Skip to main content

Review of Ferroelectric Domain Imaging by Piezoresponse Force Microscopy

  • Chapter
Scanning Probe Microscopy

Abstract

This chapter describes the principles, theoretical background, recent developments, and applications of a local probe-based technique for nondestructive high-resolution ferroelectric domain imaging and manipulation—piezoresponse force microscopy (PFM). This technique has proven to be a powerful tool for the characterization of ferroelectric thin films, ceramics, and single crystals. Recent advances in application of PFM for studying a mechanism of polarization reversal at the nanoscale, domain dynamics, degradation effects, and size-dependent phenomena in ferroelectrics are reviewed in detail. Examples of using PFM for the characterization of various polar materials such as ferroelectric films, piezoelectric semiconductors, and ferroelectric relaxors are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. F. Scott, Ferroelectric Memories (Springer, Heidelberg, 1993).

    Google Scholar 

  2. A. Gruverman in Encyclopedia of Nanoscience and Nanotechnology, edited by H. S. Nalwa (American Scientific Publishers, Los Angeles. 2004) Vol. 3, pp. 359–375.

    Google Scholar 

  3. L. M. Eng, M. Bummerlin, C. Loppacher, M. Guggisberg, R. Bennewitz, R. Luthi, E. Meyer, T. Huser, H. Heinzelmann, and H.-J. Guntherodt, Ferroelectrics 222, 153 (1999).

    Google Scholar 

  4. A. Gruverman, O. Auciello, and H. Tokumoto, Annu. Rev. Mater. Sci. 28, 101 (1998).

    Article  CAS  Google Scholar 

  5. M. Abplanalp, L. Eng, and H. GĂĽntherodt, Appl. Phys. A 66, S231 (1998).

    Article  CAS  Google Scholar 

  6. E. L. Colla, S. Hong, D. V. Taylor, A. K. Tagantsev, N. Setter, and K. No, Appl. Phys. Lett. 72, 2763 (1998).

    Article  CAS  Google Scholar 

  7. A. Roelofs, U. Boettger, R. Waser, F. Schlaphof, S. Trogisch, and L. Eng, Appl. Phys. Lett. 77, 3444 (2000).

    Article  CAS  Google Scholar 

  8. S. V. Kalinin and D. A. Bonnell, Phys. Rev. B 65, 125408 (2002).

    Article  Google Scholar 

  9. C. S. Ganpule, A. L. Roytburd, V. Nagarajan, B. K. Hill, S. B. Ogale, E. D. Williams, R. Ramesh, and J. F. Scott, Phys. Rev. B 65, 014101 (2002).

    Article  Google Scholar 

  10. C. Loppacher, F. Schlaphof, S. Schneider, U. Zerweck, S. Grafstrom, L. M. Eng, A. Roelofs, and R. Waser, Surface Science 483, 532, (2003).

    Google Scholar 

  11. P. Guthner and K. Dransfeld, Appl. Phys. Lett. 61, 1137 (1992).

    Article  Google Scholar 

  12. M. Alexe and A. Gruverman (eds.), Nanoscale Characterization of Ferroelectric Materials (Springer-Verlag, Berlin, 2004).

    Google Scholar 

  13. S. Hong (ed.), Nanoscale Phenomena in Ferroelectric Thin Films (Academic Publishers, Norwell MA, 2004).

    Google Scholar 

  14. L. Eng, H. Güntherod, G. Schneider, U. Köpke, and J. M. Saldana, Appl. Phys. Lett. 74, 233 (1999).

    Article  CAS  Google Scholar 

  15. C. S. Ganpule, V. Nagarajan, B. K. Hill, A. L. Roytburd, E. D. Williams, R. Ramesh, S. P. Alpay, A. Roelofs, R. Waser, and L. M. Eng, J. Appl. Phys. 91, 1477 (2002).

    Article  CAS  Google Scholar 

  16. C. Durkan, M. Welland, D. Chu, and P. Migliorato, Appl. Phys. Lett. 76, 366 (2000).

    Article  CAS  Google Scholar 

  17. C. Harnagea, Ph.D. thesis, Martin-Lüther-Universität Halle, Germany, 2001.

    Google Scholar 

  18. S. V. Kalinin, Ph.D. thesis, University of Pennsylvania, USA, 2002.

    Google Scholar 

  19. S. Hong, J. Woo, H. Shin, J. U. Jeon, Y. E. Pak, E. Colla, N. Setter, E. Kim, and K. No, J. Appl. Phys. 89, 1377 (1998).

