:23-41.

    CAS  Google Scholar 

  • Dhalla, N. S., Golfman, L., Takeda, N., and Nagano, M. 1999. Evidence for the role of oxidative stress in acute ischemic heart disease: a brief review. Can. J. Cardiol. 15:587-593.

    CAS  PubMed  Google Scholar 

  • Dhalla, N. S., Pierce, G. N., Panagia, V., Singal, P. K., and Beamish, R. E. 1982. Calcium move-ments in relation to heart function. Basic Res. Cardiol. 77:117-139.

    CAS  Google Scholar 

  • Dhalla, N. S., Wang, X., Sethi, R., and Das, P. K. 1997. Beta-adrenergic linked signal transduction mechanisms in failing heart. Heart Fail. Rev. 2:55-65.

    CAS  Google Scholar 

  • Eisner, D. A., Trafford, A. W., Diaz, M. E., Overend, C. L., and O’Neill, S. C. 1998. The con-trol of Ca release from the cardiac sarcoplasmic reticulum: regulation versus autoregulation. Cardiovasc. Res. 38:589-604.

    Article  CAS  PubMed  Google Scholar 

  • Eley, D. W., Eley, J. M., Korecky, B., Fliss, H., and Desilets, M. 1991. Calcium homeostasis in rabbit ventricular myocytes: disruption by hypochlorous acid and restoration by dithiothreitol. Circ. Res. 69: 1132-1138.

    CAS  PubMed  Google Scholar 

  • Endoh, M. 2006. Signal transduction and Ca2+ signaling in intact myocardium. J. Pharmacol. Sci. 100: 525-537.

    Article  CAS  PubMed  Google Scholar 

  • Fein, F. S., Kornstein, L. B., Strobeck, J. E., Capasso, J. M., and Sonnenblick, E. H. 1980. Altered myocardial mechanics in diabetic rats. Circ. Res. 47:922-933.

    CAS  PubMed  Google Scholar 

  • Feldman, A. M. 1993. Classification of positive inotropic agents. J. Am. Coll. Cardiol. 22:1223-1227.

    Article  CAS  PubMed  Google Scholar 

  • Gao, T., Yatani, A., Dell’Acqua, M. L., Sako, H., Green, S. A., Dascal, N., Scott, J. D., and Hosey, M. M. 1997. AMP-dependent regulation of cardiac L-type Ca2+ channels requires membrane targeting of PKA and phosphorylation of channel subunits. Neuron 19:185-196.

    Article  CAS  PubMed  Google Scholar 

  • Gocmen, C., Secilmis, A., Kumcu, E. K., Ertug, P. U., Onder, S., Dikmen, A., and Baysal, F. 2000. Effects of vitamin E and sodium selenate on neurogenic and endothelial relaxation of corpus cavernosum in the diabetic mouse. Eur. J. Pharmacol. 398:93-98.

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishna, R., and Jaken, S. 2000. Protein kinase C signaling and oxidative stress. Free Radic. Biol. Med. 28:1349-1361.

    CAS  Google Scholar 

  • Hammond, H. K., Roth, D. A., McKirnan, M. D., and Ping, P. 1993. Regional myocardial down-regulation of the inhibitory guanosine triphosphate-binding protein (Gi alpha 2) and beta-adrenergic receptors in a porcine model of chronic episodic myocardial ischemia. J. Clin. Invest. 92:2644-2652.

    Article  CAS  PubMed  Google Scholar 

  • Handel, M. L., Watts, C. K. W., DeFazio, A., and Grupp, G. 1995. Inhibition of AP-1 binding and transcription by gold and selenium involving conserved cysteine residues in Jun and Fos. Proc. Natl. Acad. Sci. USA 92:4497-4501.

    Article  CAS  PubMed  Google Scholar 

  • Hartzell, H. C. 1988. Regulation of cardiac ion channels by catecholamines, acetylcholine and second messenger systems. Prog. Biophys. Mol. Biol. 52:165-247.

