Skip to main content

Overview of Component Level Devices

  • Chapter
Ambient Intelligence with Microsystems

Part of the book series: Microsystems ((MICT,volume 18))

  • 735 Accesses

Abstract

Ambient intelligence (AmI) relies upon the integration of sensors with read-out and signal conditioning circuits, on feed-back mechanisms (e.g. actuators) and not least on the integration of telecommunication components to link these building blocks to a central unit or to a set of distributed computing entities. Sensors represent the ‘eyes’, ‘ears’, ‘nose’ and ‘touch’ equivalents of the human senses and based upon these, a multitude of Ambient Intelligence (AmI) scenarios have been developed [1–3]. Beyond that, sensors provide access to parameters not perceived by humans, enabling additional monitoring, prediction and reaction scenarios [4]. This chapter provides an overview of the sensors and in particular the micro-electromechanical system (MEMS) devices that have developed to provide an AmI sensor interface in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Bahadori et al., “Towards Ambient Intelligence For The Domestic Care Of The Elderly”, Ambient Intelligence, Springer, 2006, ISBN 978-0-387-22990-4, pp. 15–38

    Google Scholar 

  2. M. Streitz, “The Disappearing Computer”, Communciatons of the ACM, 48 (3). pp. 32–35. ISSN 0001-0782

    Google Scholar 

  3. M. Woitag et al., “Bewegungserfassung und Bewegungsüberwachung im häuslichen Umfeld”, Proc. 1st Ambient Assisted Living, Berlin 2008, pp. 249–252

    Google Scholar 

  4. A. Hein et al., “Activity Recognition for ambient assisted living: Potential and Challenges”, Proc. 1st Ambient Assisted Living, Berlin 2008, pp. 263–267

    Google Scholar 

  5. W.R. Heinzelmann et al., “Energy-efficient communication protocol for wireless microsensor networks”, System Sciences 2000, Jan. 2000, pp. 10, vol. 2

    Google Scholar 

  6. W. Hascher, “nanoNET: sichere Verbindung für Sensor-/Aktor-Netzwerke der Zukunft”, Elektronik 2002, H. 22, S. 38 bis 48.

    Google Scholar 

  7. G. Schulte, “Novel wireless power supply system for wireless communication devices in industrial automation systems”, IECON 02, pp. 1358–1362, 2002

    Google Scholar 

  8. A. Karalis, “Efficient wireless non-radiative mid-range energy transfer”, Annals of Physics 323 (2008) 34–48

    Article  Google Scholar 

  9. P. Mitcheson, “Power Processing Circuits for MEMS Inertial Energy Scavengers”, Dtip 2006, Stresa, April 2006

    Google Scholar 

  10. S. Büttgenbach, “Mikromechanik”, Teubner, 2nd edition, 1994, ISBN 978-3519130710

    Google Scholar 

  11. E. Jung et al., “Packaging of Micro Devices for Automotive Applications-Techniques and Examples”, AMAA 2003, ISBN 978-3540005971

    Google Scholar 

  12. B. Kloeck, “Study of electrochemical etch-stop for high-precision thicknesscontrol of silicon membranes”, IEEE Transactions on Electron Devices, Volume: 36, Issue: 4, Part 2, pp.663–669, 1989

    Article  Google Scholar 

  13. H.-P. Trah, R. Müller Fiedler, ‘Mikrosystemtechnik im Automobil’, Physikjournal, Nov.2002/1, ISSN 1617-9439, pp. 39–44

    Google Scholar 

  14. Kovacs, G.T.A. et al., “Bulk micromachining of silicon” Proceedings of the IEEE, Volume: 86, Issue: 8, pp. 1536–155, Aug 1998

    Article  MathSciNet  Google Scholar 

  15. J.M. Thevenoud et al., “Fabrication of 3D Packaging TSV using DRIE”, to be published in Proc. DTIP 2008, Nice, 2008

    Google Scholar 

  16. S. Knies et al., MEMS packaging for automotive applications”, DTIP 2005, Montreux, June 2005

    Google Scholar 

  17. J.Leib et al., “New wafer-level-packaging technology using silicon-via-contacts for optical and other sensor applications”, ECTC 2004, pp. 843–847

    Google Scholar 

  18. M. Feldmann, “Wafer-Level Camera Technologies Shrink Camera Phone Handsets”, Photonics Spectra, August 2007

    Google Scholar 

  19. C. Hierold et al., “A pure CMOS surface-micromachined integrated accelerometer”, Sensors and Actuators A: Physical, Volume 57, Issue 2, November 1996, pp. 111–116

    Article  Google Scholar 

  20. http://www.analog.com/en/content/0,2886,764%255F%255F7537,00.html

  21. Chau et al., “An integrated force-balanced capacitive accelerometer for low-g applications”, Sensors & Actuators A, Vol. 54, Issues 1–3, June 1996, Pages 472–476

    Article  Google Scholar 

  22. Wiemer et al., “Bonding and reliability for 3D mechanical, optical and fluidic systems”, Smart System Integration, Paris, 2007

