Skip to main content

Mechanisms of Recombination

  • Chapter
Essential Fungal Genetics
  • 367 Accesses

Abstract

The importance of the octad and tetrad segregations that we discussed in the last chapter extends far beyond their contribution to the mapping of chromosomes. Their study reveals phenomena that depend on the molecular details of the process of recombination. Tetrad analysis enabled us to start understanding recombination, and only fungal octads were able to do this. Examination of large numbers of asci segregating a single gene difference (e.g.,black/white spores) will certainly reveal that the majority fall into the categories we illustrated in Fig.5.3, but there will always be a minority that, instead of showing the usual 4:4 segregation of the two alleles of the gene, have ratios of either 6:2 (e.g., 6 black spores to 2 white spores in the same octad) or 2:6 (i.e., 2 black spores to 6 white spores). These are called aberrant segregations because they seem to imply deviation from the Mendelian expectation that alleles segregate in equal numbers at meiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Publications and Websites Worth a Visit

  • Brown, T.A. (1999). Genomes. BIOS Scientific Publishers: Oxford, U.K.

    Google Scholar 

  • Craig, N.L. (1988). The mechanism of conservative site-specific recombination. Annual Reviews of Genetics 22, 77–105.

    Article  CAS  Google Scholar 

  • Hiom, K. (2001). Recombination: homologous recombination branches out. Current Biology 11, R278–R280.

    Article  PubMed  CAS  Google Scholar 

  • Gopaul, D.N. & Van Duyne, G.D. (1999). Structure and mechanism in site-specific recombination. Current Opinion in Structural Biology 9, 14–20.

    Article  PubMed  CAS  Google Scholar 

  • Guo, F., Gopaul, D.N. & Van Duyne, G.D. (1997). Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature 389, 40–46.

    Article  PubMed  CAS  Google Scholar 

  • Haber, J.H. (1998). A locus control region regulates yeast recombination. Trends in Genetics 14, 317–321

    Article  PubMed  CAS  Google Scholar 

  • Kowalczykowski, S.C., Dixon, D.A., Eggleston, A.K., Lauder, S.D. & Rehrauer, W.M. (1994). Biochemistry of homologous recombination in Escherichia coli. Microbiological Reviews 58, 401–465.

    CAS  Google Scholar 

  • Kolodner, R.D. & Marsischky, G.T. (1999). Eukaryotic DNA mismatch repair. Current Opinion in Genetics & Development 9, 89–96.

    Article  CAS  Google Scholar 

  • Lamb, B.C. (1996). Ascomycete genetics: the part played by ascus segregation phenomena in our understanding of the mechanisms of recombination. Mycological Research 100, 1025–1059.

    Google Scholar 

  • Lewin, B. (2000). Genes VII, seventh edition, Oxford University Press: Oxford, U.K.

    Google Scholar 

  • Mengiste, T. & Paszkowski, J. (1999). Prospects for the precise engineering of plant genomes by homologous recombination. Biological Chemistry 380, 749–758.

    Article  PubMed  CAS  Google Scholar 

  • Page, A.W. & Orr-Weaver, T.L. (1997). Stopping and starting the meiotic cell cycle. Current Opinion in Genetics & Development 7, 23–31.

    Article  CAS  Google Scholar 

  • Parikh, S.S., Mol, CD., Hosfield, DJ. & Tainer, J.A. (1999). Envisioning the molecular choreography of DNA base excision repair. Current Opinion in Structural Biology 9, 37–47.

    Article  PubMed  CAS  Google Scholar 

  • Rice, D.W., Rafferty, J.B., Artymiuk, P.J. & Lloyd, R.G. (1997). Insights into the mechanisms of homologous recombination from the structure of RuvA. Current Opinion in Structural Biology 7, 798–803.

    Article  PubMed  CAS  Google Scholar 

  • West, S.C. (1992). Enzymes and molecular mechanisms of genetic recombination. Biochemistry 61, 603–640.

    CAS  Google Scholar 

Historical Publications Worth Knowing About

  • Case, M.E. & Giles, N.H. (1958). Recombination mechanism at the pan-2 locus in Neurospora. Cold Spring Harbor Symposia on Quantitative Biology 23, 119–135.

    PubMed  CAS  Google Scholar 

  • Holliday, R. (1964). A mechanism for gene conversion in fungi. Genetical Research 5, 282–304.

    Google Scholar 

  • Sigal, N. & Alberts, B. (1972). Genetic recombination: the nature of crossed strand-exchange between two homologous DNA molecules. Journal of Molecular Biology 71, 789–793.

    Article  PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

(2002). Mechanisms of Recombination. In: Essential Fungal Genetics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-22457-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-22457-2_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95367-0

  • Online ISBN: 978-0-387-22457-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics