Skip to main content

Molecular Biology of EBV in Relationship to AIDS-Associated Oncogenesis

  • Chapter
Aids-Associated Viral Oncogenesis

Part of the book series: Cancer Treatment and Research ((CTAR,volume 133))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbot, S. D., M. Rowe, K. Cadwallader, A. Ricksten, J. Gordon, et al. 1990. Epstein-Barr virus nuclear antigen 2 induces expression of the virus-encoded latent membrane protein. J Virol 64:2126–34.

    PubMed  CAS  Google Scholar 

  2. Adams, A. 1987. Replication of latent Epstein-Barr virus genomes in Raji cells. J Virol 61:1743–6.

    PubMed  CAS  Google Scholar 

  3. Ahsan, N., T. Kanda, K. Nagashima, and K. Takada. 2005. Epstein-Barr virus transforming protein LMP1 plays a critical role in virus production. J Virol 79:4415–24.

    PubMed  CAS  Google Scholar 

  4. Allday, M. J., D. H. Crawford, and B. E. Griffin. 1989. Epstein-Barr virus latent gene expression during the initiation of B cell immortalization. J Gen Virol 70(Pt 7):1755–64.

    PubMed  CAS  Google Scholar 

  5. Amon, W., and P. J. Farrell. 2005. Reactivation of Epstein-Barr virus from latency. Rev Med Virol 15:149–56.

    PubMed  Google Scholar 

  6. Aviel, S., G. Winberg, M. Massucci, and A. Ciechanover. 2000. Degradation of the Epstein-Barr virus latent membrane protein 1 (LMP1) by the ubiquitin-proteasome pathway. Targeting via ubiquitination of the N-terminal residue. J Biol Chem 275:23491–9.

    PubMed  CAS  Google Scholar 

  7. Baer, R., A. T. Bankier, M. D. Biggin, P. L. Deininger, P. J. Farrell, et al. 1984. DNA sequence and expression of the B95–8 Epstein-Barr virus genome. Nature 310:207–11.

    PubMed  CAS  Google Scholar 

  8. Biggin, M., M. Bodescot, M. Perricaudet, and P. Farrell. 1987. Epstein-Barr virus gene expression in P3HR1-superinfected Raji cells. J Virol 61:3120–32.

    PubMed  CAS  Google Scholar 

  9. Blake, N., S. Lee, I. Redchenko, W. Thomas, N. Steven, et al. 1997. Human CD8+ T cell responses to EBV EBNA1: HLA class I presentation of the (Gly-Ala)-containing protein requires exogenous processing. Immunity 7:791–802.

    PubMed  CAS  Google Scholar 

  10. Boyer, S. N., D. E. Wazer, and V. Band. 1996. E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. Cancer Res 56:4620–4.

    PubMed  CAS  Google Scholar 

  11. Brown, K. D., B. S. Hostager, and G. A. Bishop. 2001. Differential signaling and tumor necrosis factor receptor-associated factor (TRAF) degradation mediated by CD40 and the Epstein-Barr virus oncoprotein latent membrane protein 1 (LMP1). J Exp Med 193:943–54.

    PubMed  CAS  Google Scholar 

  12. Burkitt, D. 1958. A sarcoma involving the jaws in African children. Br J Surg 46:218–23.

    PubMed  CAS  Google Scholar 

  13. Busson, P., R. McCoy, R. Sadler, K. Gilligan, T. Tursz, and N. Raab-Traub. 1992. Consistent transcription of the Epstein-Barr virus LMP2 gene in nasopharyngeal carcinoma. J Virol 66:3257–62.

    PubMed  CAS  Google Scholar 

  14. Cai, X., A. Schafer, S. Lu, J. P. Bilello, R. C. Desrosiers, et al. 2006. Epstein-Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog 2:e23.

    PubMed  Google Scholar 

  15. Cen, H., and J. L. McKnight. 1994. EBV-immortalized isogenic human B-cell clones exhibit differences in DNA-protein complex formation on the BZLF1 and BRLF1 promoter regions among latent, lytic and TPA-activated cell lines. Virus Res 31:89–107.

    PubMed  CAS  Google Scholar 

  16. Cerimele, F., T. Battle, R. Lynch, D. A. Frank, E. Murad, et al. 2005. Reactive oxygen signaling and MAPK activation distinguish Epstein-Barr Virus (EBV)-positive versus EBV-negative Burkitt's lymphoma. Proc Natl Acad Sci USA 102:175–9.

    PubMed  CAS  Google Scholar 

  17. Chaudhuri, B., H. Xu, I. Todorov, A. Dutta, and J. L. Yates. 2001. Human DNA replication initiation factors, ORC and MCM, associate with oriP of Epstein-Barr virus. Proc Natl Acad Sci USA 98:10085–9.

    PubMed  CAS  Google Scholar 

  18. Cohen, J. I., F. Wang, J. Mannick, and E. Kieff. 1989. Epstein-Barr virus nuclear protein 2 is a key determinant of lymphocyte transformation. Proc Natl Acad Sci USA 86:9558–62.

    PubMed  CAS  Google Scholar 

  19. Countryman, J., and G. Miller. 1985. Activation of expression of latent Epstein-Barr herpesvirus after gene transfer with a small cloned subfragment of heterogeneous viral DNA. Proc Natl Acad Sci USA 82:4085–9.

    PubMed  CAS  Google Scholar 

  20. Cox, M. A., J. Leahy, and J. M. Hardwick. 1990. An enhancer within the divergent promoter of Epstein-Barr virus responds synergistically to the R and Z transactivators. J Virol 64:313–21.

    PubMed  CAS  Google Scholar 

  21. Deng, Z., L. Lezina, C. J. Chen, S. Shtivelband, W. So, and P. M. Lieberman. 2002. Telomeric proteins regulate episomal maintenance of Epstein-Barr virus origin of plasmid replication. Mol Cell 9:493–503.

    PubMed  CAS  Google Scholar 

  22. Devergne, O., E. Hatzivassiliou, K. M. Izumi, K. M. Kaye, M. F. Kleijnen, et al. 1996. Association of TRAF1, TRAF2, and TRAF3 with an Epstein-Barr virus LMP1 domain important for B-lymphocyte transformation: Role in NF-kappaB activation. Mol Cell Biol 16:7098–108.

    PubMed  CAS  Google Scholar 

  23. Dhar, S. K., K. Yoshida, Y. Machida, P. Khaira, B. Chaudhuri, et al. 2001. Replication from oriP of Epstein-Barr virus requires human ORC and is inhibited by geminin. Cell 106:287–96.

    PubMed  CAS  Google Scholar 

  24. Dukers, D. F., P. Meij, M. B. Vervoort, W. Vos, R. J. Scheper, et al. 2000. Direct immunosuppressive effects of EBV-encoded latent membrane protein 1. J Immunol 165:663–70.

    PubMed  CAS  Google Scholar 

  25. Eliopoulos, A. G., C. W. Dawson, G. Mosialos, J. E. Floettmann, M. Rowe, et al. 1996. CD40-induced growth inhibition in epithelial cells is mimicked by Epstein-Barr Virus-encoded LMP1: Involvement of TRAF3 as a common mediator. Oncogene 13:2243–54.

    PubMed  CAS  Google Scholar 

  26. Epstein, M. A., B. G. Achong, and Y. M. Barr. 1964. Virus particles in cultured lymphoblasts from Burkitt's lymphoma. Lancet 15:702–3.

    Google Scholar 

  27. Fahraeus, R., A. Jansson, A. Ricksten, A. Sjoblom, and L. Rymo. 1990. Epstein-Barr virus-encoded nuclear antigen 2 activates the viral latent membrane protein promoter by modulating the activity of a negative regulatory element. Proc Natl Acad Sci USA 87:7390–4.

    PubMed  CAS  Google Scholar 

  28. Farrell, P. J., I. Cludts, and A. Stuhler. 1997. Epstein-Barr virus genes and cancer cells. Biomed Pharmacother 51:258–67.

    PubMed  CAS  Google Scholar 

  29. Faulkner, G. C., A. S. Krajewski, and D. H. Crawford. 2000. The ins and outs of EBV infection. Trends Microbiol 8:185–9.

    PubMed  CAS  Google Scholar 

  30. Frappier, L., and M. O'Donnell. 1992. EBNA1 distorts oriP, the Epstein-Barr virus latent replication origin. J Virol 66:1786–90.

    PubMed  CAS  Google Scholar 

  31. Fruehling, S., and R. Longnecker. 1997. The immunoreceptor tyrosine-based activation motif of Epstein-Barr virus LMP2A is essential for blocking BCR-mediated signal transduction. Virology 235:241–51.

    PubMed  CAS  Google Scholar 

  32. Gerber, P., S. Lucas, M. Nonoyama, E. Perlin, and L. I. Goldstein. 1972. Oral excretion of Epstein-Barr virus by healthy subjects and patients with infectious mononucleosis. Lancet 2:988–9.

    PubMed  CAS  Google Scholar 

  33. Gilligan, K., H. Sato, P. Rajadurai, P. Busson, L. Young, et al. 1990. Novel transcription from the Epstein-Barr virus terminal EcoRI fragment, DIJhet, in a nasopharyngeal carcinoma. J Virol 64:4948–56.

    PubMed  CAS  Google Scholar 

  34. Gires, O., F. Kohlhuber, E. Kilger, M. Baumann, A. Kieser, et al. 1999. Latent membrane protein 1 of Epstein-Barr virus interacts with JAK3 and activates STAT proteins. Embo J 18:3064–73.

    PubMed  CAS  Google Scholar 

  35. Hammerschmidt, W., and B. Sugden. 1989. Genetic analysis of immortalizing functions of Epstein-Barr virus in human B lymphocytes. Nature 340:393–7.

    PubMed  CAS  Google Scholar 

  36. Han, I., Y. Xue, S. Harada, S. Orstavik, B. Skalhegg, and E. Kieff. 2002. Protein kinase A associates with HA95 and affects transcriptional coactivation by Epstein-Barr virus nuclear proteins. Mol Cell Biol 22:2136–46.

    PubMed  CAS  Google Scholar 

  37. Henkel, T., P. D. Ling, S. D. Hayward, and M. G. Peterson. 1994. Mediation of Epstein-Barr virus EBNA2 transactivation by recombination signal-binding protein J kappa. Science 265:92–5.

    PubMed  CAS  Google Scholar 

  38. Henle, W., V. Diehl, G. Kohn, H. Zur Hausen, and G. Henle. 1967. Herpes-type virus and chromosome marker in normal leukocytes after growth with irradiated Burkitt cells. Science 157:1064–5.

    PubMed  CAS  Google Scholar 

  39. Hofelmayr, H., L. J. Strobl, C. Stein, G. Laux, G. Marschall, et al. 1999. Activated mouse Notch1 transactivates Epstein-Barr virus nuclear antigen 2-regulated viral promoters. J Virol 73:2770–80.

    PubMed  CAS  Google Scholar 

  40. Howe, J. G., and J. A. Steitz. 1986. Localization of Epstein-Barr virus-encoded small RNAs by in situ hybridization. Proc Natl Acad Sci USA 83:9006–10.

    PubMed  CAS  Google Scholar 

  41. Hudson, G. S., P. J. Farrell, and B. G. Barrell. 1985. Two related but differentially expressed potential membrane proteins encoded by the EcoRI Dhet region of Epstein-Barr virus B95–8. J Virol 53:528–35.

    PubMed  CAS  Google Scholar 

  42. Huen, D. S., S. A. Henderson, D. Croom-Carter, and M. Rowe. 1995. The Epstein-Barr virus latent membrane protein-1 (LMP1) mediates activation of NF-kappa B and cell surface phenotype via two effector regions in its carboxy-terminal cytoplasmic domain. Oncogene 10:549–60.

    PubMed  CAS  Google Scholar 

  43. Ikeda, M., A. Ikeda, L. C. Longan, and R. Longnecker. 2000. The Epstein-Barr virus latent membrane protein 2A PY motif recruits WW domain-containing ubiquitin-protein ligases. Virology 268:178–91.

    PubMed  CAS  Google Scholar 

  44. Imai, T., M. Nagira, S. Takagi, M. Kakizaki, M. Nishimura, et al. 1999. Selective recruitment of CCR4-bearing Th2 cells toward antigen-presenting cells by the CC chemokines thymus and activation-regulated chemokine and macrophage-derived chemokine. Int Immunol 11:81–8.

    PubMed  CAS  Google Scholar 

  45. Inman, G. J., and P. J. Farrell. 1995. Epstein-Barr virus EBNA-LP and transcription regulation properties of pRB, p107 and p53 in transfection assays. J Gen Virol 76(Pt 9):2141–9.

    PubMed  CAS  Google Scholar 

  46. Izumi, K. M., K. M. Kaye, and E. D. Kieff. 1994. Epstein-Barr virus recombinant molecular genetic analysis of the LMP1 amino-terminal cytoplasmic domain reveals a probable structural role, with no component essential for primary B-lymphocyte growth transformation. J Virol 68:4369–76.

    PubMed  CAS  Google Scholar 

  47. Jiang, W. Q., L. Szekely, V. Wendel-Hansen, N. Ringertz, G. Klein, and A. Rosen. 1991. Co-localization of the retinoblastoma protein and the Epstein-Barr virus-encoded nuclear antigen EBNA-5. Exp Cell Res 197:314–8.

    PubMed  CAS  Google Scholar 

  48. Kanamori, M., S. Watanabe, R. Honma, M. Kuroda, S. Imai, et al. 2004. Epstein-Barr virus nuclear antigen leader protein induces expression of thymus- and activation-regulated chemokine in B cells. J Virol 78:3984–93.

    PubMed  CAS  Google Scholar 

  49. Kawaguchi, Y., K. Nakajima, M. Igarashi, T. Morita, M. Tanaka, et al. 2000. Interaction of Epstein-Barr virus nuclear antigen leader protein (EBNA-LP) with HS1-associated protein X-1: Implication of cytoplasmic function of EBNA-LP. J Virol 74:10104–11.

    PubMed  CAS  Google Scholar 

  50. Kaye, K. M., K. M. Izumi, and E. Kieff. 1993. Epstein-Barr virus latent membrane protein 1 is essential for B-lymphocyte growth transformation. Proc Natl Acad Sci USA 90:9150–4.

    PubMed  CAS  Google Scholar 

  51. Kaye, K. M., K. M. Izumi, H. Li, E. Johannsen, D. Davidson, et al. 1999. An Epstein-Barr virus that expresses only the first 231 LMP1 amino acids efficiently initiates primary B-lymphocyte growth transformation. J Virol 73:10525–30.

    PubMed  CAS  Google Scholar 

  52. Kaye, K. M., K. M. Izumi, G. Mosialos, and E. Kieff. 1995. The Epstein-Barr virus LMP1 cytoplasmic carboxy terminus is essential for B-lymphocyte transformation; fibroblast cocultivation complements a critical function within the terminal 155 residues. J Virol 69:675–83.

    PubMed  CAS  Google Scholar 

  53. Kelly, G. L., A. E. Milner, R. J. Tierney, D. S. Croom-Carter, M. Altmann, et al. 2005. Epstein-Barr virus nuclear antigen 2 (EBNA2) gene deletion is consistently linked with EBNA3A, -3B, and -3C expression in Burkitt's lymphoma cells and with increased resistance to apoptosis. J Virol 79:10709–17.

    PubMed  CAS  Google Scholar 

  54. Kempkes, B., L. J. Strobl, G. W. Bornkamm, and U. Zimber-Strobl. 2005. EBNA2 and notch signaling. Norfolk: Caister Academic Press, pp. 463–99.

    Google Scholar 

  55. Kieser, A., C. Kaiser, and W. Hammerschmidt. 1999. LMP1 signal transduction differs substantially from TNF receptor 1 signaling in the molecular functions of TRADD and TRAF2. Embo J 18:2511–21.

    PubMed  CAS  Google Scholar 

  56. Kirchmaier, A. L., and B. Sugden. 1995. Plasmid maintenance of derivatives of oriP of Epstein-Barr virus. J Virol 69:1280–3.

    PubMed  CAS  Google Scholar 

  57. Kitagawa, N., M. Goto, K. Kurozumi, S. Maruo, M. Fukayama, et al. 2000. Epstein-Barr virus-encoded poly (A)(-) RNA supports Burkitt's lymphoma growth through interleukin-10 induction. Embo J 19:6742–50.

    PubMed  CAS  Google Scholar 

  58. Kitay, M. K., and D. T. Rowe. 1996. Cell cycle stage-specific phosphorylation of the Epstein-Barr virus immortalization protein EBNA-LP. J Virol 70:7885–93.

    PubMed  CAS  Google Scholar 

  59. Kitay, M. K., and D. T. Rowe. 1996. Protein–protein interactions between Epstein-Barr virus nuclear antigen-LP and cellular gene products: Binding of 70-kilodalton heat shock proteins. Virology 220:91–9.

    PubMed  CAS  Google Scholar 

  60. Knight, J. S., K. Lan, C. Subramanian, and E. S. Robertson. 2003. Epstein-Barr virus nuclear antigen 3C recruits histone deacetylase activity and associates with the corepressors mSin3A and NCoR in human B-cell lines. J Virol 77:4261–72.

    PubMed  CAS  Google Scholar 

  61. Knight, J. S., and E. S. Robertson. 2004. Epstein-Barr virus nuclear antigen 3C regulates cyclin A/p27 complexes and enhances cyclin A-dependent kinase activity. J Virol 78:1981–91.

    PubMed  CAS  Google Scholar 

  62. Knight, J. S., N. Sharma, D. E. Kalman, and E. S. Robertson. 2004. A cyclin-binding motif within the amino-terminal homology domain of EBNA3C binds cyclin A and modulates cyclin A-dependent kinase activity in Epstein-Barr virus-infected cells. J Virol 78:12857–67.

    PubMed  CAS  Google Scholar 

  63. Knight, J. S., N. Sharma, and E. S. Robertson. 2005. Epstein-Barr virus latent antigen 3C can mediate the degradation of the retinoblastoma protein through an SCF cellular ubiquitin ligase. Proc Natl Acad Sci USA 102:18562–6.

    PubMed  CAS  Google Scholar 

  64. Knight, J. S., N. Sharma, and E. S. Robertson. 2005. SCFSkp2 complex targeted by Epstein-Barr virus essential nuclear antigen. Mol Cell Biol 25:1749–63.

    PubMed  CAS  Google Scholar 

  65. Knutson, J. C. 1990. The level of c-fgr RNA is increased by EBNA-2, an Epstein-Barr virus gene required for B-cell immortalization. J Virol 64:2530–6.

    PubMed  CAS  Google Scholar 

  66. Koliais, S. I. 1979. Mode of integration of Epstein-Barr virus genome into host DNA in Burkitt lymphoma cells. J Gen Virol 44:573–6.

    PubMed  CAS  Google Scholar 

  67. Laichalk, L. L., and D. A. Thorley-Lawson. 2005. Terminal differentiation into plasma cells initiates the replicative cycle of Epstein-Barr virus in vivo. J Virol 79:1296–307.

    PubMed  CAS  Google Scholar 

  68. Laux, G., B. Adam, L. J. Strobl, and F. Moreau-Gachelin. 1994. The Spi-1/PU.1 and Spi-B ets family transcription factors and the recombination signal binding protein RBP-J kappa interact with an Epstein-Barr virus nuclear antigen 2 responsive cis-element. Embo J 13:5624–32.

    PubMed  CAS  Google Scholar 

  69. Laux, G., M. Perricaudet, and P. J. Farrell. 1988. A spliced Epstein-Barr virus gene expressed in immortalized lymphocytes is created by circularization of the linear viral genome. Embo J 7:769–74.

    PubMed  CAS  Google Scholar 

  70. Lee, M. A., M. E. Diamond, and J. L. Yates. 1999. Genetic evidence that EBNA-1 is needed for efficient, stable latent infection by Epstein-Barr virus. J Virol 73:2974–82.

    PubMed  CAS  Google Scholar 

  71. Lerner, M. R., N. C. Andrews, G. Miller, and J. A. Steitz. 1981. Two small RNAs encoded by Epstein-Barr virus and complexed with protein are precipitated by antibodies from patients with systemic lupus erythematosus. Proc Natl Acad Sci USA 78:805–9.

    PubMed  CAS  Google Scholar 

  72. Levitskaya, J., A. Sharipo, A. Leonchiks, A. Ciechanover, and M. G. Masucci. 1997. Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1. Proc Natl Acad Sci USA 94:12616–21.

    PubMed  CAS  Google Scholar 

  73. Liebowitz, D., D. Wang, and E. Kieff. 1986. Orientation and patching of the latent infection membrane protein encoded by Epstein-Barr virus. J Virol 58:233–7.

    PubMed  CAS  Google Scholar 

  74. Ling, P. D., D. R. Rawlins, and S. D. Hayward. 1993. The Epstein-Barr virus immortalizing protein EBNA-2 is targeted to DNA by a cellular enhancer-binding protein. Proc Natl Acad Sci USA 90:9237–41.

    PubMed  CAS  Google Scholar 

  75. Liu, P., and S. H. Speck. 2003. Synergistic autoactivation of the Epstein-Barr virus immediate-early BRLF1 promoter by Rta and Zta. Virology 310:199–206.

    PubMed  CAS  Google Scholar 

  76. Longnecker, R., and E. Kieff. 1990. A second Epstein-Barr virus membrane protein (LMP2) is expressed in latent infection and colocalizes with LMP1. J Virol 64:2319–26.

    PubMed  CAS  Google Scholar 

  77. Lu, C. C., Y. Y. Jeng, C. H. Tsai, M. Y. Liu, S. W. Yeh, et al. 2006. Genome-wide transcription program and expression of the Rta responsive gene of Epstein-Barr virus. Virology 345:358–72.

    PubMed  CAS  Google Scholar 

  78. Mackey, D., and B. Sugden. 1997. Studies on the mechanism of DNA linking by Epstein-Barr virus nuclear antigen 1. J Biol Chem 272:29873–9.

    PubMed  CAS  Google Scholar 

  79. Marschall, M., P. Alliger, F. Schwarzmann, C. Bogedain, M. Brand, et al. 1993. The lytic transition of Epstein-Barr virus is imitated by recombinant B-cells. Arch Virol 129:23–33.

    PubMed  CAS  Google Scholar 

  80. Masy, E., E. Adriaenssens, C. Montpellier, P. Crepieux, A. Mougel, et al. 2002. Human monocytic cell lines transformed in vitro by Epstein-Barr virus display a type II latency and LMP-1-dependent proliferation. J Virol 76:6460–72.

    PubMed  CAS  Google Scholar 

  81. Matsunami, N., Y. Hamaguchi, Y. Yamamoto, K. Kuze, K. Kangawa, et al. 1989. A protein binding to the J kappa recombination sequence of immunoglobulin genes contains a sequence related to the integrase motif. Nature 342:934–7.

    PubMed  CAS  Google Scholar 

  82. Miller, G. 1989. The switch between EBV latency and replication. Yale J Biol Med 62:205–13.

    PubMed  CAS  Google Scholar 

  83. Miller, W. E., G. Mosialos, E. Kieff, and N. Raab-Traub. 1997. Epstein-Barr virus LMP1 induction of the epidermal growth factor receptor is mediated through a TRAF signaling pathway distinct from NF-kappaB activation. J Virol 71:586–94.

    PubMed  CAS  Google Scholar 

  84. Moorthy, R., and D. A. Thorley-Lawson. 1990. Processing of the Epstein-Barr virus-encoded latent membrane protein p63/LMP. J Virol 64:829–37.

    PubMed  CAS  Google Scholar 

  85. Mosialos, G., M. Birkenbach, R. Yalamanchili, T. VanArsdale, C. Ware, and E. Kieff. 1995. The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell 80:389–99.

    PubMed  CAS  Google Scholar 

  86. Murakami, M., Y. Hoshikawa, Y. Satoh, H. Ito, M. Tajima, et al. 2000. Tumorigenesis of Epstein-Barr virus-positive epithelial cell lines derived from gastric tissues in the SCID mouse. Virology 277:20–6.

    PubMed  CAS  Google Scholar 

  87. Murakami, M., K. Lan, C. Subramanian, and E. S. Robertson. 2005. Epstein-Barr virus nuclear antigen 1 interacts with Nm23–H1 in lymphoblastoid cell lines and inhibits its ability to suppress cell migration. J Virol 79:1559–68.

    PubMed  CAS  Google Scholar 

  88. Nanbo, A., K. Inoue, K. Adachi-Takasawa, and K. Takada. 2002. Epstein-Barr virus RNA confers resistance to interferon-alpha-induced apoptosis in Burkitt's lymphoma. Embo J 21:954–65.

    PubMed  CAS  Google Scholar 

  89. Nanbo, A., H. Yoshiyama, and K. Takada. 2005. Epstein-Barr virus-encoded poly(A)- RNA confers resistance to apoptosis mediated through Fas by blocking the PKR pathway in human epithelial intestine 407 cells. J Virol 79:12280–5.

    PubMed  CAS  Google Scholar 

  90. Petti, L., C. Sample, and E. Kieff. 1990. Subnuclear localization and phosphorylation of Epstein-Barr virus latent infection nuclear proteins. Virology 176:563–74.

    PubMed  CAS  Google Scholar 

  91. Radkov, S. A., M. Bain, P. J. Farrell, M. West, M. Rowe, and M. J. Allday. 1997. Epstein-Barr virus EBNA3C represses Cp, the major promoter for EBNA expression, but has no effect on the promoter of the cell gene CD21. J Virol 71:8552–62.

    PubMed  CAS  Google Scholar 

  92. Reth, M. 1989. Antigen receptor tail clue. Nature 338:383–4.

    PubMed  CAS  Google Scholar 

  93. Rickinson, A., and E. Kieff. 2001. Fields virology. Philadelphia: Lippincott Williams & Wilkins Publishers, pp. 2575–627.

    Google Scholar 

  94. Robertson, E. S., S. Grossman, E. Johannsen, C. Miller, J. Lin, et al. 1995. Epstein-Barr virus nuclear protein 3C modulates transcription through interaction with the sequence-specific DNA-binding protein J kappa. J Virol 69:3108–16.

    PubMed  CAS  Google Scholar 

  95. Robertson, E. S., J. Lin, and E. Kieff. 1996. The amino-terminal domains of Epstein-Barr virus nuclear proteins 3A, 3B, and 3C interact with RBPJ(kappa). J Virol 70:3068–74.

    PubMed  CAS  Google Scholar 

  96. Robertson, E. S., B. Tomkinson, and E. Kieff. 1994. An Epstein-Barr virus with a 58-kilobase-pair deletion that includes BARF0 transforms B lymphocytes in vitro. J Virol 68:1449–58.

    PubMed  CAS  Google Scholar 

  97. Rooney, C., J. G. Howe, S. H. Speck, and G. Miller. 1989. Influence of Burkitt's lymphoma and primary B cells on latent gene expression by the nonimmortalizing P3J-HR-1 strain of Epstein-Barr virus. J Virol 63:1531–9.

    PubMed  CAS  Google Scholar 

  98. Rooney, C. M., D. T. Rowe, T. Ragot, and P. J. Farrell. 1989. The spliced BZLF1 gene of Epstein-Barr virus (EBV) transactivates an early EBV promoter and induces the virus productive cycle. J Virol 63:3109–16.

    PubMed  CAS  Google Scholar 

  99. Sakai, T., Y. Taniguchi, K. Tamura, S. Minoguchi, T. Fukuhara, et al. 1998. Functional replacement of the intracellular region of the Notch1 receptor by Epstein-Barr virus nuclear antigen 2. J Virol 72:6034–9.

    PubMed  CAS  Google Scholar 

  100. Sample, J., E. B. Henson, and C. Sample. 1992. The Epstein-Barr virus nuclear protein 1 promoter active in type I latency is autoregulated. J Virol 66:4654–61.

    PubMed  CAS  Google Scholar 

  101. Sample, J., M. Hummel, D. Braun, M. Birkenbach, and E. Kieff. 1986. Nucleotide sequences of mRNAs encoding Epstein-Barr virus nuclear proteins: A probable transcriptional initiation site. Proc Natl Acad Sci USA 83:5096–100.

    PubMed  CAS  Google Scholar 

  102. Sample, J., D. Liebowitz, and E. Kieff. 1989. Two related Epstein-Barr virus membrane proteins are encoded by separate genes. J Virol 63:933–7.

    PubMed  CAS  Google Scholar 

  103. Scala, G., I. Quinto, M. R. Ruocco, M. Mallardo, C. Ambrosino, et al. 1993. Epstein-Barr virus nuclear antigen 2 transactivates the long terminal repeat of human immunodeficiency virus type 1. J Virol 67:2853–61.

    PubMed  CAS  Google Scholar 

  104. Schepers, A., M. Ritzi, K. Bousset, E. Kremmer, J. L.Yates, et al. 2001. Human origin recognition complex binds to the region of the latent origin of DNA replication of Epstein-Barr virus. Embo J 20:4588–602.

    PubMed  CAS  Google Scholar 

  105. Schneider, R. J., B. Safer, S. M. Munemitsu, C. E. Samuel, and T. Shenk. 1985. Adenovirus VAI RNA prevents phosphorylation of the eukaryotic initiation factor 2 alpha subunit subsequent to infection. Proc Natl Acad Sci USA 82:4321–5.

