Skip to main content

The Contrast Formation in Optical Microscopy

  • Chapter
Handbook Of Biological Confocal Microscopy

Abstract

In any form of microscopy, one needs not only an imaging system with enough resolution to delineate the fine details of the specimen but also a suitable contrast mechanism by which to “see” the shape of the structures of interest. Contrast is the difference between the signal in one pixel and that in another that conveys to the viewer information about the shape of the specimen. It is the difference between a blank screen and an image.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • An, J.J., Goodman, M.B., and Schwartz, E.A., 1990, Simultaneous fluorescent and transmission laser scanning confocal microscopy, Biophys. J. 59:155a.

    Google Scholar 

  • Barad, Y., Eisenberg, H., Horowitz, M., and Silberberg, Y., 1997, Nonlinear scanning laser microscopy by third-harmonic generation, App. Phys. Lett. 70:922-924.

    Article  CAS  Google Scholar 

  • Barr, M.L., and Kieman, J.A., 1988, The Human Nervous System — An Anatomical Viewpoint, 5th ed., Lippincott, London, p. 17.

    Google Scholar 

  • Born, M., and Wolf, E., 1980, Principles of Optics, 6th ed., Pergamon Press, Oxford.

    Google Scholar 

  • Boyde, A., 1985, The tandem scanning reflected light microscope. Part II. Pre-Micro’84 application at UCL, Proc. RMS 20:131-139.

    Google Scholar 

  • Carminati, R., and Greffet, J.J., 1995a, Two-dimensional numerical simulation of the photon scanning tunneling microscope. Concept of transfer function, Opt. Commun. 116:316-321.

    Article  CAS  Google Scholar 

  • Carminati, R., and Greffet, J., 1995b, Influence of dielectric contrast and topography on the near field scattered by an inhomogeneous surface: Boundary conditions for diffusion of light, J. Opt. Soc. Am. A 12:2716.

    Article  Google Scholar 

  • Carney, P., and Schotland, J., 2001, Three-dimensional total internal reflection microscopy, Opt. Lett. 26:1072.

    Article  CAS  PubMed  Google Scholar 

  • Chen, I.-H., Chu, S.-W., Sun, C.-K., Lin, B.-L., and Cheng, P.C., 2002, Wave- length dependent damage in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti:Sapphire and Cr:Forsterite laser sources, Opt. Quantum. 34(12):1251-1266.

    Google Scholar 

  • Chen, V.K.-H., and Cheng, P.C., 1989, Real-time confocal imaging of Stentor coeruleus in epi-reflective mode by using a Tracer Northern Tandem scan- ning microscope, Proc. 47th Annual Meeting EMSA 47:138-139.

    Google Scholar 

  • Chen, Y., Mills, J.D., and Periasamy, A., 2003, Protein interactions in cells and tissues using FLIM and FRET, Differentiation. 71:528-541.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, P.C., and Cheng, W.Y., 2001, Artifacts in confocal and multi-photon microscopy, Microsc. Microanal. 7:1018-1019.

    Google Scholar 

  • Cheng, P.C., and Kriete, A., 1995, Image contrast in confocal light microscopy, In: Handbook of Biological Confocal Microscopy (J.B. Pawley, ed.), Plenum Press, New York, pp. 281-310.

    Google Scholar 

  • Cheng, P.C., and Lin, T.H., 1990, The use of computer-controlled substage folding optics to enhance signal strength in fluorescent confocal microscopy, Trans. Roy. Micros. Soc. 1:459-642.

    Google Scholar 

  • Cheng, P.C., Chen, V.H.-K., Kirn, H.G., and Pearson, R.E., 1989, An epi- fluorescent spinning-disk confocal microscope, Proc. 47th Annual Meeting EMSA 47:136-137.

    Google Scholar 

  • Cheng, P.C., Hibbs, A.R., Yu, H., and Cheng, W.Y., 2002, An estimate of the contribution of spherical aberration and self-shadowing in confocal and multi-photon fluorescent microscopy, Microsc. Microanal. 8:1068-1069.

    Google Scholar 

  • Cheng, P.C., Pareddy, D.R., Lin, T.H., Samarabandu, J.K., Acharya, R., Wang, G., and Liou, W.S., 1994, Confocal microscopy of botanical specimens, In: Multidimensional Microscopy (P.C. Cheng, T.H. Lin, W.L. Wu, and J.L. Wu, eds.), Springer-Verlag, Berlin, pp. 339-380.

    Google Scholar 

  • Cheng, P.C., Sun, C.-K., Kao, F.-J, Lin, B.L., and Chu, S.-W., 2001, Nonlinear multi-modality spectro-microscopy: Multiphoton fluorescence, SHG and THG of biological specimen, SPIE Proc. 4262:98-103.

    Google Scholar 

  • Cheng, P.C., Sun, C.K., Lin, B.L., Chu, S.W., Chen, I.S., Liu, T.M., Lee, S.P., Liu, H.L., Kuo, M.X., and Lin, D.J., 2002, Biological photonic crystals —Revealed by multi-photon nonlinear microscopy, Microsc. Microanal.8:268-269.

    Article  Google Scholar 

  • Cheng, P.C., Sun, C.K., Cheng, W.Y., and Walden, D.B., 2003, Nonlinear bio-photonic crystal effect of opaline silica deposits in maize, J. Scanning Microsc. 235:80-81.

    Google Scholar 

  • Chu, S.W., Chen, I.S., Li, T.M., Lin, B.L., Cheng, P.C., and Sun, C.K., 2001, Multi-modality nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser, Opt. Lett. 26:1909-1911.

    CAS  Google Scholar 

  • Chu, S.W., Chen, I.-S., Liu, T.-M., Sun, C.-K., Lin, B.-L., Lee, S.-P., Cheng, P.C., Liu, H.-L., Kuo, M.-X., and Lin, D.-J., 2003, Nonlinear bio-photonic crystal effects revealed with multi-modal nonlinear microscopy,J. Microsc. 208:190-200.

    Article  Google Scholar 

  • Cogswell, C.J., 1994, High resolution confocal microscopy of phase and ampli- tude objects, In: Multidimensional Microscopy (P.C. Cheng, T.H. Lin, W.L. Wu, and J.L. Wu, eds.), Springer-Verlag, Berlin, pp. 87-102.

    Google Scholar 

  • Deng, Y., Marko, M., Buttle, K.F., Leith, A., Mieczkowski, M., and Mannella, C.A., 1999, Cubic membrane structure in amoeba (Chaos carolinesis) mitochondria determined by electron microscopy tomography, J. Struct. Biol. 127:231-239.

    Article  CAS  PubMed  Google Scholar 

  • Holmes, T., and Cheng, P.C., 2005, Basic principles of imaging, In: Multi-Modality Microscopy (H. Yu, P.C. Cheng, P.C. Lin, and F.J. Kao, eds.), World Scientific Publishing, in press.

    Google Scholar 

  • Johansen, D.A., 1940, Plant Microtechnique, McGraw-Hill, New York.

    Google Scholar 

  • Oldenbourg, R., 2004, Polarization microscopy with the LC-PolScope, In: Live Cell Imaging: A Laboratory Manual (D.L. Spector and R.D. Goldman, eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp. 205-237.

    Google Scholar 

  • Overington, J., 1976, Vision and Acquisition, Pentech Press, London. Paddock, S.W., 1989, Tandem scanning reflected-light microscopy of cell- stratum adhesions and stress fibers in Swiss 3T3 cells, J. Cell. Sci. 93:143-146.

    Google Scholar 

  • Patterson, G., and Lippincott-Schwartz, J., 2002, A photoactivatable GFP for selective photolabeling of proteins and cells, Science. 297:1873-1877.

    Article  CAS  PubMed  Google Scholar 

  • Prieve, D.C., and Walz, J.Y., 1993, The scattering of an evanescent surface wave by a dielectric sphere in total internal reflection microscopy, Appl. Opt. 32:1629.

    Article  CAS  PubMed  Google Scholar 

  • Reits, E.A., Neefjes, J.J., 2001, From fixed to FRAP: Measuring protein mobility and activity in living cells, Nat. Cell Biol. 3(6):E145-147. Rose, A., 1948, Television pickup tubes and the problem of noise, Adv. Electron 1:131.

    Article  CAS  PubMed  Google Scholar 

  • Scheibel, M.E., and Scheibel, A.B., 1970, The rapid Golgi method. Indian summer or renaissance? In: Contemporary Research Methods in Neuro- anatomy (W.J.H. Nauta and S.O.E. Ebbeson, eds.), Springer-Verlag, New York, pp. 1-11.

    Google Scholar 

  • Sharonov, S., Morjani, H., and Manfait, M., 1992, Confocal spectral imaging analysis: A new concept to study the drug distribution in single living cancer cell, Anticancer Res. 12:1804.

    Google Scholar 

  • Sheppard, C.J.R., 1993, Confocal microscopy: Basic principles and system per- formance, In: Multidimensional Microscopy (P.C. Cheng, T.H. Lin, W.L. Wu, and J.L. Wu, eds.), Springer-Verlag, Berlin, pp. 1-31.

    Google Scholar 

  • Shinozaki, D.M., Cheng, P.C., Haridoss, A., and Fenster, A., 1991, Three dimensional optical microscopy of water trees in polyethylene, J. Mater. Sci. 26:6151-6160.

    Article  CAS  Google Scholar 

  • Shinozald, D.M., Klauzner, A., and Cheng, P.C., 1991, Inelastic deformation of polyimide-copper thin films, Mater. Sci. Eng. A 142:135-144.

    Article  Google Scholar 

  • Shribak, M., and Oldenbourg, R., 2003, Techniques for fast and sensitive measurements of two-dimensional birefringence distributions, Appl. Opt. 42:3009-3017.

    Google Scholar 

  • Sun, C.K., 2005, Abstract of Focus on Microscopy, Jena, Germany.

    Google Scholar 

  • Sun, C.K., Huang, Y.C., Liu, H.C., Lin, B.L., and Cheng, P.C., 2001, Cell manipulation using diamond microparticles as optical tweezers handles, J. Opt. Soc. Amer. B, 18(10):1483-1489.

    Google Scholar 

  • Tsou, C.-H., and Fu, Y.L., 2002, Pollen tetrad formation in Annona (Annonaceae): Proexine formation and binding mechanism, Am. J. Botany 89:734-747.

    Article  Google Scholar 

  • Van Labeke, D., Barchiesi, D., and Baida, F., 1995, Optical characterization of nanosources used in scanning near-field optical microscopy, J. Opt. Soc.Am. A 12(4):695-703.

    Article  Google Scholar 

  • Watson, T.F., 1989, Real-time confocal microscopy of high speed dental burr/tooth cutting interactions, Abstracts of the 1st International Conference on Confocal Microscopy and the 2nd International Conference on 3D Image Processing in Microscopy, Amsterdam, March 15-17, 1989.

    Google Scholar 

  • Watson, T.F., Azzopardi, A., Etman, L.M., Cheng, P.C., and Sidhu, S.K., 2000, Confocal and mulit-photon microscopy of dental tissues and biomaterials, Am. J. Dentistry 13:19-24.

    Google Scholar 

  • Webb, W.W., 1976, Perspectives on Cell Surface Mobility, In: Measurement of Lateral Transport on Cell Surfaces (V.T. Marchesi, ed.), Alan R. Liss, Inc., New York, pp. 276-278.

    Google Scholar 

  • Wells, K.S., Sandison, D.R., Strickler, J.H., and Webb, W.W., 1990, Quantita- tive fluorescence imaging with laser scanning confocal microscopy, In: Handbook of Biological Confocal Microscopy (J. Pawley, ed.), Plenum Press, New York.

    Google Scholar 

  • White, J.G., Amos, W.B., and Fordham, F., 1987, An evaluation of confocal vs. conventional imaging of biological structures by fluorescent light microscopy, J. Cell Biol. 105:41-48.

    Article  CAS  Google Scholar 

  • Wijaendts van Resandt, W., Marsman, H.J.B., Kaplan, R., Davoust, J., Stelzer, E.H.K., and Stricker, R., 1984, Optical fluorescence microscopy in three dimensions: Microtomoscopy, J. Microsc. 138:29-34.

    Google Scholar 

  • Xiao, G.O., Corle, T.R., and Kino, G.S., 1988, Real-time confocal scanning microscope, Appl. Phys. Lett. 53:716-718.

    Article  Google Scholar 

  • Zochowski, M., Wachowiak, M., Falk, C.X., Cohen, L.B., Lam, Y.W., Antic, S., and Zecevic, D., 2000, Imaging membrane potential with voltage- sensitive dyes, Biol. Bull. 198:1-21

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cheng, PC. (2006). The Contrast Formation in Optical Microscopy. In: Pawley, J. (eds) Handbook Of Biological Confocal Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-45524-2_8

Download citation

Publish with us

Policies and ethics