    Article  CAS  PubMed  Google Scholar 

  • Hausdorff, W. P., Hnatowich, M., O’Dowd, B. F., Caron, M. G., and Lefkowitz, R. J. 1990. A mutation of the beta 2-adrenergic receptor impairs agonist activation of adenylyl cyclase with-out affecting high affinity agonist binding. Distinct molecular determinants of the receptor are involved in physical coupling to and functional activation of Gs. J. Biol. Chem. 265:1388-1393.

    CAS  PubMed  Google Scholar 

  • Homcy, C. J., Vatner, S. F., and Vatner, D. E. 1991. Beta-adrenergic receptor regulation in the heart in pathophysiologic states: abnormal adrenergic responsiveness in cardiac disease. Annu. Rev. Physiol. 53:137-159.

    Article  CAS  PubMed  Google Scholar 

  • Hool, L. C., Middleton, L. M., and Harvey, R. D. 1998. Genistein increases the sensitivity of cardiac ion channels to β-adrenergic receptor stimulation. Circ. Res. 83:33-42.

    CAS  PubMed  Google Scholar 

  • Iaccarino, G., Lefkowitz, R. J., and Koch, W. J. 1999. Myocardial G protein-coupled receptor kinases: implications for heart failure therapy. Proc. Assoc. Am. Physicians 111:399-405.

    CAS  PubMed  Google Scholar 

  • Kaul, N., Siveski-Iliskovic, N., Hill, M., Slezak, J., and Singal, P. K. 1993. Free radicals and the heart. J. Pharmacol. Toxicol. Methods 30:55-67.

    Article  CAS  PubMed  Google Scholar 

  • Kaura, D., Takeda, N., Sethi, R., Wang, X., Nagano, M., and Dhalla, N. S. 1996. Beta-adrenoceptor mediated signal transduction in congestive heart failure in cardiomyopathic (UM-X7.1) ham-sters. Mol. Cell. Biochem. 157:191-196.

    Article  CAS  PubMed  Google Scholar 

  • Kim, I. Y., and Stadtman, T. C. 1997. Inhibition of NF-κB DNA binding and nitric oxide induction in human T cells and lung adenocarcinoma cells by selenite treatment. Proc. Natl. Acad. Sci. USA 94: 12904-12907.

    Article  CAS  PubMed  Google Scholar 

  • Koller, L. D., and Exon, J. H. 1986. The two faces of selenium—deficiency and toxicity—-are similar in animals and man. Can. J. Vet. Res. 50:297-306.

    CAS  PubMed  Google Scholar 

  • Lands, A. M., Arnold, A., McAuliff, J. P., Luduena, F. P., and Brown, T. G., Jr. 1967. Differentiation of receptor systems activated by sympathomimetic amines. Nature 214:597-598.

    Article  CAS  PubMed  Google Scholar 

  • Le, C. T., Hollaar, L., Van der Valk, E. J., Franken, N. A., Van Ravels, F. J., Wondergem, J., and Van der Laarse, A. 1995. Protection of myocytes against free radical-induced damage by accelerated turnover of the glutathione redox cycle. Eur. Heart J. 16:553-562.

    CAS  PubMed  Google Scholar 

  • Li, G. S., Wang, F., Kang, D. R., and Li, C. 1985. Keshan disease: an endemic cardiomyopathy in China. Hum. Pathol. 16:602-609.

    Article  CAS  PubMed  Google Scholar 

  • Li, S., Li, X., and Rozanski, G. J. 2003. Regulation of glutathione in cardiac myocytes. J. Mol. Cell. Cardiol. 35:1145-1152.

    Article  CAS  PubMed  Google Scholar 

  • Lin-Shiau, S. Y., Liu, S. H., and Fu, W. M. 1989. Studies on the contracture of the mouse diaphragm induced by sodium selenite. Eur. J. Pharmacol. 167:137-146.

    Article  CAS  PubMed  Google Scholar 

  • Marks, A. R. 2001. Ryanodine receptors/calcium release channels in heart failure and sudden car-diac death. J. Mol. Cell. Cardiol. 33:615-624.

    Article  CAS  PubMed  Google Scholar 

  • Mohamed, A. K., Bierhaus, A., Schiekofer, S., Tritschler, H., Ziegler, R., and Nawroth, P. P. 1999. The role of oxidative stress and NF-κB activation in late diabetic complications. Biofactors 10: 157-167.

    Article  CAS  PubMed  Google Scholar 

  • Nishizawa, T., Iwase, M., Kanazawa, H., Ichihara, S., Ichihara, G., Nagata, K., Obata, K., Kitaichi, K., Yokoi, T., Watanabe, M., Tsunematsu, T., Ishikawa, Y., Murohara, T., and Yokota, M. 2004. Serial alterations of beta-adrenergic signaling in dilated cardiomyopathic hamsters: possible role of myocardial oxidative stress. Circ. J. 68:1051-1060.

    Article  CAS  PubMed  Google Scholar 

  • Oudit, G. Y., Kassiri, Z., Sah, R., Ramirez, R. J., Zobel, C., and Backx, P. H. 2001. The molecu-lar physiology of the cardiac transient outward potassium current (Ito ) in normal and diseased myocardium. J. Mol. Cell. Cardiol. 33:851-872.

    Article  CAS  PubMed  Google Scholar 

  • Overcast, J. D., Ensley, A. E., Buccafusco, C. J., Cundy, C., Broadnax, R. A., He, S., Yoganathan, A. P., Pollock, S. H., Hartley, C. J., and May, S. W. 2001. Evaluation of cardiovascular parameters of a selenium-based antihypertensive using pulsed Doppler ultrasound. J. Cardiovasc. Pharmacol. 38: 337-346.

    Article  CAS  PubMed  Google Scholar 

  • Persad, S., Takeda, S., Panagia, V., and Dhalla, N. S. 1997. B-adrenoceptor-linked signal transduc-tion in ischemic-reperfused heart and scavenging of oxyradicals. J. Mol. Cell. Cardiol. 29:545-558.

    Article  CAS  PubMed  Google Scholar 

  • Pogwizd, S. M., Schlotthauer, K., Li, L., Yuan, W., and Bers, D. M. 2001. Arrhythmogenesis and contractile dysfunction in heart failure: Roles of sodium-calcium exchange, inward rectifier potassium current, and residual beta-adrenergic responsiveness. Circ. Res. 88:1159-1167.

    Article  CAS  PubMed  Google Scholar 

  • Poltronieri, R., Cevese, A., and Sbartani, A. 1992. Protective effect of selenium in cardiac ischemia and reperfusion. Cardioscience 3:155-160.

    CAS  PubMed  Google Scholar 

  • Puceat, M., Bony, C., Jaconi, M., and Vassort, G. 1998. Specific activation of adenylyl cyclase V by a purinergic agonist. FEBS Lett. 431:189-194.

    Article  CAS  PubMed  Google Scholar 

  • Quin, F., Yan, C., Patel, R., Liu, W., and Dong, E. 2006. Vitamin C and E attenuate apoptosis, β-adrenergic receptor desensitization, and sarcoplasmic reticular Ca2+ ATPase downregulation after myocardial infarction. Free Radic. Biol. Med. 40:1827-1842.

    Google Scholar 

  • Rozanski, G. J., Xu, Z., Zhang, K., and Patel, K. P. 1998. Altered K+ current of ventricular myocytes in rats with chronic myocardial infarction. Am. J. Physiol. 274 (1 Pt 2):H259-H265.

    CAS  PubMed  Google Scholar 

  • Rozec, B., and Gauthier, C. 2006. B3 -adrenoceptors in the cardiovascular system: putative roles in human pathologies. Pharmacol. Ther. 111:652-673.

    Article  CAS  PubMed  Google Scholar 

  • Salonen, J. T., Salonen, R., Penttila, I., Herranen, J., Jauhiainen, M., Kantola, S., Lappetelainen, R., Maenpaa, P., Alfthan, G., and Puska, P. 1985. Serum fatty acids, apolipoproteins, selenium and vitamin antioxidants and the risk of death from coronary artery disease. Am. J. Cardiol. 56:226-231.

    Article  CAS  PubMed  Google Scholar 

  • Sayar, K., Ugur, M., Gurdal, H., Onaran, O., Hotomaroglu, O., and Turan, B. 2000. Dietary selenium and vitamin E intakes alter β-adrenergic response of L-type Ca-current and β-adrenoceptor-adenylate cyclase coupling in rat heart. J. Nutr. 130:733-740.

    CAS  PubMed  Google Scholar 

  • Schieke, S. M., Briviba, K., Klotz, L. O., and Sies, H. 1999. Activation of mitogen-activated protein kinases elicited by peroxynitrite: attenuation by selenite supplementation. FEBS Lett. 448:301-303.

    Article  CAS  PubMed  Google Scholar 

  • Schulz, R., Rassaf, T., Massion, P. B., Kelm, M., and Balligand, J. L. 2006. Recent advances in the understanding of the role of nitric oxide in cardiovascular homeostasis. Pharmacol. Ther. 108:225-256.

    Article  CAS  Google Scholar 

  • Sims, C., and Harvey, R. D. 2004. Redox modulation of basal and beta-adrenergically stimulated cardiac L-type Ca2+ channel activity by phenylarsine oxide. Br. J. Pharmacol. 142:797-807.

    Article  CAS  PubMed  Google Scholar 

  • Stapleton, S. R., Garlock, G., Foellmi-Adam, L., and Kletzien, R. F. 1997. Selenium: potent stim-ulator of tyrosyl phosphorylation and activator of MAP kinase. Biochim. Biophys. Acta 1355: 259-269.

    Article  CAS  PubMed  Google Scholar 

  • Stiles, G. L., and Lefkowitz, R. J. 1984. Cardiac adrenergic receptors. Annu. Rev. Med. 35:149-164.

    Article  CAS  PubMed  Google Scholar 

  • Strasser, R. H., Krimmer, J., Braun-Dullaeus, R., Marquetant, R., and Kubler, W. 1990. Dual sen-sitization of the adrenergic system in early myocardial ischemia: independent regulation of the beta-adrenergic receptors and the adenylyl cyclase. J. Mol. Cell. Cardiol. 22:1405-1423.

    Article  CAS  PubMed  Google Scholar 

  • Sun, Y., and Oberley, L. W. 1996. Redox regulation of transcriptional activators. Free Radic. Biol. Med. 21:335-348.

    CAS  Google Scholar 

  • Tatsumi, T., and Fliss, H. 1994. Hypochlorous acid mobilizes intracellular zinc in isolated rat heart myocytes. J. Mol. Cell. Cardiol. 26:471-479.

    Article  CAS  PubMed  Google Scholar 

  • Turan, B., Desilets, M., Acan, L. N., Hotomaroglu, O., Vannier, C., and Vassort, G. 1996. Oxidative effects of selenite on rat ventricular contractility and Ca movements. Cardiovasc. Res. 32:351-361.

    Article  CAS  PubMed  Google Scholar 

  • Turan, B., Fliss, H., and Desilets, M. 1997. Oxidants increase intracellular free Zn2+ concentration in rabbit ventricular myocytes. Am. J. Physiol. Heart Circ. Physiol. 272: H2095-H2106.

    CAS  Google Scholar 

  • Turan, B., Hotomaroglu, O., Kilic, M., and Demirel-Yilmaz, E. 1999. Cardiac dysfunction induced by low and high diet antioxidant levels. Comparing selenium and vitamin E in rats. Regul. Pharmacol. Toxicol. 29:142-150.

    Article  CAS  Google Scholar 

  • Turan, B., Saini, H. K., Zhang, M., Prajapati, D., Elimban, V., and Dhalla, N. S. 2005. Selenium improves cardiac function by attenuating the activation of NF-κB due to ischemia-reperfusion injury. Antioxid. Redox Signal. 7:1388-1397.

    Article  CAS  PubMed  Google Scholar 

  • Ugur, M., and Turan, B. 2001. Adenosine triphosphate alters the selenite-induced contracture and negative inotropic effect on cardiac muscle contractions. Biol. Trace Elem. Res. 79:235-245.

    Article  CAS  PubMed  Google Scholar 

  • Ugur, M., Ayaz, M., Ozdemir, S., and Turan, B. 2002. Toxic concentrations of selenite shortens repolarization phase of action potential in rat papillary muscle. Biol. Trace Elem. Res. 89:227-238.

    Article  CAS  PubMed  Google Scholar 

  • Valen, G., Yan, Z. Q., and Hansson, G. K. 2001. Nuclear factor kappa-B and the heart. J. Am. Coll. Cardiol. 38:307-314.

    Article  CAS  PubMed  Google Scholar 

  • Webb, T. E., Boluyt, M. O., and Barnard, E. A. 1996. Molecular biology of P2Y purinoceptors: expression in rat heart. J. Auton. Pharmacol. 16:303-307.

    Article  CAS  PubMed  Google Scholar 

  • Wehrens, X. H., and Marks, A. R. 2003. Altered function and regulation of cardiac ryanodine receptors in cardiac disease. Trends Biochem. Sci. 28:671-678.

    CAS  Google Scholar 

  • Wold, L. E., Ceylan-Isik, A. F., and Ren, J. 2005. Oxidative stress and stress signaling: menace of diabetic cardiomyopathy. Acta Pharmacol. Sin. 26:908-917.

    CAS  Google Scholar 

  • Wold, L. E., Ceylan-Isik, A. F., Fang, C. X., Yang, X., Li, S. Y., Sreejayan, N., Privratsky, J. R., and Ren, J. 2006. Metallothionein alleviates cardiac dysfunction in streptozotocin-induced diabetes: Role of Ca2+ cycling proteins, NADPH oxidase, poly(ADP-ribose) polymerase and myosin heavy chain isozyme. Free Radic. Biol. Med. 40:1419-1429.

    CAS  Google Scholar 

  • Xu, Z., Patel, K. P., Lou, M. F., and Rozanski, G. J. 2002. Up-regulation of K+ channels in diabetic rat ventricular myocytes by insulin and glutathione. Cardiovasc. Res. 53:80-88.

    Article  CAS  PubMed  Google Scholar 

  • Yaras, N., Ozdemir, S., Ugur, M., Puralı, N., Gurdal, H., Lacampagne, A., Vassort, G., and Turan, B. 2005. Effect of diabetes on ryanodine receptor Ca release channel (RyR2) and Ca2+ homeostasis in rat heart. Diabetes 54:3082-3088.

    Article  CAS  PubMed  Google Scholar 

  • Ye, G., Metreveli, N. S., Ren, J., and Epstein, P. N. 2003. Metallothionein prevents diabetes-induced deficits in cardiomyocytes by inhibiting reactive oxygen species production. Diabetes 52:777-783.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, M., Xu, Y. J., Saini, H. K., Turan, B., Liu, P. P., and Dhalla, N. S. 2005. TNF-alpha as a po-tential mediator of cardiac dysfunction due to intracellular Ca2+ -overload. Biochem. Biophys. Res. Commun. 327:57-63.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Y. Y., Yao, J. A., and Tsen, G. N. 1997. Role of tyrosine kinase activity in cardiac slow delayed rectifier channel modulation by cell swelling. Pfl ügers Arch. 433:750-757.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Turan, B. (2008). Relationship Between Redox Regulation and β-Adrenergic Responses in the Heart. In: Srivastava, A.K., Anand-Srivastava, M.B. (eds) Signal Transduction in the Cardiovascular System in Health and Disease. Advances in Biochemistry in Health and Disease, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09552-3_8

Download citation

Publish with us

Policies and ethics