Skip to main content

Bénard Convection and Geophysical Applications

  • Chapter
Dynamics of Spatio-Temporal Cellular Structures

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 207))

Abstract

Some typical relationships between experimental and theoretical studies of Rayleigh—Bénard convection and convection phenomena observed in geophysical and astrophysical systems are discussed. Because of the vast range of the subject only a few examples are described in a qualitative manner. Convection in planetary cores and its dynamo action receives special attention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Prandtl, The Essentials of Fluid Dynamics, Blackie, London (1952).

    Google Scholar 

  2. J.A. Whitehead and B. Parsons, Observations of convection at Rayleigh numbers up to 760000 in a fluid with large Prandtl number, Geophys. Astrophys. Fluid Dyn. 9, 201–217 (1978).

    Article  ADS  Google Scholar 

  3. J.R.A. Pearson, On convection cells induced by surface tension, J. Fluid Mech. 4, 489–500 (1958).

    Article  MATH  ADS  Google Scholar 

  4. R.C. DiPrima and H.L. Swinney, Instabilities and transition in the flow between concentric rotating cylinders, in Hydrodynamic Instabilities and Transition to Turbulence, 139–180, ed. by H.L. Swinney and J.P. Gollub, Springer-Verlag, New York (1981).

    Google Scholar 

  5. D. Avsec, Sur les formes ondulées des tourbillons en bandes longitudinales, Compt. Rend Acad. Sci. 204, 167–169 (1937).

    Google Scholar 

  6. H. Bénard and D. Avsec, Travaux récent sur les tourbillons en bandes: Applications à a l’Astrophysique et à la Météorologie, J. de Physique et le Radium 9, 486–500 (1938).

    Article  Google Scholar 

  7. H. Bénard, Les tourbillons cellulaires dans une nappe liquide transportant de la chaleur par convection en régime permanent, Ann. Chim. Phys. 7 Ser 23, 62 (1901).

    Google Scholar 

  8. F.H. Busse and J.A. Whitehead, Instabilities of convection rolls in a high Prandtl number fluid, J. Fluid Mech. 47, 305–320 (1971).

    Article  ADS  Google Scholar 

  9. J.A. Whitehead, The propagation of dislocations in Rayleigh-Bénard rolls and bimodal flow, J. Fluid Mech. 75, 715–720 (1976).

    Article  ADS  Google Scholar 

  10. B.W. Atkinson and J. Wo Zhang, Mesoscale shallow convection in the atmosphere, Rev. Geophysics 34, 403–431 (1996).

    Article  ADS  Google Scholar 

  11. A. Graham, Shear patterns in an unstable layer of air, Phil. Trans. Roy. Soc. A232, 285–296 (1933).

    ADS  Google Scholar 

  12. H. Tippelskirch, Über Konvektionszellen, insbesondere in flüssigem Schwefel, Beitr. Phys. Atmos. 29, 37–54 (1956).

    Google Scholar 

  13. F.H. Busse, The stability of finite amplitude cellular convection and its relation to an extremum principle, J. Fluid Mech. 30, 625–649 (1967).

    Article  MATH  ADS  Google Scholar 

  14. M. Assenheimer and V. Steinberg, Observations of coexisting up-and downflow hexagons in Boussinesq Rayleigh—Bénard convection, Phys. Rev. Lett. 76, 756–759 (1996).

    Article  ADS  Google Scholar 

  15. R.M. Clever and F.H. Busse, Hexagonal convection cells under conditions of vertical symmetry, Phys. Rev. E 53, R2037–R2040 (1996).

    Article  ADS  Google Scholar 

  16. A. Wegener, Die Entstehung der Kontinente, itPetermanns Mitt. 1912, 185–195, 253-256, 305-309 (1912).

    Google Scholar 

  17. A. Holmes, Radioactivity and earth movements, Geol. Soc. Glasgow Trans. 18, 559–606 (1931).

    Google Scholar 

  18. F.H. Busse and N. Riahi, Patterns of convection in spherical shells II, J. Fluid Mech. 47, 305–320 (1971).

    Article  ADS  Google Scholar 

  19. F.H. Busse, Patterns of convection in spherical shells, J. Fluid Mech. 72, 67–85 (1975).

    Article  MATH  ADS  Google Scholar 

  20. J.-P. Montagner, Can seismology tell us anything about convection in the mantle?, Rev. Geophys. 32, 115–137 (1994).

    Article  ADS  Google Scholar 

  21. G. Masters, S. Johnson, G. Laske, and H. Bolton, A shear-velocity model of the mantle, Phil. Trans. R. Soc. Lond. A354, 1385–1411 (1996).

    Article  ADS  Google Scholar 

  22. F.H. Busse, Quadrupole convection in the lower mantle? Geophys. Res. Lett. 10, 285–288 (1983).

    Article  ADS  Google Scholar 

  23. W.R. Peltier, Editor, Mantle Convection, Plate Tectonics and Global Dynamics, Gordon & Breach, New York (1989).

    Google Scholar 

  24. G. Schubert, D.L. Turcotte, and P. Olson, Mantle Convection in the Earth and Planets, Cambridge University Press (2001).

