Skip to main content

Part of the book series: Biotechnology: Pharmaceutical Aspects ((PHARMASP,volume IV))

  • 1571 Accesses

Abstract

As the pace of pharmaceutical drug discovery quickens and greater numbers of preclinical candidates are identified using combinatorial and other high throughput methods, the demand on safety assessment assays increases. As most in vitro toxicology assays are, at best, medium throughput, it is readily apparent that rapid in silico assessment protocols must be developed and validated for their use in the early discovery phase. No strangers to the increased demand for accurate safety assessments of candidate compounds and the additional constraints imposed by limited resources, regulatory agencies have long been at the forefront of utilizing and championing computational methods. As regulatory databases of safety information are populated and legacy data incorporated, methods to utilize this data to extract meaningful information must be developed and validated. As this is not intended to be an exhaustive review of all in silico tools for toxicology assessment, the reader is referred to a number of recent articles which do an outstanding job of summarizing the algorithms, benefits and shortcomings of many of the commercial packages available (Pearl, Livingston-Carr et al. 2001; Greene 2002; Snyder, Pearl et al. 2004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agresti, A. (1996). An Introduction to Categorical Data Analysis. New York, Chichester, Brisbane, Toronto and Singapore, John Wiley & Sons, Inc.: 246–249.

    Google Scholar 

  • Benigni, R., L. Passerini, et al. (1998). “QSAR models for discriminating between mutagenic and nonmutagenic aromatic and heteroaromatic amines.” Environ Mol Mutagen 32(1): 75–83.

    Article  PubMed  CAS  Google Scholar 

  • Colvin, M. E., F. T. Hatch, et al. (1998). “Chemical and biological factors affecting mutagen potency.” Mutat Res 400(1–2): 479–92.

    PubMed  CAS  Google Scholar 

  • Corey, E. J., A. K. Long, et al. (1985). “Computer-assisted analysis in organic synthesis.” Science 228(4698): 408–18.

    Article  PubMed  CAS  Google Scholar 

  • Greene, N. (2002). “Computer systems for the prediction of toxicity: an update.” Adv Drug Deliv Rev 54(3): 417–31.

    Article  PubMed  CAS  Google Scholar 

  • Greene, N., P. N. Judson, et al. (1999). “Knowledge-based expert systems for toxicity and metabolism prediction: DEREK, StAR and METEOR.” SAR QSAR Environ Res 10(2–3): 299–314.

    Article  PubMed  CAS  Google Scholar 

  • He, L., P. C. Jurs, et al. (2003). “Predicting the genotoxicity of polycyclic aromatic compounds from molecular structure with different classifiers.” Chem Res Toxicol 16(12): 1567–80.

    Article  PubMed  CAS  Google Scholar 

  • Hofnung, M. and P. Quillardet (1988). “The SOS Chromotest, a colorimetric assay based on the primary cellular responses to genotoxic agents.” Ann N Y Acad Sci 534: 817–25.

    Article  PubMed  CAS  Google Scholar 

  • Judson, P. N., C. A. Marchant, et al. (2003). “Using argumentation for absolute reasoning about the potential toxicity of chemicals.” J Chem Inf Comput Sci 43(5): 1364–70.

    Article  PubMed  CAS  Google Scholar 

  • Jurs, P. C., M. N. Hasan, et al. (1983). “Computer-assisted studies of molecular structure and carcinogenic activity.” Fundam Appl Toxicol 3(5): 343–9.

    Article  PubMed  CAS  Google Scholar 

  • Kier, L. B. and L. H. Hall (1990). “An electrotopological-state index for atoms in molecules.” Pharm Res 7(8): 801–7.

    Article  PubMed  CAS  Google Scholar 

  • Klopman, G. and O. T. Macina (1985). “Use of the Computer Automated Structure Evaluation program in determining quantitative structure-activity relationships within hallucinogenic phenylalkylamines.” J Theor Biol 113(4): 637–48.

    Article  PubMed  CAS  Google Scholar 

  • Lai, D. Y., Y.-t. Woo, et al. (1996). “Carcinogenic Potential of Organic Peroxides: Prediction Based on Structure-Activity Relationships (SAR) and Mechanism-Based Short Term Tests.” Journal of Environmental Science and Health, Part C—Environmental Carcinogenesis & Ecotoxicology Reviews.

    Google Scholar 

  • Lipinski, C. A., F. Lombardo, et al. (2001). “Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.” Adv Drug Deliv Rev 46(1–3): 3–26.

    Article  PubMed  CAS  Google Scholar 

  • Mattioni, B. E., G. W. Kauffman, et al. (2003). “Predicting the genotoxicity of secondary and aromatic amines using data subsetting to generate a model ensemble.” J Chem Inf Comput Sci 43(3): 949–63.

    Article  PubMed  CAS  Google Scholar 

  • Mosier, P. D., P. C. Jurs, et al. (2003). “Predicting the genotoxicity of thiophene derivatives from molecular structure.” Chem Res Toxicol 16(6): 721–32.

    Article  PubMed  CAS  Google Scholar 

  • Pearl, G. M., S. Livingston-Carr, et al. (2001). “Integration of computational analysis as a sentinel tool in toxicological assessments.” Curr Top Med Chem 1(4): 247–55.

    Article  PubMed  CAS  Google Scholar 

  • Quillardet, P. and M. Hofnung (1993). “The SOS chromotest: a review.” Mutat Res 297(3): 235–79.

    PubMed  CAS  Google Scholar 

  • Snyder, R. D., G. S. Pearl, et al. (2004). “Assessment of the sensitivity of the computational programs DEREK, TOPKAT, and MCASE in the prediction of the genotoxicity of pharmaceutical molecules.” Environ Mol Mutagen 43(3): 143–58.

    Article  PubMed  CAS  Google Scholar 

  • Sutton, M. D., B. T. Smith, et al. (2000). “The SOS response: recent insights into umuDC-dependent mutagenesis and DNA damage tolerance.” Annu Rev Genet 34: 479–497.

    Article  PubMed  CAS  Google Scholar 

  • Trieff, N. M., G. L. Biagi, et al. (1989). “Aromatic amines and acetamides in Salmonella typhimurium TA98 and TA100: a quantitative structure-activity relation study.” Mol Toxicol 2(1): 53–65.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Kreatsoulas, C., Durham, S.K., Custer, L.L., Pearl, G.M. (2006). Elementary Predictive Toxicology for Advanced Applications. In: Borchardt, R.T., Kerns, E.H., Hageman, M.J., Thakker, D.R., Stevens, J.L. (eds) Optimizing the “Drug-Like” Properties of Leads in Drug Discovery. Biotechnology: Pharmaceutical Aspects, vol IV. Springer, New York, NY. https://doi.org/10.1007/978-0-387-44961-6_14

Download citation

Publish with us

Policies and ethics