Skip to main content

Micro-Fabrication of Gas Sensors

  • Chapter
  • First Online:
Solid State Gas Sensing

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Westbrook MH, Turner JD. Automotive sensors. Institute of Physics Publishing: Bristol and Philadelphia; ISBN 0-7503-0293-3. 1994.

    Google Scholar 

  2. Moos R, Müller R, Plog C, Knezevic A, Leye H, Irion E, Braunc T, Marquardt KJ, Binder K. Selective ammonia exhaust gas sensor for automotive applications. Sensor Actuat. 2002;B83:181–189.

    Article  CAS  Google Scholar 

  3. McGeehin P. Gas sensors for improved air quality in transportation. Sensor Rev. 2000;20:106–112.

    Article  Google Scholar 

  4. Hunter GW, Chen LY, Neudeck PG, Knight D, Liu CC, Wu QH, Zhou HJ, Makel D, Liu M, Rauch WA. Chemical gas sensors for aeronautic and space applications. NASA/TM—1998-208504, http://gltrs.grc.nasa.gov/reports/1998/TM-1998-208504.pdf. 1998

  5. Kallergis KM. New fire/smoke detection and fire extinguishing systems for aircraft applications. Space Eur.2001;3:197–200.

    Article  Google Scholar 

  6. Kohl D, Kelleter J, Petig H. Detection of fires by gas sensors. Sens Update. 2001;9:161–223.

    Article  CAS  Google Scholar 

  7. Helwig A, Schulz O, Spannhake J, Sayhan I, Krenkow A, Müller G. Aircraft applications of chemical sensors: from MEMS sensors to MEMS sensor systems, invited talk. 4th AIST International Workshop on Chemical Sensors, Nagoya, Japan; 30 Nov. 2006.

    Google Scholar 

  8. http://www.goodfood-project.org/

  9. Wöllenstein J, Hartwig S, Hildenbrand J, Eberhardt A, Moreno M, Santander J, Rubio R, Fonollosa J, Fonseca L. A compact optical ethylene monitoring system. Microtechnologies for the new millenium 2007. Maspalomas, Gran Canaria, Spain; 2–4 May 2007.

    Google Scholar 

  10. Abad E, Zampolli S, Marco S, Scorzoni A, Mazzolai B, Juarros A, Gómez D, Elmi I, Cardinali GC, Gómez JM, Palacio F, Cicioni M, Mondini A, Becker T, Sayhan I. Flexible tag microlab development: gas sensors integration in RFID flexible tags for food logistic. Sensor Actuat B. 2007;127:2–7.

    Article  Google Scholar 

  11. Gardner JW, Yinon J. Electronic noses and sensors for the detection of explosives. NATO Sci Ser II Math, Phys Chem.. Dordrecht: Kluwer; ISBN 1-4020-2317-0 (hardbound) and 1-4020-2318-9 (paperback). vol. 159. 2004.

    Google Scholar 

  12. Moseley PT, Tofield BC. Solid state gas sensors. Adam Hilger, Bristol; 1987.

    Google Scholar 

  13. http://www.figarosensor.com/

  14. http://www.umweltsensortechnik.de/

  15. Eranna G, Joshi BC, Runthala DP, Gupta RP. Oxide materials for development of integrated gas sensors – A comprehensive review. Crit. Rev Solid State Mater Sci. 2004;29:111–188.

    Article  CAS  Google Scholar 

  16. Moseley PT, Norris J, Williams DE. Techniques and mechanisms in gas sensing. Adam Hilger, Bristol; 1991.

    Google Scholar 

  17. Sze SM. Semiconductor sensors. John Wiley & Sons; ISBN 0-471-54609-7. 1994.

    Google Scholar 

  18. Gardner JW, Bartlett PN. Electronic noses: principles and application. Oxford University Press: Oxford; ISBN 0-19-855955-0. 1999, p. 245.

    Google Scholar 

  19. Graf M, Gurlo A, Bârsan N, Weimar U, Hierlemann A. Microfabricated gas sensor systems with sensitive nanocrystalline metal-oxide films. J Nanopart Res. 2006;8:823–839.

    Article  CAS  Google Scholar 

  20. Bourgeois W, Romain A-C, Nicolas J, Stuetz RM. The use of sensor arrays for environmental monitoring: interests and limitations. J Environ Monit. 2003;5:852–860.

    Article  CAS  Google Scholar 

  21. Platt U, Stutz J. Differential optical absorption spectroscopy – principles and applications, Ser Phys Earth Space Environ. ISBN: 978-3-540-21193-8. 2008.

    Google Scholar 

  22. McNair HM, Miller JM. Basic gas chromatography. ISBN: 978-0-471-17261-1. 1997.

    Google Scholar 

  23. Eiceman GA, Karpas Z. Ion mobility spectrometry. 2nd ed. CRC Press, Taylor & Francis: Boca Raton; 2006.

    Google Scholar 

  24. Rubio R, Santander J, Fonseca L, Sabatér N, Gràcia I, Cané C, Udina S, Marco S. Non-selective NDIR array for gas detection. Sensor Actuat. 2007;B127:69–73.

    Article  CAS  Google Scholar 

  25. Graf M, Barrettino D, Baltes HP, Hierlemann A. CMOS hotplate chemical microsensors. Ser.: Microtechnol MEMS. ISBN: 978-3-540-69561-5. 2007.

    Google Scholar 

  26. Hierlemann A. Integrated chemical microsensor systems in CMOS technology. Ser.: Microtechnol MEMS. ISBN: 978-3-540-23782-2. 2005.

    Google Scholar 

  27. Wapelhorst E, Hauschild JP, Müller J. Complex MEMS: a fully integrated TOF micro mass spectrometer. Sensor Actuat 2007;A138:22–27.

    CAS  Google Scholar 

  28. Müller G, Friedberger A, Kreisl P, Ahlers S, Schulz O, Becker T. A MEMS toolkit for metal-oxide-based gas-sensing systems, Thin Solid Films. 2003;436:34–45.

    Article  Google Scholar 

  29. Sze SM. Semiconductor devices; physics and technology. John Wiley & Sons; ISBN-10: 0-471-33372-7; ISBN-13: 978-0-471-33372-2. 2001.

    Google Scholar 

  30. Waser R. Nanoelectronics and information technology. Wiley-VCH, ISBN 3527403639. 2003.

    Google Scholar 

  31. Heuberger A. Mikromechanik. Springer; ISBN 3-540-18721-9. 1989.

    Google Scholar 

  32. http://www.memsnet.org/mems/what-is.html

  33. http://www.memx.com/

  34. Bergveld, P. Thirty years of ISFETOLOGY: what happened in the past 30 years and what may happen in the next 30 years. Sensor Actuat. 2003;B88:1–20.

    Article  CAS  Google Scholar 

  35. Lundström I, Shirvamavan MS, Svensson C. A hydrogen-sensitive MOS field-effect transistor. Appl Phys Lett. 1975;26:55–57.

    Article  Google Scholar 

  36. Lundström I, Shirvamavan MS, Svensson C. A hydrogen sensitive Pd-gate MOS transistor. J Appl Phys. 1975;46:3876–3881.

    Article  Google Scholar 

  37. Lundström I, Spetz A, Winquist F, Ackelid U, Sundgren H. Catalytic metals and field-effect devices – a useful combination. Sensor Actuat. 1990;B1:15–20.

    Article  Google Scholar 

  38. Ahlers S, Müller G, Becker Th, Doll Th. Factors influencing the gas sensitivity of metal oxide materials. In: Grimes CA, Dickey EC, Pishko MV, editors. Encyclopedia of sensors. The Pennsylvania State University, University Park, USA; ISBN: 1-58883-056-X. 2005.

    Google Scholar 

  39. Fang Q, Chetwynd DG, Covington JA, Toh CS, Gardner JW. Micro-gas-sensor with conducting polymers. Sensor Actuat. 2002;B84:66–71.

    Article  CAS  Google Scholar 

  40. Helwig A, Müller G, Sberveglieri G, Faglia G. Gas sensing properties of hydrogenated amorphous silicon films. IEEE Sens J. 2007;7:1506–1512.

    Article  CAS  Google Scholar 

  41. http://www.sensorsmag.com/articles/0203/14/

  42. Schjølberg-Henriksen K, Ferber A, Schulz O, Moe S, Wang DT, Lloyd MH, Legner W, Suphan KH, Bernstein RW, Rogne H, Müller G. Sensitive and selective photo acoustic gas sensor suitable for high-volume manufacturing. Proceedings of IEEE Sensors Conference, Daegu, Korea; October 22–25, 2006.

    Google Scholar 

  43. Tardy P, Coulon JR, Lucat C, Menil F. Dynamic thermal conductivity sensor for gas detection. Sensor Actuat. 2004;B98:63–68.

    Article  CAS  Google Scholar 

  44. Miller JB. Catalytic sensors for monitoring explosive atmospheres. IEEE Sens J. 2001;1:88–93.

    Article  CAS  Google Scholar 

  45. Sberveglieri G, Hellmich A, Müller G. Silicon hotplates for metal oxide gas sensor elements. Microsyst Technol. 1997;3:183–190.

    Article  Google Scholar 

  46. Suehle JS, Cavicchi RE, Gaitan M, Semancik M. Tin oxide gas sensor fabricated using CMOS Micro hotplates and in-situ processing. IEEE Electr Device L. 1993;14: 118–120.

    Article  CAS  Google Scholar 

  47. Semancik S, Cavicchi RE, Kreider KG, Suehle JS, Chaparla P. Selected area deposition of multiple active films for conductometric microsensor arrays. Proc. Transducers ´95, EUROSENSORS IX, Stockholm, Sweden; 1995. pp. 831–834.

    Google Scholar 

  48. Semancik S, Cavicchi RE, Meier DC, Taylor CJ, Savage NO, Wheeler MC. Temperature-controlled MEMS chemical microsensors”, Proc. 1st AIST International Workshop on chemical Sensors. Nagoya; March 13, 2003.

    Google Scholar 

  49. Friedberger A, Kreisl P, Rose E, Müller G, Kühner G, Wöllenstein J, Böttner H. Micromechanical fabrication of robust low-power metal-oxide gas sensors. Sensor Actuat. 2003;B93:345–349.

    Article  CAS  Google Scholar 

  50. Spannhake J, Schulz O, Helwig A, Krenkow A, Müller G, Doll T. High-temperature MEMS heater platforms: long-term performance of metal and semiconductor heater materials. Sensors. 2006;6:405–419.

    Article  Google Scholar 

  51. Zeitschel A, Friedberger A, Welser W, Müller G. Breaking the isotropy of porous silicon formation by current focussing. Sensor Actuat. 1999;74:113–117.

    Article  Google Scholar 

  52. Düsco Cs, Vaszsonyi E, Adam M, Barsony I, Gardeniers JGE, van den Berg A. Porous silicon bulk micromachining for thermally isolated membrane formation. Proc. Eurosensors X, Leuven, Belgium; 1996. pp. 227–230.

    Google Scholar 

  53. Barrettino D, Graf M, Song WH, Kirstein KU, Hierlemann A, Baltes H. Hotplate-based monolithic CMOS microsystems for gas detection and material characterization for operating temperatures up to 500°C. IEEE J Solid-State Circ. 2004;39:1202–1207.

    Article  Google Scholar 

  54. Kreisl P, Helwig A, Friedberger A, Müller G, Obermeier E, Sotier S. Detection of hydrocarbon species using silicon MOS capacitors operated in a non-stationary temperature pulse mode. Sensor Actuat. 2005;B106:489–497.

    Article  CAS  Google Scholar 

  55. Kreisl P, Helwig A, Müller G, Obermeier E, Sotier S. Detection of hydrocarbon species using silicon MOS field effect transistors operated in a non-stationary temperature-pulse mode. Sensor Actuat. 2005;B106:442–449.

    Article  CAS  Google Scholar 

  56. Müller G, Schalwig J, Kreisl P, Helwig A, Obermeier E, Weidemann O, Stutzmann M, Eickhoff M. High-temperature operated field-effect gas sensors. In: Grimes CA, Dickey EC, Pishko MV. Editors. Encyclopedia of sensors.The Pennsylvania State University, University Park, USA. ISBN: 1-58883-056-X. 2005.

    Google Scholar 

  57. Spannhake J, Helwig A, Müller G, Sberveglieri G, Faglia G, Wassner T, Eickhoff M. SnO2:Sb – A new material for high-temperature MEMS heater applications – performance and limitations. Sensor Actuat. 2007;B124:421–428.

    Article  CAS  Google Scholar 

  58. Schjølberg-Henriksen K, Wang DT, Rogne H, Ferber A, Vogl A, Moe S, Bernstein R, Lapadatu D, Sandven K. High-resolution pressure sensor for photoacoustic gas detection, EUROSENSORS XIX, Barcelona, Spain; 11–14 Sept. 2005.

    Google Scholar 

  59. Brida S, Beclin S, Metivet S, Martins P,Stojanovic O. High sensitivity piezoresistive silicon microphone for aerospace applications. 5th ESA MNT Round Table, Noordwijk, The Netherlands; 3–5 October 2005.

    Google Scholar 

  60. Brida S, Martins P, Beclin S, Metivet S, Stojanovic O, Malhaire C. Design of bossed silicon membranes for high sensitivity microphone applications, DTIP of MEMS MOEMS, Stresa, Italy, 26–28 April 2006.

    Google Scholar 

  61. Sekhar PK, Akellaa S, Bhansali S. A low loss flexural plate wave (FPW) device through enhanced properties of sol–gel PZT (52/48) thin film and stable TiN-Pt bottom electrode. Sensor Actuat. 2006;A132:376–384.

    CAS  Google Scholar 

  62. Neuberger R. PhD thesis, Department of Experimental Semiconductor Physics II, Technical University of Munich; 2003.

    Google Scholar 

  63. Schulz O, Müller G, Lloyd MH, Ferber A. Impact of environmental parameters on the emission intensity of micromachined infrared sources. Sensor Actuat. 2005;A121: 172–180.

    CAS  Google Scholar 

  64. Spannhake J, Helwig A, Friedberger A, Müller G, Hellmich W. Resistance heating. Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley & Sons, June, 2007, 10.1002/047134608X.W3223.pub2.

    Google Scholar 

  65. Meyer GCM, van Herwarden AW. Thermal sensors. Bristol and Philidelphia: Institute of Physics Publishing:; 1994. ISBN 0-7503-0220-8.

    Google Scholar 

  66. Spannhake J, Schulz O, Helwig A, Müller G, Doll T. Design, development and operational concept of an advanced MEMS IR source for miniaturized gas sensor systems. IEEE Sens. 2005;30:4. ISBN: 0-7803-9056-3/05.

    Google Scholar 

  67. http://aa.bosch.de/advastaboschaa/Category.jsp?ccat_id=29&language=en-GB& publication=1.

  68. http://cms.hlplanar.de/index.php.

  69. Kittel Ch, Kroemer H. Thermal physics. San Francisco: W.H. Freeman & Co Ltd; ISBN-10: 0716710889, ISBN-13: 978-0716710882.

    Google Scholar 

  70. http://www.thyracont.com/.

  71. Puers R, Reyntjens S, De Bruyker D. The NanoPirani – an extremely miniaturized pressure sensor fabricated by focused ion beam rapid prototyping. Sensor Actuat. 2002;A97 & 98:208–214.

    Google Scholar 

  72. Zhang FT, Tang Z, Yu J, Jin RC. A micro-Pirani vacuum gauge based on micro-hotplate technology. Sensor Actuat. 2006;A126:300–305.

    CAS  Google Scholar 

  73. Ahlers S,Müller G, Doll Th. A rate equation approach to the gas sensitivity of thin-film SnO2. Sensor Actuat. 2005;B107587–599.

    Google Scholar 

  74. Helwig A, Müller G, Sberveglieri G, Faglia G. Gas response times of nano-scale SnO2 gas sensors as determined by the moving gas outlet technique. Sensor Actuat. 2007;B126:174–180.

    Article  CAS  Google Scholar 

  75. Guidi V, Butturi MA, Carotta MC, Cavicchi B, Ferroni M, Malagù C, Martinelli G, Vincenzi D, Sacerdoti M, Zen M. Gas sensing through thick film technology. Sensor Actuat. 2002;B84:72–77.

    Article  CAS  Google Scholar 

  76. Vincenzi D, Butturi MA, Stefancich M, Malagù C, Guidi V, Carotta MC, Martinelli G, Guarnieri V, Brida S, Margesin B, Giacomozzi F, Zen M, Vasiliev AA, Pisliakov AV. Low-power thick-film gas sensor obtained by a combination of screen printing and micromachining techniques. Thin Solid Films. 2001;391:288–292.

    Article  CAS  Google Scholar 

  77. Epifani M, Francioso L, Siciliano P, Helwig A, Mueller G, Díaz R, Arbiol J, Morante JR. SnO2 thin films from metalorganic precursors: synthesis, characterization, microelectronic processing and gas-sensing properties. Sensor Actuat. 2007;B124:217–226.

    Google Scholar 

  78. Francioso L, Russo M, Taurino AM, Siciliano P. Micrometric patterning process of sol–gel SnO2, In2O3 and WO3 thin film for gas sensing applications: towards silicon technology integration. Sensor Actuat. 2006;B119:159–166.

    Article  CAS  Google Scholar 

  79. Semancik S, Cavicchi RE, Kreider KG, Suehle JS, Chaparala P. Selected-area deposition of multiple active films for conductometric microsensor arrays. Proc. of Transducers 95/Eurosensors IX. Norstedts Tryckeri AB, Stockholm, Sweden, 1995. pp. 831–834.

    Google Scholar 

  80. DiMeo F. Jr., Semancik S, Cavicchi RE, Suehle JS, Chaparala P, Tea NH. MOCVD of SnO2 on silicon microhotplate arrays for use in gas sensing applications. MRS Proc. 1995;415:231–236.

    Google Scholar 

  81. Cavicchi RE, Suehle JS, Kreider KG, Shomaker BL, Small JA, Gaitan M, Chaparala P. Growth of SnO2 films on micromachined hotplates. Appl. Phys. Lett. 1995;66:812–814.

    Article  CAS  Google Scholar 

  82. Semancik S, Cavicchi RE, Kreider KG, Suehle JS, Chaparala P. Selected-area deposition of multiple active films for conductometric microsensor arrays. Sensor Actuat. 1995;B34:209–212.

    Google Scholar 

  83. Comini E, Faglia G, Sberveglieri G, Pan ZW, Wang ZL. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl Phys Lett. 2002;81:1869–1871.

    Article  CAS  Google Scholar 

  84. Choi YJ, Hwang IS, Choi KJ, Park JH, Park JG. Gas sensor based on the network of SnO2 semiconducting nanowires. In: Li C, Zribi A, Nagahara L, Willander M, editors. Nanofunctional materials, nanostructures and novel devices for biological and chemical detection. Mater. Res. Soc. Symp. Proc. 951E, Warrendale, PA, 2007, pp. 08–03.

    Google Scholar 

  85. Meier DC, Semancik S, Button B, Strelcov E, Kolmakov A. Coupling nanowire chemiresistors with MEMS microhotplate gas sensing platforms. Appl Phys Lett. 2007;91:063118.

    Article  Google Scholar 

  86. Baratto C, Comini E, Faglia G, Sberveglieri G, Zha M, Zappettini A. Metal oxide nanocrystals for gas sensing. Sensor Actuat. 2005;B109:2–6.

    CAS  Google Scholar 

  87. Hellmich W, Müller G, Doll T, Eisele I. Field-effect-induced gas sensitivity changes in metal oxides. Sensor Actuat. 1997;B43:132–139.

    Article  CAS  Google Scholar 

  88. Ahlers S, Becker T, Hellmich W, Bosch-v.Braunmühl C, Müller G. Temperature- and field-effect-modulation techniques for thin-film metal oxide gas sensors. In: Doll T. editor. Advanced gas sensing: the electroadsorptive effect and related techniques. Kluwer Academic Publishers: Boston, London, Dordrecht; 2003.

    Google Scholar 

  89. Dalin J. Fabrication and characterisation of a novel MOSFET gas sensor. PhD thesis. Linköpings Institute of Technology, 2002.

    Google Scholar 

  90. Fan Z, Lu JG. Gate-refreshable nanowire chemical sensors. Appl Phys Lett. 2006;86:123510.

    Article  Google Scholar 

  91. Zhang Y, Kolmakov A, Lilach Y, Moskovits M. Electronic control of chemistry and catalysis at the surface of an individual tin oxide nanowire. J Phys Chem. 2005;B109: 1923–1929.

    Google Scholar 

  92. Arbab A, Spetz A, ul Wahab Q, Willander M, Lundström I. Chemical sensors for high temperatures based on silicon carbide. Sens Mater. 1993;4:173–185.

    CAS  Google Scholar 

  93. Lloyd Spetz A, Baranzahi A, Tobias P, Lundström I. High temperature sensors based on metal-insulator-silicon carbide devices. Phys Stat Sol (a). 1997;162:493–511.

    Article  CAS  Google Scholar 

  94. Lloyd Spetz A, Unéus L, Svenningstorp H, Tobias P, Ekedahl L-G, Larsson O, Göras A, Savage S, Harris C, Mårtensson P, Wigren R, Salomonsson P, Häggendahl B, Ljung P, Mattsson M, Lundström I. SiC based field effect gas sensors for industrial applications. Phys Stat Sol (a). 2001;185:15–25.

    Article  Google Scholar 

  95. Käpplinger I, Brode W, Krenkow A, Spannhake J, Müller G. High temperature silicon-on-insulator based hotplates: long term performance of platinum heater materials. Proc. AMA 2007. Nürnberg, Germany, 22- 4 May 2007.

    Google Scholar 

  96. Nachos: http://www.micro-hybrid.de

  97. Schulz O, Legner W, Müller G, Schjølberg-Henriksen K, Ferber A, Moe S, Lloyd MH, Suphan K-H. Photoacoustic gas sensing microsystems. Proc. AMA 2007. Nürnberg, May 2007.

    Google Scholar 

  98. Helwig A, Schulz O, Sayhan I, Müller G. “Multi-criteria fire detectors for aeronautic applications. Proc. TRANSFAC, San Sebastian, Spain, September 2006. Invited talk at Global Symposium on Innovative Solutions for the Advancement of the Transport Industry/Transfac’06, San Sebastian, Spain, October 4–6, 2006.

    Google Scholar 

  99. Grosshandler W.L. editor. Nuisance alarms in aircraft cargo areas and critical telecommunication systems. Proc. Third NIST Fire Detector Workshop, December 4–5, 1997, NISTIR 6146, National Institute of Standards and Technology, Gaithersburg, MD, March 1998.

    Google Scholar 

  100. Airbus Internal Directive ABD0100, Equipment-Design General Requirements for Suppliers; Source: Airbus Documentation Office, Toulouse, Blagnac, France.

    Google Scholar 

  101. Millenium Sensor Systems (MISSY), http://www.ipc.uni-tuebingen.de/weimar/research/researchprojects/missy/info_missy.pdf.

  102. IMOS (EU FP6); http://imos.fhnon.de.

  103. Sayhan I, Helwig A, Becker Th, Müller G, Elmi I, Zampolli S, Cardinali GC, Padilla M, Marco S. Discontinuously operated metal oxide gas sensors for flexible tag microlab applications. IEEE Sens J. 2008;8:176–181.

    Article  CAS  Google Scholar 

  104. Bell AG. On the production and reproduction of sound. Am J Sci. 1880;20:305.

    Google Scholar 

  105. Kreuzer LB. Ultra-low gas concentration absorption spectroscopy. J Appl Phys. 1971;42:2934–2943.

    Article  CAS  Google Scholar 

  106. Ohlckers P, Ferber AM, Dmitriev VK, Kirpilenko G. A photo-acoustic gas sensing silicon microsystem. Transducers 2001, Germany, June 2001, pp. 780–783.

    Google Scholar 

  107. Schulz O. PhD thesis. Technical University of Ilmenau, 2007.

    Google Scholar 

  108. http://www.multimems.com

  109. Becker T, Mühlberger S, Bosch-von Braunmühl C, Müller G, Meckes A, Benecke W. Microreactors and microfluidic systems: an innovative approach to gas sensing using tin-oxide-based gas sensors. Sensor Actuat. 2001;B77:48–54.

    Google Scholar 

  110. Becker T, Mühlberger S, Bosch - von Braunmühl C, Müller G, Ziemann T, Hechtenberg KV. Air pollution monitoring using tin-oxide based micro-reactor systems. Sensor Actuat. 2000;B69:108–119.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support by the EU under the projects NANOS4 (FP6-2002-NMP-1, No. 001528) and NetGas (FP5 IST – 2001 – 37802) and to the German Ministry of Education and Research BMBF under the contracts “MISSY”, “IESSICA” and “NACHOS”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Spannhake, J., Helwig, A., Schulz, O., Müller, G. (2009). Micro-Fabrication of Gas Sensors. In: Comini, E., Faglia, G., Sberveglieri, G. (eds) Solid State Gas Sensing. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09665-0_1

Download citation

Publish with us

Policies and ethics