    Google Scholar 

  25. J. Janssen, Ann. Observ. Astron. Phys. Paris, sis á Meudon, t.1, p. 103 (1896).

    Google Scholar 

  26. F.H. Busse, Differential rotation in stellar convection zones, Astrophys. J. 159, 629–639 (1970).

    Article  ADS  Google Scholar 

  27. G.W. Simon and N.O. Weiss, Supergranules and the hydrogen convection zone, Z. Astrophys. 69, 435–450 (1968).

    ADS  Google Scholar 

  28. F.H. Busse, On Howard’s upper bound for heat transport by turbulent convection, J. Fluid Mech. 37, 457–477 (1969).

    Article  MATH  ADS  Google Scholar 

  29. F.H. Busse, Thermal instabilities in rapidly rotating systems, J. Fluid Mech. 44, 441–460 (1970).

    Article  MATH  ADS  Google Scholar 

  30. F.H. Busse and L.L. Hood, Differential rotation driven by convection in a rotating annulus, Geophys. Astrophys. Fluid Dyn. 21, 59–74 (1982).

    Article  MATH  ADS  Google Scholar 

  31. F.H. Busse, Asymptotic theory of convection in a rotating, cylindrical annulus, J. Fluid Mech. 173, 545–556 (1986).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. A.C. Or and F.H. Busse, Convection in a rotating cylindrical annulus. Part 2. Transitions to asymmetric and vacillating flow, J. Fluid Mech. 174, 313–326 (1987).

    Article  MATH  ADS  Google Scholar 

  33. E. Grote and F.H. Busse, Dynamics of convection and dynamos in rotating spherical fluid shells, Fluid Dyn. Res. 28, 349–368 (2001).

    Article  ADS  Google Scholar 

  34. J. Larmor, How could a rotating body such as the sun become a magnet? Brit. Ass. Advan. Sci. Rep., 159–160 (1919).

    Google Scholar 

  35. T.G. Cowling, The magnetic field of sunspots, Monthly Not. Roy. Astr. Soc. 94, 39–48 (1934).

    ADS  Google Scholar 

  36. G.E. Backus, A class of self sustaining dissipative spherical dynamos, Ann. Phys. 4, 372–447 (1958).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  37. A. Herzenberg, Geomagnetic dynamos, Phil. Trans. Roy. Soc. London, Ser. A 250, 543–585 (1958).

    Article  MathSciNet  ADS  Google Scholar 

  38. S. Childress and A.M. Soward, Convection-driven hydromagnetic dynamo, Phys. Rev. Lett. 29, 837–839 (1972).

    Article  ADS  Google Scholar 

  39. A.M. Soward, A convection driven dynamo. I. The weak field case, Phil. Trans. Roy. Soc. London, Ser. A 275, 611–645 (1974).

    Article  ADS  Google Scholar 

  40. F.H. Busse, Generation of magnetic fields by convection, J. Fluid Mech. 57, 529–544 (1973).

    Article  MATH  ADS  Google Scholar 

  41. F.H. Busse, A model of the geodynamo, Geophys. J. R. Astr. Soc. 42, 437–459 (1975).

    MATH  Google Scholar 

  42. G.A. Glatzmaier, Numerical simulations of stellar convective dynamos. I. The model and the method, J. Comp. Phys. 55, 461–484 (1984).

    Article  ADS  Google Scholar 

  43. F.H. Busse, Homogeneous dynamos in planetary cores and in the laboratory, Ann. Rev. Fluid Mech. 32, 383–408 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  44. E. Dormy, J.-P. Valet, and V. Courtillot, Numerical models of the geodynamo and observational constraints, G 3 (Geochem. Geophys. Geosystems) 1, (2000).

    Google Scholar 

  45. D.R. Fearn, Hydromagnetic flow in planetary cores, Rep. Prog. Phys. 61, 175–235 (1998).

    Article  ADS  Google Scholar 

  46. P.H. Roberts and G.A. Glatzmaier, Geodynamo theory and simulations, Rev. Mod. Phys. 72, 1081–1123 (2000).

    Article  ADS  Google Scholar 

  47. S. Chandrasekar, Hydrodynamic and Hydromagnetic Stability, Clarendon Oxford (1961).

    Google Scholar 

  48. D.R. Fearn, Thermally driven hydromagnetic convection in a rapidly rotating sphere, Proc. Roy. Soc. Lond. A369, 227–242 (1979).

    Article  MATH  ADS  Google Scholar 

  49. R. Simitev and F.H. Busse, Visible and nearly invisible oscillatory convection driven dynamos, to be submitted to Geophys. Res. Lett. (2003).

    Google Scholar 

  50. F.H. Busse, and N. Riahi, Patterns of convection in spherical shells II, J. Fluid Mech. 123, 283–302 (1982).

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Busse, F.H. (2006). Bénard Convection and Geophysical Applications. In: Mutabazi, I., Wesfreid, J.E., Guyon, E. (eds) Dynamics of Spatio-Temporal Cellular Structures. Springer Tracts in Modern Physics, vol 207. Springer, New York, NY. https://doi.org/10.1007/978-0-387-25111-0_6

Download citation

Publish with us

Policies and ethics