    Article  Google Scholar 

  20. M. Abplanalp, Ph.D. thesis, Swiss Federal Institute of Technology, Switzerland, 2001.

    Google Scholar 

  21. E. Luo, Z. Xie, J. Xu, I. Wilson, and L. Zhao, Phys. Rev. B 61, 203 (2000).

    Article  CAS  Google Scholar 

  22. J. W. Hong, K. H. Noh, S. Park, S. I. Kwun, and Z. G. Khim, Phys. Rev. B 58, 5078 (1998).

    Article  CAS  Google Scholar 

  23. S. V. Kalinin and D. A. Bonnell, Appl. Phys. Lett. 78, 1116 (2001).

    Article  CAS  Google Scholar 

  24. F. Peter, K. Szot, R. Waser, B. Reichenberg, S. Tiedke, and J. Szade, Appl. Phys. Lett. 85, 2896 (2004).

    Article  CAS  Google Scholar 

  25. M. Abplanalp, J. Fousek, and P. GĂĽnter, Phys. Rev. Lett. 86, 5799 (2001).

    Article  CAS  Google Scholar 

  26. G. Zavala, J. H. Fendler, and S. McKinstry, J. Appl. Phys. 81, 7480 (1997).

    Article  CAS  Google Scholar 

  27. A. L. Kholkin, V. V. Shvartsman, A. Y. Emelyanov, R. Poyato, M. L. Calzada, and L. Pardo, Appl. Phys. Lett. 82, 2127 (2003).

    Article  CAS  Google Scholar 

  28. A. Y. Emelyanov, N. A. Pertsev, and A. L. Kholkin, Phys. Rev. B 66, 214108 (2002).

    Article  Google Scholar 

  29. K. Prume, A. Roelofs, T. Schmitz, B. Reichenberg, S. Tiedke, and R. Waser, Jpn. J. Appl. Phys. 41, 7198 (2002).

    Article  CAS  Google Scholar 

  30. J.W. Hong, D. S. Kahng, J. C. Shin, H. J. Kim, and Z. G. Khim, J. Vac. Sci. Technol. B 16, 2942 (1998).

    Article  CAS  Google Scholar 

  31. U. Rabe, K. Janser, and W. Arnold, Rev. Sci. Instrum. 67, 3281 (1996).

    Article  CAS  Google Scholar 

  32. B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic, London, 1971).

    Google Scholar 

  33. C. Harnagea, A. Pignolet, M. Alexe, D. Hesse, Integr. Ferroelectr. 38, 667 (2001).

    Google Scholar 

  34. S. V. Kalinin, B. J. Rodriguez, S. Jesse, J. Shin, A. P. Baddorf, P. Gupta, H. Jain, D. B. Williams, and A. Gruverman. Microscopy and Microanalysis 12, 206 (2006).

    Article  CAS  Google Scholar 

  35. T. Tybell, C. H. Ahn, and J.-M. Triscone, Appl. Phys. Lett. 75, 856 (1999).

    Article  CAS  Google Scholar 

  36. T. Tybell, P. Paruch, T. Giamarchi, and J.-M. Triscone, Phys. Rev. Lett. 89, 097601 (2002).

    Article  CAS  Google Scholar 

  37. K. Terabe, M. Nakamura, S. Takekawa, K. Kitamura, S. Higuchi, Y. Gotoh, and Y. Cho, Appl. Phys. Lett. 82, 433 (2003).

    Article  CAS  Google Scholar 

  38. H. F. Hamann, Y. C. Martin, and H. K. Wickramasinghe, Appl. Phys. Lett. 84, 810 (1994).

    Article  Google Scholar 

  39. Y. Cho, S. Hashimoto, N. Odagawa, K. Tanaka, and Y. Hiranaga, Appl. Phys. Lett. 87, 232907 (2005).

    Article  Google Scholar 

  40. Y. Rosenwaks, D. Dahan, M. Molotskii, and G. Rosenman, Appl. Phys. Lett. 86, 012909 (2005).

    Article  Google Scholar 

  41. F. Jona and G. Shirane, Ferroelectric Crystals (Dover Publications, New York, 1993).

    Google Scholar 

  42. J. Giocondi and G. S. Rohrer, Chem. Mater. 13, 241 (2001).

    Article  CAS  Google Scholar 

  43. S. V. Kalinin, D. A. Bonnell, T. Alvarez, X. Lei, Z. Hu, J. H. Ferris, Q. Zhang, and S. Dunn, Nano Letters 2, 589 (2002).

    Article  CAS  Google Scholar 

  44. S. V. Kalinin, D. A. Bonnell, T. Alvarez, X. Lei, Z. Hu, R. Shao, and J. H. Ferris, Adv. Mat. 16, 795 (2004).

    Article  CAS  Google Scholar 

  45. X. Liu, K. Terabe, M. Nakamura, S. Takekawa, and K. Kitamura, J. Appl. Phys. 97, 064308 (2005).

    Article  Google Scholar 

  46. M. Molotskii, A. Agronin, P. Urenski, M. Shvebelman, G. Rosenman, and Y. Rosenwaks, Phys. Rev. Lett. 90, 107601 (2003).

    Article  Google Scholar 

  47. M. Molotskii, J. Appl. Phys. 93, 6234 (2003).

    Article  CAS  Google Scholar 

  48. S. V. Kalinin, E. Karapetian, and M. Kachanov, Phys. Rev. B 70, 184101 (2004).

    Article  Google Scholar 

  49. S. V. Kalinin, A. Gruverman, B. J. Rodriguez, J. Shin, A. P. Baddorf, E. Karapetian, and M. Kachanov, J. Appl. Phys. 97, 074305 (2005).

    Article  Google Scholar 

  50. A. N. Morozovska and E. A. Eliseev, Phys. Stat. Sol. (b) 242, R79 (2005).

    Article  CAS  Google Scholar 

  51. A. Y. Emelyanov, Phys. Rev. B 71, 132102 (2005).

    Article  Google Scholar 

  52. M. I. Molotskii and M. M. Shvebelman, Philos. Magaz. A 85, 1637 (2005).

    CAS  Google Scholar 

  53. A. N. Morozovska and E. A. Eliseev, Physica B 373, 54 (2006).

    Article  CAS  Google Scholar 

  54. Eq.(3) is valid only for l d > r d. To avoid this limitation, used here was the expression for the demagnetization factor for prolate ellipsoid from J. A. Osborn, Phys. Rev. 67, 351 (1945).

    Article  Google Scholar 

  55. R. Landauer, J. Appl. Phys. 28, 227 (1957).

    Article  CAS  Google Scholar 

  56. J. Li, B. Nagaraj, H. Liang, W. Cao, C. H. Lee, and R. Ramesh, Appl. Phys. Lett. 84, 1174 (2004).

    Article  CAS  Google Scholar 

  57. C. Dehoff, B. J. Rodriguez, A. I. Kingon, R. J. Nemanich, A. Gruverman, and J. S. Cross, Rev. Sci. Instrum. 76. 023708 (2005).

    Article  Google Scholar 

  58. P. Paruch, T. Giamarchi, and J.-M. Triscone, Phys. Rev. Lett. 94, 197601 (2005).

    Article  CAS  Google Scholar 

  59. B. J. Rodriguez, R. J. Nemanich, A. Kingon, A. Gruverman, S. V. Kalinin, K. Terabe, X. Y. Liu, and K. Kitamura, Appl. Phys. Lett. 86, 012906 (2005).

    Article  Google Scholar 

  60. A. Gruverman, B. J. Rodriguez, C. Dehoff, J. D. Waldrep, A. I. Kingon, R. J. Nemanich, and J. S. Cross, Appl. Phys. Lett. 87, 082902 (2005).

    Article  Google Scholar 

  61. A. N. Kolmogorov, Izv. Akad. Nauk SSSR, Ser. Math. 3, 355 (1937).

    Google Scholar 

  62. W. Jo, D. C. Kim, and J. W. Hong, Appl. Phys. Lett. 76, 390 (2000).

    Article  CAS  Google Scholar 

  63. A. Gruverman, H. Tokumoto, A. S. Prakash, S. Aggarwal, B. Yang, M. Wuttig, R. Ramesh, O. Auciello, and T. Venkatesan, Appl. Phys. Lett. 71, 3492 (1997).

    Article  CAS  Google Scholar 

  64. A. Gruverman and M. Tanaka, J. Appl. Phys. 89, 1836 (2001).

    Article  CAS  Google Scholar 

  65. C. S. Ganpule, A. L. Roytburd, V. Nagarajan, B. K. Hill, S. B. Ogale, E. D. Williams, R. Ramesh, and J. F. Scott, Phys. Rev. B 65, 014101 (2001).

    Article  Google Scholar 

  66. A. L. Kholkin, E. K. Akdogan, A. Safari, P.-F. Chauvy, and N. Setter, J. Appl. Phys. 89, 8066 (2001).

    Article  CAS  Google Scholar 

  67. A. L. Kholkin, E. L. Colla, A. K. Tagantsev, D. V. Taylor, and N. Setter, Appl. Phys. Lett. 68, 2577 (1996).

    Article  CAS  Google Scholar 

  68. Y. Zhang, I. S. Baturin, E. Aulbach, D. C. Lupascu, A. L. Kholkin, V. Y. Shur, and J. Rödel, Appl. Phys. Lett. 86, 012910 (2005).

    Article  Google Scholar 

  69. V. V. Shvartsman, N. A. Pertsev, J. M. Herrero, C. Zaldo, and A. L. Kholkin, J. Appl. Phys. 97, 104105 (2005).

    Article  Google Scholar 

  70. S. V. Kalinin, A. Gruverman, and D. A. Bonnell, Appl. Phys. Lett. 85, 795 (2004).

    Article  CAS  Google Scholar 

  71. A. L. Kholkin, I. K. Bdikin, V. V. Shvartsman, A. Orlova, D. Kiselev, and V. Bogomolov, MRS Proceedings 838E, O7.6 (2005).

    Google Scholar 

  72. A. Gruverman, A. Pignolet, K. M. Satyalakshmi, M. Alexe, N. D. Zakharov, and D. Hesse, Appl. Phys. Lett. 76, 106 (2000).

    Article  CAS  Google Scholar 

  73. A. Wu, P. M. Vilarinho, G. Suchaneck, and A. L. Kholkin, Nanotechnology 16, 2587 (2005).

    Article  CAS  Google Scholar 

  74. S. V. Kalinin, Appl. Phys. Lett. (submitted).

    Google Scholar 

  75. S. V. Kalinin and D. A. Bonnell, Phys. Rev. B 63, 125411 (2001).

    Article  Google Scholar 

  76. C. S. Ganpule, V. Nagarjan, H. Li, A. S. Ogale, D. E. Steinhauer, S. Aggarwal, E. Williams, R. Ramesh, and P. Wolf, Appl. Phys. Lett. 77, 292 (2000).

    Article  CAS  Google Scholar 

  77. P. Gupta, H. Jain, D. B. Williams, S. V. Kalinin, J. Shin, and A. P. Baddorf, Appl. Phys. Lett. 87, 172903 (2005).

    Article  Google Scholar 

  78. R. Waser (ed), Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices (Wiley-VCH, Berlin, 2005).

    Google Scholar 

  79. J. F. Scott, H. M. Duiker, P. D. Beale, B. Pouligny, K. Dimmler, M. Parris. D. Butler, and S. Eaton, Physica B+C 150, 160 (1988).

    Article  CAS  Google Scholar 

  80. P. Ghosez and K. M. Rabe, Appl. Phys. Lett. 76, 2767 (2000).

    Article  CAS  Google Scholar 

  81. A. Stanishevsky, S. Aggarwal, A. Prakash, J. Melngailis, and R. Ramesh, J. Vac. Sci. Technol. B 16, 3899 (1998).

    Article  CAS  Google Scholar 

  82. C. Ganpule, A. Stanishevsky, S. Aggarwal, J. Melngailis, E. Williams, R. Ramesh, V. Joshi, and C. P. Araujo, Appl. Phys. Lett. 75, 3874, (1999).

    Article  CAS  Google Scholar 

  83. C. Ganpule, A. Stanishevsky, Q. Su, S. Aggarwal, J. Melngailis, E. Williams, and R. Ramesh, Appl. Phys. Lett. 75, 409 (1999).

    Article  CAS  Google Scholar 

  84. S. BĂĽhlmann, B. Dwir, J. Baborowski, and P. Muralt, Appl. Phys. Lett. 80, 3195 (2002).

    Article  Google Scholar 

  85. H. Craighead and L. Schiavone, Appl. Phys. Lett. 48, 1748 (1989).

    Article  Google Scholar 

  86. M. Alexe, C. Harnagea, W. Erfurth, D. Hesse, and U. Gösele, Appl. Phys. A 70, 247 (2000).

    Article  CAS  Google Scholar 

  87. A. Seifert, A. Vojta, J. S. Speck, and F. F. Lange, J. Mat. Res. 11, 1470 (1996).

    CAS  Google Scholar 

  88. H. Fujisawa, K. Morimoto, M. Shimizu, and H. Niu, Jpn. J. Appl. Phys. 39, 5446 (2000).

    Article  CAS  Google Scholar 

  89. R. Waser, T. Schneller, S. Hoffmann-Eifert, and P. Ehrhart, Integr. Ferroelectr. 36, 3 (2001).

    CAS  Google Scholar 

  90. T. Schneller and R. Waser, Ferroelectrics 267, 293 (2002).

    Article  CAS  Google Scholar 

  91. A. Roelofs, T. Schneller, K. Szot, and R. Waser, Appl. Phys. Lett. 81, 5231 (2002).

    Article  CAS  Google Scholar 

  92. A. Gruverman, O. Auciello, and H. Tokumoto, Appl. Phys. Lett. 69, 3191 (1996).

    Article  CAS  Google Scholar 

  93. E. L. Colla, I. Stolichnov, P. E. Bradely, and N. Setter, Appl. Phys. Lett. 82, 1604 (2003).

    Article  CAS  Google Scholar 

  94. V. V. Shvartsman and A. L. Kholkin, Phys. Rev. B 69, 014102 (2004).

    Article  Google Scholar 

  95. I. K. Bdikin, V. V. Shvartsman, and A. L. Kholkin, Appl. Phys. Lett. 83, 4232 (2003).

    Article  CAS  Google Scholar 

  96. V. V. Shvartsman, A. Y. Emelyanov, A. L. Kholkin, and A. Safari, Appl. Phys. Lett. 81, 117 (2002).

    Article  CAS  Google Scholar 

  97. V. V. Shvartsman, A. L. Kholkin, M. Tyunina, and J. Levoska, Appl. Phys. Lett. 86, 222907 (2005).

    Article  Google Scholar 

  98. S. B. Vakhrushev, A. A. Naberezhnov, B. Dkhil, J.-M. Kiat, V. Shwartsman, A. Kholkin, B. Dorner, and A. Ivanov, AIP Conf. Proc. 677, 74 (2003).

    Article  CAS  Google Scholar 

  99. F. Bai, J. Li, and D. Viehland, Appl. Phys. Lett. 85, 2313 (2004).

    Article  CAS  Google Scholar 

  100. V. V. Shvartsman, M. Wojtas, S. Vakhrushev, and A. L. Kholkin, Mat. Res. Soc. Symp. Proc. 785, D4.11 (2004).

    Google Scholar 

  101. O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L. F. Eastman, J. Phys.: Condens. Matt. 14, 3399 (2002).

    Article  CAS  Google Scholar 

  102. B. J. Rodriguez, A. Gruverman, A. I. Kingon, and R. J. Nemanich, Appl. Phys. Lett. 80, 4166 (2002).

    Article  CAS  Google Scholar 

  103. http://www.ntmdt.ru/SPM-Techniques

    Google Scholar 

  104. B. J. Rodrigues, S. V. Kalinin, J. Shin, J. Jesse, V. Grichko, T. Thundat, A. P. Baddorf, and A. Gruverman, J. Appl. Phys. (in press).

    Google Scholar 

  105. Y. Hiranaga and Y. Cho, Jpn. J. Appl. Phys. 44, 6960 (2005).

    Article  CAS  Google Scholar 

  106. S. V. Kalinin, D. A. Bonnell, T. Alvarez, X. Lei, Z. Hu, R. Shao, and J. H. Ferris, Adv. Mat. 16, 795 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kholkin, A.L., Kalinin, S.V., Roelofs, A., Gruverman, A. (2007). Review of Ferroelectric Domain Imaging by Piezoresponse Force Microscopy. In: Kalinin, S., Gruverman, A. (eds) Scanning Probe Microscopy. Springer, New York, NY. https://doi.org/10.1007/978-0-387-28668-6_7

Download citation

Publish with us

Policies and ethics