Skip to main content

Nano- and Micro-Technology to Spatially and Temporally Control Proteins for Neural Regeneration

  • Chapter
BioMEMS and Biomedical Nanotechnology
  • 1192 Accesses

Abstract

Nano- and micro-technologies in the field of neural tissue engineering have implications in the pursuit of spatial and temporal control of protein and sugar cues at the site of injury and in the control over cellular response to these cues to promote regeneration and healing. The nervous system consists of two main components that are relevant from a regeneration and tissue engineering perspective. These components are the central nervous system (CNS), consisting of the cells and processes contained within the spinal and cranial cavities, and the peripheral nervous system (PNS), comprising of the nervous system outside of the CNS. Although a third component, the autologous nervous system, exists and is important physiologically, this component will not be the focus of this chapter for the sake of relevance and brevity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Aebischer, A.N. Salessiotis, and S.R. Winn. Basic fibroblast growth factor released from synthetic guidance channels facilitates peripheral nerve regeneration across long nerve gaps. J. Neurosci. Res., 23(3):282–289, 1989.

    Article  Google Scholar 

  2. A.M. Avellino, D. Hart, A.T. Dailey, M. MacKinnon, D. Ellegala, and M. Kliot. Differential macrophage responses in the peripheral and central nervous system during wallerian degeneration of axons. Exp. Neurol., 136(2):183–198, 1995.

    Article  Google Scholar 

  3. A. Baird, P.A. Walicke. Fibroblast growth factors. Br. Med. Bull., 45(2):438–452, 1989.

    Google Scholar 

  4. A.P. Balgude, X. Yu, A. Szymanski, and R.V. Bellamkonda. Agarose gel stiffness determines rate of DRG neurite extension in 3D cultures. Biomaterials, 22(10):1077–1084, 2001.

    Article  Google Scholar 

  5. C.E. Bandtlow. Regeneration in the central nervous system. Exp. Gerontol., 38(1–2):79–86, 2003.

    Article  Google Scholar 

  6. R. Bellamkonda, J.P. Ranieri, and P. Aebischer. Laminin oligopeptide derivatized agarose gels allow threedimensional neurite extension in vitro. J. Neurosci. Res., 41(4):501–509, 1995a.

    Article  Google Scholar 

  7. R. Bellamkonda, J.P. Ranieri, N. Bouche, and P. Aebischer. Hydrogel-based three-dimensional matrix for neural cells. J. Biomed. Mater. Res., 29(5):663–671, 1995b.

    Article  Google Scholar 

  8. R. Bellamkonda and P. Aebischer. Review: Tissue Engineering in the Nervous System. Biotech. Bioeng., 43:543–1994, 1993.

    Article  Google Scholar 

  9. R. Biran, M.D. Noble, and P.A. Tresco. Directed nerve outgrowth is enhanced by engineered glial substrates. Exp. Neurol., 184(1):141–152, 2003.

    Article  Google Scholar 

  10. M. Borkenhagen, J.F. Clemence, H. Sigrist, and P. Aebischer. Three-dimensional extracellular matrix engineering in the nervous system. J. Biomed. Mater. Res., 40(3):392–400, 1998.

    Article  Google Scholar 

  11. E.J. Bradbury, S. Khemani, R. Von King, J.V. Priestley, and S.B. McMahon. NT-3 promotes growth of lesioned adult rat sensory axons ascending in the dorsal columns of the spinal cord. Eur. J. Neurosci., 11(11):3873–3883, 1999.

    Article  Google Scholar 

  12. E.J. Bradbury, L.D. Moon, R.J. Popat, V.R. King, G.S. Bennett, P.N. Patel, J.W. Fawcett, and S.B. McMahon. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature, 416(6881):636–640, 2002.

    Article  Google Scholar 

  13. C. Brosamle, A.B. Huber, M. Fiedler, A. Skerra, and M.E. Schwab. Regeneration of lesioned corticospinal tract fibers in the adult rat induced by a recombinant, humanized IN-1 antibody fragment. J. Neurosci., 20(21):8061–8068, 2000.

    Google Scholar 

  14. P.J. Camarata, R. Suryanarayanan, D.A. Turner, R.G. Parker, and T.J. Ebner. Sustained release of nerve growth factor from biodegradable polymer microspheres. Neurosurgery, 30(3):313–319, 1992.

    Article  Google Scholar 

  15. X. Cao and M.S. Schoichet. Delivering neuroactive molecules from biodegradable microspheres for application in central nervous system disorders. Biomaterials, 20(4):329–339, 1999.

    Article  Google Scholar 

  16. D. Ceballos, X. Navarro, N. Dubey, G. Wendelschafer-Crabb, W.R. Kennedy, and R.T. Tranquillo. Magnetically aligned collagen gel filling a collagen nerve guide improves peripheral nerve regeneration. Exp. Neurol., 158(2):290–300, 1999.

    Article  Google Scholar 

  17. L.J. Chamberlain, I.V. Yannas, H.P. Hsu, G. Strichartz, and M. Spector. Collagen-GAGsubstrate enhances the quality of nerve regeneration through collagen tubes up to level of autograft. Exp. Neurol., 154(2):315–329, 1998.

    Article  Google Scholar 

  18. L.B. Dahlin and G. Lundborg. Use of tubes in peripheral nerve repair. Neurosurg. Clin. N. Am., 12(2):341–352, 2001.

    Google Scholar 

  19. S. David and S. Lacroix. Molecular Approaches to Spinal Cord Repair. Annu. Rev. Neurosci., 2003.

    Google Scholar 

  20. R. Deumens, G.C. Koopmans, C.G. Den Bakker, V. Maquet, S. Blacher, W.M. Honig, R. Jerome, J.P. Pirard, H.W. Steinbusch, and E.A. Joosten. Alignment of glial cells stimulates directional neurite growth of CNS neurons in vitro. Neuroscience, 125(3):591–604, 2004.

    Article  Google Scholar 

  21. C.I. Dubreuil, M.J. Winton, and L. McKerracher. Rho activation patterns after spinal cord injury and the role of activated Rho in apoptosis in the central nervous system. J. Cell. Biol., 162(2):233–243, 2003.

    Article  Google Scholar 

  22. G.R. Evans. Peripheral nerve injury: a review and approach to tissue engineered constructs. Anat. Rec., 263(4):396–404, 2001.

    Article  Google Scholar 

  23. J.W. Fawcett and R.A. Asher. The glial scar and central nervous system repair. Brain. Res. Bull., 49(6):377–391, 1999.

    Article  Google Scholar 

  24. S.P. Frostick, Q. Yin, and G.J. Kemp. Schwann cells, neurotrophic factors, and peripheral nerve regeneration. Microsurgery, 18(7):397–405, 1998.

    Article  Google Scholar 

  25. V. Guenard, N. Kleitman, T.K. Morrissey, R.P. Bunge, and P. Aebischer. Syngeneic Schwann cells derived from adult nerves seeded in semipermeable guidance channels enhance peripheral nerve regeneration. J. Neurosci., 12(9):3310–3320, 1992.

    Google Scholar 

  26. T. Hashimoto, Y. Suzuki, M. Kitada, K. Kataoka, S. Wu, K. Suzuki, K. Endo, Y. Nishimura, and C. Ide. Peripheral nerve regeneration through alginate gel: analysis of early outgrowth and late increase in diameter of regenerating axons. Exp. Brain. Res., 146(3):356–368, 2002.

    Article  Google Scholar 

  27. G.W. Hiebert, K. Khodarahmi, J. McGraw, J.D. Steeves, and W. Tetzlaff. Brain-derived neurotrophic factor applied to the motor cortex promotes sprouting of corticospinal fibers but not regeneration into a peripheral nerve transplant. J. Neurosci. Res., 69(2):160–168, 2002.

    Article  Google Scholar 

  28. A. Hoke and J. Silver. Proteoglycans and other repulsive molecules in glial boundaries during development and regeneration of the nervous system. Prog. Brain. Res., 108:149–163, 1996.

    Article  Google Scholar 

  29. D.A. Houweling, A.J. Lankhorst, W.H. Gispen, P.R. Bar, and E.A. Joosten. Collagen containing neurotrophin-3 (NT-3) attracts regrowing injured corticospinal axons in the adult rat spinal cord and promotes partial functional recovery. Exp. Neurol., 153(1):49–59, 1998.

    Article  Google Scholar 

  30. T.W. Hudson, G.R. Evans, and C.E. Schmidt. Engineering strategies for peripheral nerve repair. Orthop. Clin. North. Am., 31(3):485–498, 2000.

    Article  Google Scholar 

  31. A. Jain, S.M. Brady-Kalnay, and R.V. Bellamkonda. Modulation of Rho GTPase activity alleviates chondroitin sulfate proteoglycan-dependent inhibition of neurite extension. J. Neurosci. Res., 77(2):299–307, 2004.

    Article  Google Scholar 

  32. K. Kataoka, Y. Suzuki, M. Kitada, T. Hashimoto, H. Chou, H. Bai, M. Ohta, S. Wu, K. Suzuki, and C. Ide. Alginate enhances elongation of early regenerating axons in spinal cord of young rats. Tissue. Eng., 10(3–4):493–504, 2004.

    Article  Google Scholar 

  33. T. Khan, M. Dauzvardis, and S. Sayers. Carbon filament implants promote axonal growth across the transected rat spinal cord. Brain. Res., 541(1):139–145, 1991.

    Article  Google Scholar 

  34. D.H. Kim and T.A. Jahng. Continuous brain-derived neurotrophic factor (BDNF) infusion after methylprednisolone treatment in severe spinal cord injury. J. Korean. Med. Sci., 19(1):113–122, 2004.

    Article  Google Scholar 

  35. V. Kottis, P. Thibault, D. Mikol, Z.C. Xiao, R. Zhang, P. Dergham, P.E. Braun. Oligodendrocyte-myelin glycoprotein (OMgp) is an inhibitor of neurite outgrowth. J. Neurochem., 82(6):1566–1569, 2002.

    Article  Google Scholar 

  36. C.E. Krewson, M.L. Klarman, and W.M. Saltzman. Distribution of nerve growth factor following direct delivery to brain interstitium. Brain. Res., 680(1–2):196–206, 1995.

    Article  Google Scholar 

  37. A. Lakatos, S.C. Barnett, R.J. Franklin. Olfactory ensheathing cells induce less host astrocyte response and chondroitin sulphate proteoglycan expression than Schwann cells following transplantation into adult CNS white matter. Exp. Neurol., 184(1):237–246, 2003.

    Article  Google Scholar 

  38. A.C. Lee, V.M. Yu, J.B. Lowe, 3rd, M.J. Brenner, D.A. Hunter, S.E. Mackinnon, S.E. Sakiyama-Elbert. Controlled release of nerve growth factor enhances sciatic nerve regeneration. Exp. Neurol., 184(1):295–303, 2003.

    Article  Google Scholar 

  39. L.S. Liu, T. Khan, S.T. Sayers, M.F. Dauzvardis, and C.L. Trausch. Electrophysiological improvement after co-implantation of carbon filaments and fetal tissue in the contused rat spinal cord. Neurosci. Lett., 200(3):199–202, 1995.

    Article  Google Scholar 

  40. Y. Luo and M.S. Shoichet. A photolabile hydrogel for guided three-dimensional cell growth and migration. Nat. Mater., 3(4):249–253, 2004.

    Article  Google Scholar 

  41. M.P. Mattson, A. Taylor-Hunter, and S.B. Kater. Neurite outgrowth in individual neurons of a neuronal population is differentially regulated by calcium and cyclic AMP. J. Neurosci., 8(5):1704–1711, 1988.

    Google Scholar 

  42. R.J. McKeon, A. Hoke, and J. Silver. Injury-induced proteoglycans inhibit the potential for laminin-mediated axon growth on astrocytic scars. Exp. Neurol., 136(1):32–43, 1995.

    Article  Google Scholar 

  43. L. McKerracher, S. David, D.L. Jackson, V. Kottis, R.J. Dunn, and P.E. Braun. Identification of myelinassociated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron, 13(4):805–811, 1994.

    Article  Google Scholar 

  44. N.J. Meilander, X. Yu, N.P. Ziats, and R.V. Bellamkonda. Lipid-based microtubular drug delivery vehicles. J. Control. Release., 71(1):141–152, 2001.

    Article  Google Scholar 

  45. P.P. Monnier, A. Sierra, J.M. Schwab, S. Henke-Fahle, and B.K. Mueller. The Rho/ROCK pathway mediates neurite growth-inhibitory activity associated with the chondroitin sulfate proteoglycans of the CNS glial scar. Mol. Cell. Neurosci., 22(3):319–330, 2003.

    Article  Google Scholar 

  46. D.A. Morgenstern, R.A. Asher, and J.W. Fawcett. Chondroitin sulphate proteoglycans in the CNS injury response. Prog. Brain. Res., 137:313–332, 2002.

    Article  Google Scholar 

  47. A. Mosahebi, M. Wiberg, and G. Terenghi. Addition of fibronectin to alginate matrix improves peripheral nerve regeneration in tissue-engineered conduits. Tissue. Eng., 9(2):209–218, 2003.

    Article  Google Scholar 

  48. G. Mukhopadhyay, P. Doherty, F.S. Walsh, P.R. Crocker, and M.T. Filbin. A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron, 13(3):757–767, 1994.

    Article  Google Scholar 

  49. T.T. Ngo, P.J. Waggoner, A.A. Romero, K.D. Nelson, R.C. Eberhart, and G.M. Smith. Poly(L-Lactide) microfilaments enhance peripheral nerve regeneration across extended nerve lesions. J. Neurosci. Res., 72(2):227–238, 2003.

    Article  Google Scholar 

  50. B. Niederost, T. Oertle, J. Fritsche, R.A. McKinney, and C.E. Bandtlow. Nogo-A and myelin-associated glycoprotein mediate neurite growth inhibition by antagonistic regulation of RhoA and Rac1. J. Neurosci., 22(23):10368–10376, 2002.

    Google Scholar 

  51. C.D. Nobes and A. Hall. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell, 81(1):53–62, 1995.

    Article  Google Scholar 

  52. L.N. Novikova, L.N. Novikov, and J.O. Kellerth. Differential effects of neurotrophins on neuronal survival and axonal regeneration after spinal cord injury in adult rats. J. Comp. Neurol., 452(3):255–263, 2002.

    Article  Google Scholar 

  53. D.D. Pearse, F.C. Pereira, A.E. Marcillo, M.L. Bates, Y.A. Berrocal, M.T. Filbin, and M.B. Bunge. cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury. Nat. Med., 10(6):610–616, 2004.

    Article  Google Scholar 

  54. J. Qiu, D. Cai, H. Dai, M. McAtee, P.N. Hoffman, B.S. Bregman, and M.T. Filbin. Spinal axon regeneration induced by elevation of cyclic AMP. Neuron, 34(6):895–903, 2002.

    Article  Google Scholar 

  55. N. Rangappa, A. Romero, K.D. Nelson, R.C. Eberhart, and G.M. Smith. Laminin-coated poly(L-lactide) filaments induce robust neurite growth while providing directional orientation. J. Biomed. Mater. Res., 51(4):625–634, 2000.

    Article  Google Scholar 

  56. S.E. Sakiyama-Elbert and J.A. Hubbell. Controlled release of nerve growth factor from a heparin-containing fibrin-based cell ingrowth matrix. J. Control. Release, 69(1):149–158, 2000a.

    Article  Google Scholar 

  57. S.E. Sakiyama-Elbert and J.A. Hubbell. Development of fibrin derivatives for controlled release of heparinbinding growth factors. J. Control Release, 65(3):389–402, 2000b.

    Article  Google Scholar 

  58. F.F. Santos-Benito and A. Ramon-Cueto. Olfactory ensheathing glia transplantation: a therapy to promote repair in the mammalian central nervous system. Anat. Rec., 271B(1):77–85, 2003.

    Article  Google Scholar 

  59. C.E. Schmidt and J.B. Leach. Neural tissue engineering: strategies for repair and regeneration. Annu. Rev. Biomed. Eng., 5:293–347, 2003.

    Article  Google Scholar 

  60. D. Shaw and M.S. Shoichet. Toward spinal cord injury repair strategies: peptide surface modification of expanded poly(tetrafluoroethylene) fibers for guided neurite outgrowth in vitro. J. Craniofac. Surg. 14(3):308–316, 2003.

    Article  Google Scholar 

  61. V.R. Sinha and A. Trehan. Biodegradable microspheres for protein delivery. J. Control. Release, 90(3):261–280, 2003.

    Article  Google Scholar 

  62. W. Sufan, Y. Suzuki, M. Tanihara, K. Ohnishi, K. Suzuki, K. Endo, and Y. Nishimura. Sciatic nerve regeneration through alginate with tubulation or nontubulation repair in cat. J. Neurotrauma., 18(3):329–338, 2001.

    Article  Google Scholar 

  63. S. Sunderland, Sir. Nerve Injuries and Their Repair: A Critical Appraisal. Edinburgh: Churchill Livingstone, 1991.

    Google Scholar 

  64. T. Takami, M. Oudega, M.L. Bates, P.M. Wood, N. Kleitman, and M.B. Bunge. Schwann cell but not olfactory ensheathing glia transplants improve hindlimb locomotor performance in the moderately contused adult rat thoracic spinal cord. J. Neurosci., 22(15):6670–6681, 2002.

    Google Scholar 

  65. R.F. Valentini, P. Aebischer, S.R. Winn, P.M. Galletti. Collagen-and laminin-containing gels impede peripheral nerve regeneration through semipermeable nerve guidance channels. Exp. Neurol., 98(2):350–356, 1987.

    Article  Google Scholar 

  66. E. Verdu, R.O. Labrador, F.J. Rodriguez, D. Ceballos, J. Fores, and X. Navarro. Alignment of collagen and laminin-containing gels improve nerve regeneration within silicone tubes. Restor. Neurol. Neurosci., 20(5):169–179, 2002.

    Google Scholar 

  67. N. Weidner, A. Blesch, R.J. Grill, and M.H. Tuszynski. Nerve growth factor-hypersecreting Schwann cell grafts augment and guide spinal cord axonal growth and remyelinate central nervous system axons in a phenotypically appropriate manner that correlates with expression of L1. J. Comp. Neurol., 413(4):495–506, 1999.

    Article  Google Scholar 

  68. M.R. Wells, K. Kraus, D.K. Batter, D.G. Blunt, J. Weremowitz, S.E. Lynch, H.N. Antoniades, and H.A. Hansson. Gel matrix vehicles for growth factor application in nerve gap injuries repaired with tubes: a comparison of biomatrix, collagen, and methylcellulose. Exp. Neurol., 146(2):395–402, 1997.

    Article  Google Scholar 

  69. W.D. Whetstone, J.Y. Hsu, M. Eisenberg, Z. Werb, and L.J. Noble-Haeusslein. Blood-spinal cord barrier after spinal cord injury: relation to revascularization and wound healing. J. Neurosci. Res., 74(2):227–239, 2003.

    Article  Google Scholar 

  70. M.J. Winton, C.I. Dubreuil, D. Lasko, N. Leclerc, and L. McKerracher. Characterization of newcell permeable C3-like proteins that inactivate Rho and stimulate neurite outgrowth on inhibitory substrates. J. Biol. Chem., 277(36):32820–32829, 2002.