    Google Scholar 

  23. http://www.analog.com/library/analogdialogue/archives/37-03/gyro.html

  24. Eaton et al., “Comparison of Bulk- and Surface- Micromachined Pressure Sensors”, Micromachined Devices and Components, Proc SPIE, Vol 3514, p. 431

    Google Scholar 

  25. http://www.intersema.ch

  26. http://www.stanleyassociates.com/capabilities/AEandT/No-Power%20MEMS%20Shock%20 Sensors.pdf

  27. P. Rombach, M. Miillenborn, U. Klein, R. Frehoff, “A low voltage silicon condenser microphone for hearing instrument applications”, Joint ASAIEAA Meeting 1999, Berlin, Germany, 14/03-19/99, NO. 2AEA-3

    Google Scholar 

  28. J. Van Doom, “Microphone with improved sound inlet port”, US Patent No. 7072482

    Google Scholar 

  29. X. Chen et al., “BaZrO3Thin Films For Humidity Gas Sensor”, MRS Bulletin 2007

    Google Scholar 

  30. C. Imawan et al., “Structural and gas-sensing properties of V2O5-MoO3 thin films for H2 detection”, Sensors and Actuators B: Chemical, Volume 77, Issues 1–2, 15 June 2001, Pages 346–351

    Article  Google Scholar 

  31. Chinowsk et al., “Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor”, Sensors and Actuators B 6954 (2003) 1–9

    Google Scholar 

  32. T. Misna et al., “Chemicapacitive microsensors for chemical warfare agent and toxic industrial chemical detection”, Sensors and Actuators B: Chemical, Volume 116, Issues 1–2, 28 July 2006, Pages 192–201

    Google Scholar 

  33. http://www.seacoastscience.com/Downloads/Seacoast_White_Paper_DEC%202006.pdf

  34. W. Baumann et al., “Microelectronic sensor system for micro-physiological application on living cells”, Sensors and Actuators B, B 55 (1999), pp.77–89

    Article  Google Scholar 

  35. P. Knapen, “Electric power supply system for portable miniature size power consuming devices”, US Patent No. 4644246

    Google Scholar 

  36. L. Amit et al., “Radioisotope Powered Electrostatic Microactuators and Electronics”, TRANSDUCERS 2007, June 2007, pp. 269–273

    Google Scholar 

  37. P. Mitcheson et al., “Power Processing Circuits For Mems Inertial Energy Scavengers”, Proc. DTIP 2006, Stresa, 2006

    Google Scholar 

  38. G. K. Ottman et al., “Adaptive piezoelectric energy harvesting circuit for wireless remote power supply”, IEEE Transactions on Power Electronics, vol. 17, pp. 669–676, 2002.

    Article  Google Scholar 

  39. M. Marzencki, Y. Ammar, S. Basrour, “Integrated power harvesting system including a MEMS generator and a power management circuit”, to be published in Sensors and Actuators A, 2008

    Google Scholar 

  40. H. Sodano, “A Review of Power Harvesting from Vibration using Piezoelectric Materials”, The Shock and Vibration Digest, 36(3), 197–205, 2004

    Article  Google Scholar 

  41. http://www.transparentassets.com

  42. W. Granzer et al., “A modular architecture for building automation systems,” in Proc. 6th IEEE WFCS, 2006, pp. 99–102

    Google Scholar 

  43. I. Stark et al., “Low power thermoelectric generator”, US Patent No. 6958443

    Google Scholar 

  44. S. Kotanagi, “Thermoelectric generation unit and portable electronic device using the unit”, US Patent No. 6560167

    Google Scholar 

  45. R. Duggirala et al., “An autonomous self-powered acoustic transmitter using radioactive thin films” in Ultrasonics Symposium, 2004, Volume: 2, pp. 1318–1321

    Google Scholar 

  46. A. Lal et al., “Pervasive power: a radioisotope-powered piezoelectric generator”, IEEE journal on Pervasive Computing, March 2005, Volume: 4, Issue: 1, pp. 53–61

    Article  Google Scholar 

  47. G. Chagnon, P. Allen, K. Hensley, K. Nechev, S. Oweis, R. Reynolds, A. Romero, T. Sack, M. Saft, Performance of SAFT Li-ion batteries for high power automotive application, in: Proceedings of the Electric Vehicle Symposium EVS-18, Berlin, October 2001

    Google Scholar 

  48. http://pesn.com/2007/01/17/9500448_EEStor_milestones/

  49. B. Parketal., “A Case for Fractal Electrodes in Electrochemical Applications”, J. Electrochem. Soc., Volume 154, Issue 2, pp. P1–P5 (2007)

    Article  Google Scholar 

  50. R. Hahn et al., “Development of a planar micro fuel cell with thin film and micro patterning technologies”, Journal of Power Sources, Volume 131, Issues 1–2, 14 May 2004, Pages 73–78

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Jung, E. (2008). Overview of Component Level Devices. In: Ambient Intelligence with Microsystems. Microsystems, vol 18. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-46264-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-46264-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-46263-9

  • Online ISBN: 978-0-387-46264-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics