Skip to main content

Hematologic Diseases

Autoimmune Hemolytic Anemia and Immune Thrombocytopenic Purpura

  • Chapter
Immunogenetics of Autoimmune Disease

Part of the book series: Medical Intelligence Unit ((MIUN))

  • 655 Accesses

Summary

Autoimmune destruction of circulating blood cells in autoimmune hemolytic anemia (AIHA) and immune thrombocytopenic purpura (ITP) is often seen in autoimmune diseases and lymhoid malignancies. Erythrocytes or platelets that are recognized by autoantibodies are rapidly phagocytosed by macrophages. Although much is known about the mechanisms behind macrophage-mediated destruction of sensitized blood cells, less is known about the genetics behind AIHA and ITP. We here review what is known about the ethiology of AIHA and ITP, with particular emphasis on the role of genetic factors behind autoantibody production, T cell activation and apoptosis, and Fcγ receptor polymorphisms. The importance of inhibitory regulation of macrophages through CD47/SIRPα interaction, and its significance for autoimmune hematological disease is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Engelfriet CP, Overbeeke MAM, Kr.von dem Borne AEG. Autoimmune hemolytic anemia. Semin Hematol 1992; 29:3–12.

    PubMed  CAS  Google Scholar 

  2. Gehrs BC, Friedberg RC. Autoimmune hemolytic anemia. Am J Hematol 2002; 69:258–271.

    Article  PubMed  Google Scholar 

  3. Bottinger LE, Westerholm B. Acquired haemolytic anemia. Acta Med Scand 1973; 193:223–226.

    Article  Google Scholar 

  4. Packman CH, Leddy JP. Aquired hemolytic anemia due to warm-reacting autoantibodies. In: Williams WJ, Beuder E, Erslev AJ et al, eds. Hematology. New York: McGraw-Hill, Inc. 1990:666–675.

    Google Scholar 

  5. Bell CA, Zwicker H, Sacks HJ. Autoimmune hemolytic anemia: Routine serologic evaluation in a general hospital population. Am J Clin Pathol 1973; 60:903–911.

    PubMed  CAS  Google Scholar 

  6. Sokol RJ, Hewitt S, Stamps BK. Autoimmune hemolysis: An 18-year study of 865 cases referred to a regional transfusion centre. Br Med J 1981; 282:2023–2027.

    CAS  Google Scholar 

  7. Clynes R, Ravaetch JV. Cytotoxic antibodies trigger inflammation through Fc receptors. Immunity 1995; 3:21–26.

    Article  PubMed  CAS  Google Scholar 

  8. Meyer D, Schiller C, Westermann J et al. FcγRIII (CD16)-deficient mice show IgG isotype-dependent protection to experimental autoimmune hemolytic anemia. Blood 1998; 92:3997–4002.

    PubMed  CAS  Google Scholar 

  9. Pottier Y, Pierard I, Barclay A et al. The mode of action of treatment by IgG of haemolytic anaemia induced by an anti-erythrocyte monoclonal antibody. Clin Exp Immunol 1996; 106:103–107.

    Article  PubMed  CAS  Google Scholar 

  10. Logue GL, Kurlander RJ. Immunologic mechanisms of hemolysis in autoimmune hemolytic anemia. Pathobiol Annu 1978; 8:61–83.

    PubMed  CAS  Google Scholar 

  11. Ehlenberger AG, Nussenzweig V. The role of membrane receptors for C3b and C3d in phagocytosis. J Exp Med 1977; 145:357–371.

    Article  PubMed  CAS  Google Scholar 

  12. Gigli I, Nelson RA. Complement dependent immune phagocytosis. Exp Cell Res 1968; 51:45–67.

    Article  PubMed  CAS  Google Scholar 

  13. Cines DB, Blanchette VS. Immune thrombocytopenic purpura. N Engl J Med 2002; 346:995–1007.

    Article  PubMed  Google Scholar 

  14. Berchtold P, McMillan R, Tani P et al. Autoantibodies against platelet membrane glycoproteins in children with acute and chronic immune thrombocytopenic purpura. Blood 1989; 74:1600–1602.

    PubMed  CAS  Google Scholar 

  15. McMillan R, Tani P, Millard F et al. Platelet-associated and plasma anti-glycoproteins in chronic ITP. Blood 1987; 70:1040–1045.

    PubMed  CAS  Google Scholar 

  16. Wadenvik H, Stockelberg D, Hou M. Platelet proteins as autoantibody targets in idiopathic thrombocytopenic purpura. Acta Paediatr 1998; 424:26–36.

    Article  CAS  Google Scholar 

  17. Beardsley DS. Pathophysiology of immune thrombocytopenic purpura. Blood Rev 2002; 16:13–14.

    Article  PubMed  CAS  Google Scholar 

  18. Semple JW. Immune pathophysiology of autoimmune thrombocytopenic purpura. Blood Rev 2002; 16:9–12.

    Article  PubMed  CAS  Google Scholar 

  19. Wright JW, Chia WK, Freedman GJ. Characterization of platelet-reactive antibodies in children with varicella-associated acute immune thrombocytopenic purpura (ITP). Br J Haematol 1996; 95:145–152.

    Article  PubMed  CAS  Google Scholar 

  20. George JN, Woolf SH, Raskob GE et al. Idiopathic thrombocytopenic purpura: A practice guideline developed by explicit methods for the American Society of Hematology. Blood 1996; 88:3–40.

    PubMed  CAS  Google Scholar 

  21. Lilleyman JS. Management of childhood idiopathic thrombocytopenic purpura. Br J Haematol 1999; 105:871–875.

    Article  PubMed  CAS  Google Scholar 

  22. Teeling JL, Jansen-Hendriks T, Kuijpers TW et al. Therapeutic efficacy of intravenous immunoglobulin preparations depends on the immunoglobulin G dimmers: Studies in experimental immune thrombocytopenia. Blood 2001; 98:1095–1099.

    Article  PubMed  CAS  Google Scholar 

  23. Samuelsson A, Towers TL, Ravetch JV. Anti-inflammatory activity of IVIG mediated through the inhibitory Fc receptor. Science 7; 291:484–486.

    Google Scholar 

  24. Helyer BJ, Howie JB. Spontaneous auto-immune disease in NZB/BL mice. Br J Haematol 1963; 9:119–131.

    PubMed  CAS  Google Scholar 

  25. Howie JB, Helyer BJ. The immunology and pathology of NZB mice. Adv Immunol 1968; 9:215–266.

    PubMed  CAS  Google Scholar 

  26. Bielschowsky M, Helyer BJ, Howie JB. Spontaneous hemolytic anemia in mice of the NZB/B1 strain. Proc Univ Otago Med Sch 1959; 37:9.

    Google Scholar 

  27. Knight JG, Adams DD. Genes determining autoimmune disease in New Zealand mice. J Clin Lab Immunol 1981; 5:165–170.

    PubMed  CAS  Google Scholar 

  28. Ozaki S, Honda H, Maruyama N et al. Genetic regulation of erythrocyte autoantibody production in New Zealand Black mice. Immunogenetics 1983; 18:241–254.

    Article  PubMed  CAS  Google Scholar 

  29. Ochiai K, Ozaki S, Tanino A et al. Genetic regulation of anti-erythrocyte autoantibodies and splenomegaly in autoimmune hemolytic anemia-prone New Zealand Black mice. Int Immunol 2000; 12:1–8.

    Article  PubMed  CAS  Google Scholar 

  30. Stanworth SJ, Turner DM, Brown J et al. Major histocompatibility complex susceptibility genes and immune thrombocytopenic purpura in Caucasian adults. Hematology 2002; 7:119–121.

    Article  PubMed  CAS  Google Scholar 

  31. Kuwana M, Kaburaki J, Pandey JP et al. HLA class II alleles in Japanese patients with immune thrombocytopenic purpura. Associations with anti-platelet glycoprotein autoantibodies and response to splenectomy. Tissue Antigens 2000; 56:337–343.

    Article  PubMed  CAS  Google Scholar 

  32. Nomura S, Matsuzaki T, Okazi Y et al. Clinical significance of HLA-DRB1*0410 in Japanese patients with idiopathic thrombocytopenic purpura. Blood 1998; 91:3616–3622.

    PubMed  CAS  Google Scholar 

  33. Kuwana M, Kaburaki J, Ikeda Y. Autoreactive T cells to platelet GPIIb-IIIa in immune thrombocytopenic purpura: Role in production of anti-platelet autoantibody. J Clin Invest 1998; 102:1393–1402.

    PubMed  CAS  Google Scholar 

  34. Lafferty KJ, Gill RG. The maintenance of self-tolerance. Immunol Cell Biol 1993; 71:209–214.

    Article  PubMed  CAS  Google Scholar 

  35. Linsley PS, Ledbetter JA. The role of the CD28 receptor during T cell responses to antigen. Annu Rev Immunol 1993; 11:191–212.

    PubMed  CAS  Google Scholar 

  36. Tivol EA, Borriello F, Schweitzer AN et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 1995; 3:541–547.

    Article  PubMed  CAS  Google Scholar 

  37. Colucci F, Bergman M-L, Penha-Goncalves C et al. Apoptosis resistance of nonobese diabetic peripheral lymphocytes linked to the Idd5 diabetes succeptibility region. Proc Natl Acad Sci USA 1997; 94:8670–8674.

    Article  PubMed  CAS  Google Scholar 

  38. Ligers A, Xu C, Saarinen S et al. The CTLA-4 gene is associated with multiple sclerosis. J Neuroimmunol 1999; 97:182–190.

    Article  PubMed  CAS  Google Scholar 

  39. Marron MP, Raffel LJ, Garchon HJ et al. Insulin-dependent diabetes mellitus (IDDM) is associated with CTLA-4 polymorphisms in multiple ethnic groups. Hum Mol Genet 1997; 6:1275–1282.

    Article  PubMed  CAS  Google Scholar 

  40. Seidl C, Donner H, Fisher B et al. CTLA-4 codon 17 dimorphism in patients with rheumatoid arthritis. Tissue Antigens 1998; 51:62–66.

    Article  PubMed  CAS  Google Scholar 

  41. Pavkovic M, Georgievski B, Cevreska L et al. CTLA-4 exon 1 polymorphism in patients with autoimmune blood disorders. Am J Hematol 2003; 72:147–149.

    Article  PubMed  CAS  Google Scholar 

  42. Nagata S. Apoptosis by death factor. Cell 1997; 88:355–365.

    Article  PubMed  CAS  Google Scholar 

  43. Russell JH, White CL, Loh DY et al. Receptor-stimulated death pathway is opened by antigen in mature T cells. Proc Natl Acad Sci USA 1991; 88:2151–2155.

    Article  PubMed  CAS  Google Scholar 

  44. Russell JH, Rush BJ, Abrams SI et al. Sensitivity of T cells to anti-CD3-stimulated suicide is dependent of functional phenotype. Eur J Immunol 1992; 22:1655–1658.

    Article  PubMed  CAS  Google Scholar 

  45. Shenoy S, Mohanakumar T, Chatila TA et al. Defective apoptosis in lymphocytes and the role of IL-2 in autoimmune hematologic cytopenias. Clin Immunol 2001; 99:266–275.

    Article  PubMed  CAS  Google Scholar 

  46. Dianzani U, Bragardo M, DiFranco D et al. Deficiency of the Fas apoptosis pathway without Fas gene mutations in pediatric patients with autoimmunity/lymphoproliferation. Blood 1997; 89:2871–2879.

    PubMed  CAS  Google Scholar 

  47. Lenardo M. Interleukin-2 programs mouse alpha beta T lymphocytes for apoptosis. Nature 1991; 353:858–861.

    Article  PubMed  CAS  Google Scholar 

  48. Ravetch JV, Bolland S. IgG Fc receptors. Annu Rev Immunol 2001; 19:275–290.

    Article  PubMed  CAS  Google Scholar 

  49. Van de Winkel JGJ, Capel PJA. Human IgG Fc receptor heterogeneity: Molecular aspects and clinical implications. Immunol Today 1993; 14:215–221.

    Article  PubMed  Google Scholar 

  50. Joutsi L, Javela K, Partanen J et al. Genetic polymorphism H131R of Fcγ receptor type IIA (FcγRIIA) in a Finnish population and in patients with or without platelet-associated IgG. Eur J Haematol 1998; 61:183–189.

    Article  PubMed  CAS  Google Scholar 

  51. Warmerdam PA, van de Winkel JG, Vlug A et al. A single amino acid in the second Ig-like domain of the human Fc gamma receptor II is critical for human IgG2 binding. J Immunol 1991; 147:1338–1343.

    PubMed  CAS  Google Scholar 

  52. Wu J, Edberg JC, Redecha PB et al. A novel polymorphism of FcγRIIIa (CD 16) alters receptor function and predisposes to autoimmune disease. J Clin Invest 1997; 100:1059–1070.

    PubMed  CAS  Google Scholar 

  53. Carcao MD, Blanchette VS, Wakefield CD et al. Fcγ receptor IIa and IIIa polymorphisms in childhood immune thrombocytopenic purpura. Br J Haematol 2003; 120:135–141.

    Article  PubMed  CAS  Google Scholar 

  54. Foster CB, Zhu S, Erichsen HC et al. Polymorphisms in inflammatory cytokines and Fcγ receptors in childhood immune thrombocytopenic purpura: A pilot study. Br J Haematol 2001; 113:596–599.

    Article  PubMed  CAS  Google Scholar 

  55. Fujimoto T-T, Inoue M, Shimomura T et al. Involvement of Fcγ receptor polymorphisms in the therapeutic response of idiopathic thrombocytopenic purpura. Br J Haematol 2001; 115:125–130.

    Article  PubMed  CAS  Google Scholar 

  56. Lindberg FP, Lublin DM, Telen MJ et al. Rh-related antigen CD47 is the signal-transducer integrin associated protein. J Biol Chem 1994; 269:1567–1570.

    PubMed  CAS  Google Scholar 

  57. Lindberg FP, Bullard DC, Caver TE et al. Decreased resistance to bacterial infection and granulocyte defects in IAP-deficient mice. Science 1996; 274:795–798.

    Article  PubMed  CAS  Google Scholar 

  58. Brown EJ, Hooper L, Ho T et al. Integrin-associated protein: A 50-kD plasma membrane antigen physically and functionally associated with integrins. J Cell Biol 1990; 111:2785–2794.

    Article  PubMed  CAS  Google Scholar 

  59. Lindberg FP, Gresham HD, Schwarz E et al. Molecular cloning of Integrin-Associated Protein: An immunoglobulin family member with multiple membrane spanning domains implicated in alpha-v, beta-3-dependent ligand binding. J Cell Biol 1993; 123:485–496.

    Article  PubMed  CAS  Google Scholar 

  60. Jiang P, Lagenaur CF, Narayanan V. Integrin-associated protein is a ligand for the P84 neural adhesion molecule. J Biol Chem 1999; 274:559–562.

    Article  PubMed  CAS  Google Scholar 

  61. Oldenborg P-A, Zheleznyak A, Fang Y-F et al. Role of CD47 as a marker of self on red blood cells. Science 2000; 288:2051–2054.

    Article  PubMed  CAS  Google Scholar 

  62. Oldenborg P-A, Gresham HD, Lindberg FP. CD47-SIRPα regulates Fcγ and complement receptor-mediated phagocytosis. J Exp Med 2001; 193:855–862.

    Article  PubMed  CAS  Google Scholar 

  63. Brown EJ. Complement receptors and phagocytosis. Curr Opin Immunol 1991; 3:76–82.

    Article  PubMed  CAS  Google Scholar 

  64. Baxter AG, Mandel TE. Hemolytic anemia in nonobese diabetic mice. Eur J Immunol 1991; 21:2051–2055.

    Article  PubMed  CAS  Google Scholar 

  65. Oldenborg P-A, Gresham HD, Chen Y et al. Lethal autoimmune hemolytic anemia in CD47-deficient NOD mice. Blood 2002; 99:3500–3504.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Olsson, M., Hagnerud, S., Hedelius, D.U.R., Oldenborg, PA. (2006). Hematologic Diseases. In: Immunogenetics of Autoimmune Disease. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-39926-3_9

Download citation

Publish with us

Policies and ethics