    Article  Google Scholar 

  71. S. Woerly, V.D. Doan, F. Evans-Martin, C.G. Paramore, and J.D. Peduzzi. Spinal cord reconstruction using NeuroGel implants and functional recovery after chronic injury. J. Neurosci. Res., 66(6):1187–1197, 2001.

    Article  Google Scholar 

  72. S. Woerly, V.D. Doan, N. Sosa, J. de Vellis, A. Espinosa-Jeffrey. Prevention of gliotic scar formation by NeuroGel allows partial endogenous repair of transected cat spinal cord. J. Neurosci. Res., 75(2):262–272, 2004.

    Article  Google Scholar 

  73. X. Xu, W.C. Yee, P.Y. Hwang, H. Yu, A.C. Wan, S. Gao, K.L. Boon, H.Q. Mao, K.W. Leong, and S. Wang. Peripheral nerve regeneration with sustained release of poly(phosphoester) microencapsulated nerve growth factor within nerve guide conduits. Biomaterials, 24(13):2405–2412, 2003.

    Article  Google Scholar 

  74. X.M. Xu, A. Chen, V. Guenard, N. Kleitman, and M.B. Bunge. Bridging Schwann cell transplants promote axonal regeneration from both the rostral and caudal stumps of transected adult rat spinal cord. J. Neurocytol., 26(1):1–16, 1997.

    Article  Google Scholar 

  75. X.M. Xu, S.X. Zhang, H. Li, P. Aebischer, and M.B. Bunge. Regrowth of axons into the distal spinal cord through a Schwann-cell-seeded mini-channel implanted into hemisected adult rat spinal cord. Eur. J. Neurosci., 11(5):1723–1740, 1999.

    Article  Google Scholar 

  76. L.W. Yick, P.T. Cheung, K.F. So, and W. Wu. Axonal regeneration of Clarke’s neurons beyond the spinal cord injury scar after treatment with chondroitinase ABC. Exp. Neurol., 182(1):160–168, 2003.

    Article  Google Scholar 

  77. S. Yoshii and M. Oka. Collagen filaments as a scaffold for nerve regeneration. J. Biomed. Mater. Res., 56(3):400–405, 2001.

    Article  Google Scholar 

  78. S. Yoshii, M. Oka, M. Shima, A. Taniguchi, and M. Akagi. Bridging a 30-mm nerve defect using collagen filaments. J. Biomed. Mater. Res., 67A(2):467–474, 2003.

    Article  Google Scholar 

  79. X. Yu and R.V. Bellamkonda. Tissue-engineered scaffolds are effective alternatives to autografts for bridging peripheral nerve gaps. Tissue Eng., 9(3):421–430, 2003.

    Article  Google Scholar 

  80. X. Yu, G.P. Dillon, and R.B. Bellamkonda. A laminin and nerve growth factor-laden three-dimensional scaffold for enhanced neurite extension. Tissue Eng., 5(4):291–304, 1999.

    Article  Google Scholar 

  81. D.W. Zochodne. The microenvironment of injured and regenerating peripheral nerves. Muscle Nerve Suppl., 9:S33–38, 2000.

    Article  Google Scholar 

  82. J. Zuo, D. Neubauer, K. Dyess, T.A. Ferguson, and D. Muir. Degradation of chondroitin sulfate proteoglycan enhances the neurite-promoting potential of spinal cord tissue. Exp. Neurol., 154(2):654–662, 1998.

    Article  Google Scholar 

  83. J. Zuo, D. Neubauer, J. Graham, C.A. Krekoski, T.A. Ferguson, and D. Muir. Regeneration of axons after nerve transection repair is enhanced by degradation of chondroitin sulfate proteoglycan. Exp. Neurol., 176(1):221–228, 2002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Jain, A., Bellamkonda, R.V. (2006). Nano- and Micro-Technology to Spatially and Temporally Control Proteins for Neural Regeneration. In: Ferrari, M., Desai, T., Bhatia, S. (eds) BioMEMS and Biomedical Nanotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-25844-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-25844-7_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25565-1

  • Online ISBN: 978-0-387-25844-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics