Skip to main content

Multiscale modeling of deformation and fracture in metallic materials

  • Chapter
Applied Computational Materials Modeling
  • 2947 Accesses

Abstract

This chapter discusses multiscale modeling methods for the study of deformation and fracture in metallic materials. Both atomistic and dislocation dynamics modeling are outlined in the context of problems in materials failure. In particular, molecular statics and dynamics models are described as applied to polycrystalline samples of random grain orientations and grain sizes in the nanometer regime. The application of dislocation dynamical models to mesoscale dislocation dynamics is then presented. Finally, dislocation pattern formation at various length scales is discussed as an illustration of multiscale modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.J. Buehler, A. Hartmaier, H.J. Gao, M. Duchaineau, F.F. Abraham, Atomic plasticity: description and analysis of a one-billion atom simulation of ductile materials failure Computer Methods in Applied Mechanics and Engineering 193 (48–51) 5257–5282 (2004).

    Article  Google Scholar 

  2. F.F. Abraham, N. Bernstein, J.Q. Broughton, and D. Hess, Dynamic fracture of silicon: concurrent simulation of quantum electrons, classical atoms, and the continuum solid. MRS Bulletin 25, No. 5, 27–32. (2000)

    CAS  Google Scholar 

  3. F.F. Abraham, Very large scale simulations of materials failure, Philosophical Transactions of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences 360, 367–382 (2002).

    Article  CAS  Google Scholar 

  4. M. Marder, Molecular dynamics of cracks. Computing in Science and Engineering 1, 48–55 (1999).

    CAS  Google Scholar 

  5. R.L.B. Selinger and D. Farkas (eds.), Atomistic theory and simulation of fracture. MRS Bulletin, 25, No. 5.

    Google Scholar 

  6. V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee and H. Gleiter, Dislocation processes in the deformation of nanocrystalline Al by molecular-dynamics simulation, Nature Materials 1, 45–48 (2002).

    Article  CAS  Google Scholar 

  7. J. Schiotz and K.W. Jacobsen, A maximum in the strength of nanocrystalline copper, Science 300, 1357–1359 (2003).

    Article  CAS  Google Scholar 

  8. K.S. Kumar, H. Van Swygenhoven, S. Suresh, Mechanical behavior of nanocrystalline metals and alloys, Acta Materialia 51, 5743–5774 (2003).

    Article  CAS  Google Scholar 

  9. H. Van Swygenhoven, M. Spaczer, A. Caro, D. Farkas, Competing plastic deformation mechanisms in nanophase metals, Phys. Rev. B 60, 22–25 (1999).

    Article  Google Scholar 

  10. R.E. Miller, and E.B. Tadmor, The quasicontinuum method: overview, applications, and current direction, J. Comp. Aided Mat. Design 9, 203–239 (2002).

    Article  CAS  Google Scholar 

  11. E.B. Dadmor, M. Ortiz and R. Phillips, Quasicontinuum analysis of defects in solids, Phil. Mag. A 73, 1529–1563 (1996).

    Article  Google Scholar 

  12. N.M. Ghoniem, K. Cho, The emerging role of multiscale modeling in nano-and micro-mechanics of materials, CMES: Comp. Model. Eng. Sci 3, 147–173 (2002).

    Google Scholar 

  13. Y. Mishin, D. Farkas, M.J. Mehl and D.A. Papaconstantopoulos, Interatomic potentials for monoatomic metals from experimental data and ab initio calculations, Phys. Rev. B. 59, pp. 3393–3407 (1999).

    Article  CAS  Google Scholar 

  14. M.S. Daw and M.I. Baskes, Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys. Rev. Lett. 50, 1285–8 (1983).

    Article  CAS  Google Scholar 

  15. K.W. Jacobsen, J.K. Nørskov, and M.J. Puska, Interatomic interactions in the effectivemedium theory. Phys. Rev. B 35, 7423–42 (1986).

    Article  Google Scholar 

  16. X.Y. Liu, F. Ercolessi and J.B. Adam, Aluminium interatomic potential from density functional theory calculations with improved stacking fault energy. Modelling and Simulation in Materials Science and Engineering 12, 665–670 (2004).

    Article  CAS  Google Scholar 

  17. M.I. Mendelev, S. Han and D.J. Srolovitz, Development of new interatomic potentials appropriate for crystalline and liquid iron. Phil. Mag. 83, 3977–3994 (2003).

    Article  CAS  Google Scholar 

  18. D. Farkas, H. Van Swygenhoven and P.M. Derlet, Intergranular fracture in nanocrystalline metals. Phys. Rev. B 66, 060101–4(R) (2002).

    Article  CAS  Google Scholar 

  19. G.C. Sih and H. Liebowitz, Fracture: An Advanced Treatise, Vol. II, edited by H. Liebowitz, Academic Press, New York, 69, 189 (1968).

    Google Scholar 

  20. K.S. Cheung and S. Yip, Brittle-ductile transition in intrinsic fracture behavior of crystals. Phys. Rev. Lett. 65, 2804–2807 (1990).

    Article  Google Scholar 

  21. B. DeCelis, A.S. Argon, and S. Yip, Molecular dynamics simulation of crack tip processes in alpha-iron and copper. J. Appl. Phys. 54, 4864–78 (1983).

    Article  CAS  Google Scholar 

  22. C. Shastry and D. Farkas, Molecular statics simulation of fracture in α-iron. Modelling Simulation Mater. Sci. Engng. 4, 473–92 (1996).

    Article  CAS  Google Scholar 

  23. S.J. Zhou, P.S. Lomdahl, R. Thomson, and B.L. Holian, Dynamic crack processes via molecular dynamcis. Phys. Rev. Lett. 76, 2318–2321 (1996).

    Article  CAS  Google Scholar 

  24. S.J. Zhou, P.S. Lomdahl, A.F. Voter, B.L. Holian, Three-dimensional fracture via largescale molecular dynamics. Engineering Fracture Mechanics 61, 173–187 (1998).

    Article  Google Scholar 

  25. D. Farkas, Twinning and recrystallization as crack tip deformation mechanisms during fracture, Phil. Mag. 85 (2–3): 387–397 Sp. Iss. (2005).

    Article  CAS  Google Scholar 

  26. D. Farkas, M. Duranduru and W.A. Curtin, Multiple-dislocation emission from the crack tip in the ductile fracture of A1, Phil. Mag. 81 (5): 1241–1255 (2001).

    CAS  Google Scholar 

  27. D. Farkas, S. Van Petegem and P.M. Derlet, Dislocation activity and nano-void formation near crack tips in nanocrystalline Ni, Acta Mater. 53, 3115–3123 (2005).

    Article  CAS  Google Scholar 

  28. A. Latapie and D. Farkas, Molecular dynamics investigation of the fracture behavior of nanocrystalline α-Fe, Phys. Rev. B 69, 134110 (2004).

    Article  CAS  Google Scholar 

  29. S.L. Frederiksen, K.W. Jacobsen and J. Schiotz, Simulations of intergranular fracture in nanocrystalline molybdenum, Acta Mater. 52, 5019–5029 (2004).

    Article  CAS  Google Scholar 

  30. E.B. Tadmor and S. Hai, A Peierls criterion for the onset of deformation twinning at a crack tip, J. Mech. Phys. Solids 51, 765–793 (2003).

    Article  CAS  Google Scholar 

  31. F.C. Frank, On the equations of motion of crystal dislocations, Proc. Phys. Soc. 62A, 131–134 (1949).

    Google Scholar 

  32. J.D. Eshelby, Supersonic dislocations and dislocations in dispersive media, Proc. Phys. Soc. B69, 1013–1019 (1956).

    Article  Google Scholar 

  33. T. Mura, Continuous distribution of dislocations, Phil. Mag. 8, 843–857 (1963).

    Article  Google Scholar 

  34. J. Lepinoux and L.P. Kubin, The dynamic organization of dislocation structures: a simulation, Scripta Metall. 21, 833 (1987).

    Article  Google Scholar 

  35. A.N. Gulluoglu, D.J. Srolovitz, R. LeSar and P.S. Lomdahl, Dislocation distributions in two dimensions, Scripta Metall. 23, 1347 (1990).

    Google Scholar 

  36. G. Canova and L.P. Kubin, Continuum Models and Discrete Systems 6 Vol. 2, ed. By G.A. Maugin (Harlow, UK: Longman)

    Google Scholar 

  37. E. van der Giessen and A. Needleman, Discrete dislocation plasticity: a simple planar model, Modelling Simul. Mater. Sci. Engng. 3, 689 (1995).

    Article  Google Scholar 

  38. H.Y. Wang, R. LeSar and J.M. Rickman, Analysis of dislocation microstructures: impact of force truncation and slip systems, Phil. Mag. A 78, 1195–1213 (1998).

    CAS  Google Scholar 

  39. E. van der Giessen and A. Needleman, Micromechanics simulations of fracture, Ann. Rev. Mater. Res. 32, 141 (2002).

    Article  CAS  Google Scholar 

  40. R. Madec, B. Devincre and L. Kubin, Simulation of dislocation patterns in multislip, Scripta Mater. 47, 689–695 (2002).

    Article  CAS  Google Scholar 

  41. M. Rhee, D. Lassila, V.V. Bulatov, L. Hsiung, T.D. de la Rubia, Dislocation multiplication in bcc molybdenum: a dislocation dynamics simulation, Phil. Mag. Lett. 81, 595 (2001).

    Article  CAS  Google Scholar 

  42. M. Koslowski, A. Cutiño and M. Ortiz, A phase-field theory of dislocation dynamics, strain hardening and hysteresis in ductile single crystals, J. Mech. Phys. Solids 50, 2597 (2002).

    Article  Google Scholar 

  43. L.P. Kubin and G.R. Canova, Electron Microscopy in Plasticity and Fracture Research of Materials, eds. U. Messerschmidt, et al. (Akademie Verlag, Berlin, 1990), p. 23.

    Google Scholar 

  44. L.P. Kubin, G. Canova, M. Condat, B. Devincre, V. Pontikis and Y. Brechet, Solid State Phenomena 23/24, 455 (1992).

    Article  Google Scholar 

  45. H.M. Zbib, M. Rhee and J.P. Hirth, On plastic deformation and dynamics of 3D dislocation, Int. J. Mech. Sci. 40, 113 (1998).

    Article  Google Scholar 

  46. M. Rhee, H.M. Zbib, J.P. Hirth, H. Huang, T. de la Rubia, Models for long-/short-range interactions and cross slip in 3D dislocation simulation of bee single crystals, Modelling Simula. Mater. Sci. Eng. 6, 467 (1998).

    Article  CAS  Google Scholar 

  47. K.W. Schwarz, Simulation of dislocations on the mesoscopic scale. I. methods and examples, J. Appl. Phys. 85, 108–119 (1999).

    Article  CAS  Google Scholar 

  48. M. Peach and J.S. Koehler, The forces exerted on dislocations and the stress fields produced by them, Phys. Rev. 80, 436–439 (1950).

    Article  Google Scholar 

  49. Y. Xiang, L.T. Cheng, D.J. Srolovitz and W.E., A level set method for dislocation dynamics, Acta mater. 51, 5499–518 (2003).

    Article  CAS  Google Scholar 

  50. Y. Xiang, D.J. Srolovitz, L.T. Cheng, and E. Weinan, Level set simulation of dislocationparticle bypass mechanism, Acta Mater. 52, 1745–1760 (2004).

    Article  CAS  Google Scholar 

  51. Y.U. Wang, Y.M. Jin, A. Cuitiño and A.G. Khachaturyan, Nanoscale phase field microelasticity theory of dislocations: model and 3D simulations, Acta Mater. 49, 1847–1857 (2001).

    Article  CAS  Google Scholar 

  52. Y.M. Jin and A.G. Khachaturyan, Phase field microelasticity theory of dislocation dynamics in a polycrystal: model and three-dimensional simulations, Phil. Mag. Letters 81, 607–616 (2001).

    Article  CAS  Google Scholar 

  53. S.Y. Hu and L.-Q. Chen, Solute segregation and coherent nucleation and growth near a dislocation—a phase-field model for integrating defect and phase microstructures, Acta Mater. 49, 463–472 (2001).

    Article  CAS  Google Scholar 

  54. Y. Wang, D.J. Srolovitz, J.M. Rickman and R. LeSar, Dislocation motion in the presence of diffusing solutes: a computer simulation study Acta Mater. 48, 2163 (2000).

    Article  CAS  Google Scholar 

  55. N.M. Ghoniem, S.-H. Tong, and I.Z. Sun, Parametric dislocation dynamics: a thermodynamics-based approach to investigations of mesoscopic plastic deformation, Phys. Rev. B 61, 913–927 (2000).

    Article  CAS  Google Scholar 

  56. S. Osher and J.A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys. 79, 12 (1988).

    Article  Google Scholar 

  57. P. Burchard, L.T. Cheng B. Merriman, and S. Osher, Motion of curves in three spatial dimensions using a level set approach, J. Comput. Phys. 170, 720 (2001).

    Article  Google Scholar 

  58. L.D. Landau and E.M. Lifshitz, Theory of Elasticity, 3rd ed., (Pergamon Press, New York 1986).

    Google Scholar 

  59. A. Tuner and B. Hasegawa, Mechanical testing for deformation model development, ASTM 761 (1982).

    Google Scholar 

  60. D.L. Holt, Dislocation cell formation in metals, J. Appl. Phys. 41, 3197 (1970).

    Article  Google Scholar 

  61. J.M. Rickman and Jorge Viñals, Modeling of dislocation structures in materials, Phil. Mag. A 75, 1251 (1997).

    Article  CAS  Google Scholar 

  62. M.C. Marchetti and K. Saunders, Viscoelasticity from a microscopic model of dislocation dynamics, Phys. Rev. B 66, 224113 (2002).

    Article  CAS  Google Scholar 

  63. R. LeSar and J.M. Rickman, Incorporation of local structure in continuous dislocation theory, Phys. Rev. B 69, 172105 (2004).

    Article  CAS  Google Scholar 

  64. A.M. Kosevich, Dislocations in Solids, ed. by F. R. N. Nabarro (North-Holland, New York, 1979), p. 37.

    Google Scholar 

  65. J.P. Hirth and J. Lothe, Theory of Dislocations (Krieger, Malabar, Florida, 1982).

    Google Scholar 

  66. D.A. Hughes, D.C. Chrzan, Q. Liu, and N. Hansen, Scaling of misorientation angle distributions, Phys. Rev. Lett. 81, 4664–4667 (1998).

    Article  CAS  Google Scholar 

  67. D. Farkas and W.A. Curtin, Plastic deformation mechanisms in nanocrystalline columnar grain structures, Materials Science and Engineering A 412, 316–322 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Farkas, D., Rickman, J.M. (2007). Multiscale modeling of deformation and fracture in metallic materials. In: Bozzolo, G., Noebe, R.D., Abel, P.B., Vij, D. (eds) Applied Computational Materials Modeling. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-34565-9_11

Download citation

Publish with us

Policies and ethics