    PubMed  CAS  Google Scholar 

  106. Shimizu, N., and K. Takada. 1993. Analysis of the BZLF1 promoter of Epstein-Barr virus: Identification of an anti-immunoglobulin response sequence. J Virol 67:3240–5.

    PubMed  CAS  Google Scholar 

  107. Shimizu, N., A. Tanabe-Tochikura, Y. Kuroiwa, and K. Takada. 1994. Isolation of Epstein-Barr virus (EBV)-negative cell clones from the EBV-positive Burkitt's lymphoma (BL) line Akata: Malignant phenotypes of BL cells are dependent on EBV. J Virol 68:6069–73.

    PubMed  CAS  Google Scholar 

  108. Sinclair, A. J., I. Palmero, G. Peters, and P. J. Farrell. 1994. EBNA-2 and EBNA-LP cooperate to cause G0 to G1 transition during immortalization of resting human B lymphocytes by Epstein-Barr virus. Embo J 13:3321–8.

    PubMed  CAS  Google Scholar 

  109. Smith, P. 2001. Epstein-Barr virus complementary strand transcripts (CSTs/BARTs) and cancer. Semin Cancer Biol 11:469–76.

    PubMed  CAS  Google Scholar 

  110. Snudden, D. K., J. Hearing, P. R. Smith, F. A. Grasser, and B. E. Griffin. 1994. EBNA-1, the major nuclear antigen of Epstein-Barr virus, resembles ‘RGG’ RNA binding proteins. Embo J 13:4840–7.

    PubMed  CAS  Google Scholar 

  111. Speck, S. H., T. Chatila, and E. Flemington. 1997. Reactivation of Epstein-Barr virus: Regulation and function of the BZLF1 gene. Trends Microbiol 5:399–405.

    PubMed  CAS  Google Scholar 

  112. Strobl, L. J., H. Hofelmayr, G. Marschall, M. Brielmeier, G. W. Bornkamm, and U. Zimber-Strobl. 2000. Activated Notch1 modulates gene expression in B cells similarly to Epstein-Barr viral nuclear antigen 2. J Virol 74:1727–35.

    PubMed  CAS  Google Scholar 

  113. Subramanian, C., S. Hasan, M. Rowe, M. Hottiger, R. Orre, and E. S. Robertson. 2002. Epstein-Barr virus nuclear antigen 3C and prothymosin alpha interact with the p300 transcriptional coactivator at the CH1 and CH3/HAT domains and cooperate in regulation of transcription and histone acetylation. J Virol 76:4699–708.

    PubMed  CAS  Google Scholar 

  114. Swinnen, L. J. 2000. Transplantation-related lymphoproliferative disorder: A model for human immunodeficiency virus-related lymphomas. Semin Oncol 27:402–8.

    PubMed  CAS  Google Scholar 

  115. Szeles, A., K. I. Falk, S. Imreh, and G. Klein. 1999. Visualization of alternative Epstein-Barr virus expression programs by fluorescent in situ hybridization at the cell level. J Virol 73:5064–9.

    PubMed  CAS  Google Scholar 

  116. Takada, K. 1984. Cross-linking of cell surface immunoglobulins induces Epstein-Barr virus in Burkitt lymphoma lines. Int J Cancer 33:27–32.

    PubMed  CAS  Google Scholar 

  117. Takada, K., and A. Nanbo. 2001. The role of EBERs in oncogenesis. Semin Cancer Biol 11:461–7.

    PubMed  CAS  Google Scholar 

  118. Tamura, K., Y. Taniguchi, S. Minoguchi, T. Sakai, T. Tun, et al. 1995. Physical interaction between a novel domain of the receptor notch and the transcription factor RBP-J kappa/Su(H). Curr Biol 5:1416–23.

    PubMed  CAS  Google Scholar 

  119. Toczyski, D. P., A. G. Matera, D. C. Ward, and J. A. Steitz. 1994. The Epstein-Barr virus (EBV) small RNA EBER1 binds and relocalizes ribosomal protein L22 in EBV-infected human B lymphocytes. Proc Natl Acad Sci USA 91:3463–7.

    PubMed  CAS  Google Scholar 

  120. Tsubata, T., and J. Wienands. 2001. B cell signaling. Introduction. Int Rev Immunol 20:675–8.

    PubMed  CAS  Google Scholar 

  121. Wang, F., C. Gregory, C. Sample, M. Rowe, D. Liebowitz, et al. 1990. Epstein-Barr virus latent membrane protein (LMP1) and nuclear proteins 2 and 3C are effectors of phenotypic changes in B lymphocytes: EBNA-2 and LMP1 cooperatively induce CD23. J Virol 64:2309–18.

    PubMed  CAS  Google Scholar 

  122. Wang, F., C. D. Gregory, M. Rowe, A. B. Rickinson, D. Wang, et al. 1987. Epstein-Barr virus nuclear antigen 2 specifically induces expression of the B-cell activation antigen CD23. Proc Natl Acad Sci USA 84:3452–6.

    PubMed  CAS  Google Scholar 

  123. Wang, F., S. F. Tsang, M. G. Kurilla, J. I. Cohen, and E. Kieff. 1990. Epstein-Barr virus nuclear antigen 2 transactivates latent membrane protein LMP1. J Virol 64:3407–16.

    PubMed  CAS  Google Scholar 

  124. Wilson, J. B., J. L. Bell, and A. J. Levine. 1996. Expression of Epstein-Barr virus nuclear antigen-1 induces B cell neoplasia in transgenic mice. Embo J 15:3117–26.

    PubMed  CAS  Google Scholar 

  125. Woisetschlaeger, M., C. N. Yandava, L. A. Furmanski, J. L. Strominger, and S. H. Speck. 1990. Promoter switching in Epstein-Barr virus during the initial stages of infection of B lymphocytes. Proc Natl Acad Sci USA 87:1725–9.

    PubMed  CAS  Google Scholar 

  126. Wu, H., P. Kapoor, and L. Frappier. 2002. Separation of the DNA replication, segregation, and transcriptional activation functions of Epstein-Barr nuclear antigen 1. J Virol 76:2480–90.

    PubMed  CAS  Google Scholar 

  127. Yalamanchili, R., X. Tong, S. Grossman, E. Johannsen, G. Mosialos, and E. Kieff. 1994. Genetic and biochemical evidence that EBNA 2 interaction with a 63-kDa cellular GTG-binding protein is essential for B lymphocyte growth transformation by EBV. Virology 204:634–41.

    PubMed  CAS  Google Scholar 

  128. Yates, J., N. Warren, D. Reisman, and B. Sugden. 1984. A cis-acting element from the Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells. Proc Natl Acad Sci USA 81:3806–10.

    PubMed  CAS  Google Scholar 

  129. Yates, J. L., S. M. Camiolo, and J. M. Bashaw. 2000. The minimal replicator of Epstein-Barr virus oriP. J Virol 74:4512–22.

    PubMed  CAS  Google Scholar 

  130. Yates, J. L., and N. Guan. 1991. Epstein-Barr virus-derived plasmids replicate only once per cell cycle and are not amplified after entry into cells. J Virol 65:483–8.

    PubMed  CAS  Google Scholar 

  131. Yates, J. L., N. Warren, and B. Sugden. 1985. Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature 313:812–5.

    PubMed  CAS  Google Scholar 

  132. Young, L. S., and P. G. Murray. 2003. Epstein-Barr virus and oncogenesis: From latent genes to tumours. Oncogene 22:5108–21.

    PubMed  CAS  Google Scholar 

  133. Young, L. S., and A. B. Rickinson. 2004. Epstein-Barr virus: 40 years on. Nat Rev Cancer 4:757–68.

    PubMed  CAS  Google Scholar 

  134. Yuan, J., E. Cahir-McFarland, B. Zhao, and E. Kieff. 2006. Virus and cell RNAs expressed during Epstein-Barr virus replication. J Virol 80:2548–65.

    PubMed  CAS  Google Scholar 

  135. Zhang, C. X., P. Lowrey, S. Finerty, and A. J. Morgan. 1993. Analysis of Epstein-Barr virus gene transcription in lymphoma induced by the virus in the cottontop tamarin by construction of a cDNA library with RNA extracted from a tumour biopsy. J Gen Virol 74(Pt 3):509–14.

    PubMed  CAS  Google Scholar 

  136. Zhang, J., H. Chen, G. Weinmaster, and S. D. Hayward. 2001. Epstein-Barr virus BamHi-a rightward transcript-encoded RPMS protein interacts with the CBF1-associated corepressor CIR to negatively regulate the activity of EBNA2 and NotchIC. J Virol 75:2946–56.

    PubMed  CAS  Google Scholar 

  137. Zhao, B., and C. E. Sample. 2000. Epstein-Barr virus nuclear antigen 3C activates the latent membrane protein 1 promoter in the presence of Epstein-Barr virus nuclear antigen 2 through sequences encompassing an spi-1/Spi-B binding site. J Virol 74:5151–60.

    PubMed  CAS  Google Scholar 

  138. Zimber-Strobl, U., E. Kremmer, F. Grasser, G. Marschall, G. Laux, and G. W. Bornkamm. 1993. The Epstein-Barr virus nuclear antigen 2 interacts with an EBNA2 responsive cis-element of the terminal protein 1 gene promoter. Embo J 12:167–75.

    PubMed  CAS  Google Scholar 

  139. Zimber-Strobl, U., K. O. Suentzenich, G. Laux, D. Eick, M. Cordier, et al. 1991. Epstein-Barr virus nuclear antigen 2 activates transcription of the terminal protein gene. J Virol 65:415–23.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

C. Meyers

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bajaj, B.G., Murakami, M., Robertson, E.S. (2007). Molecular Biology of EBV in Relationship to AIDS-Associated Oncogenesis. In: Meyers, C. (eds) Aids-Associated Viral Oncogenesis. Cancer Treatment and Research, vol 133. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-46816-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-46816-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-46804-4

  • Online ISBN: 978-0-387-46816-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics