Skip to main content

Vegetative Hyphal Fusion in Filamentous Fungi

  • Chapter
Cell-Cell Channels

Abstract

The formation of channels between fungal hyphae by self fusion is a defining feature of filamentous fungi and results in the fungal colony being a complex interconnected network of hyphae. During the vegetative phase hyphal fusions are commonly formed during colony establishment by specialized conidial anastomosis tubes (CATs) and then later by specialized fusion hyphae in the mature colony. CAT induction, homing and fusion in Neurospora crassa provides an excellent model in which to study the process of vegetative hyphal fusion because it is simple and experimentally very amenable. Various mutants compromised in hyphal fusion have been isolated and characterized. Although the self-signalling ligand(s) involved in CAT induction and homing has/have not been identified, MAP kinase signalling is downstream of the initial ligand-receptor interaction(s), and has features in common with MAP kinase signalling during mating cell interactions in the budding yeast and during fungal infection structure (appressorium) formation. Hyphal fusion also resembles yeast cell mating and appressorium formation in other ways. Vegetative hyphal fusion between hyphae of different genotypes (nonself fusion) usually results in a form of programmed cell death which normally prevents heterokaryons from developing further. This process in N. crassa is controlled by heterokaryon incompatibility (het) loci. Understanding hyphal fusion in the model fungus, N. crassa, provides a paradigm for self-signalling mechanisms in eukaryotic microbes and might also provide a model for understanding somatic cell fusion in other eukaryotic species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Glass NL, Rasmussen C, Roca MG et al. Hyphal homing, fusion and mycelial interconnectedness. Trends Microbiol 2004; 12:135–141.

    Article  PubMed  CAS  Google Scholar 

  2. Glass NL, Kaneko I. Fatal attraction: Nonself recognition and heterokaryon incompatibility in filamentous fungi. Eukaryot Cell 2003; 2:1–8.

    Article  PubMed  CAS  Google Scholar 

  3. Glass NL, Jacobson DJ, Shiu PKT. The genetics of hyphal fusion and vegetative incompatibility in filamentous ascomycete fungi. Annu Rev Genet 2000; 34:165–186.

    Article  PubMed  CAS  Google Scholar 

  4. Buller AHR. Researches on Fungi, vol. 4. London: Longmans, 1931.

    Google Scholar 

  5. Buller AHR. Researches on Fungi, vol. 5. London: Longmans, 1933.

    Google Scholar 

  6. Gregory PH. The fungal mycelium: An historical perspective. Trans Brit Mycol Soc 1984; 82:1–11.

    Article  Google Scholar 

  7. Roca MG, Read ND, Wheals AE. Conidial anastomosis tubes in filamentous fungi. FEMS Microbiol Lett 2005; 249:191–198.

    Article  CAS  Google Scholar 

  8. Glass NL, Fleißner A. Rewiring the network: Understanding the mechanism of function of anastomosis in filamentous ascomycete fungi. In: Kues U, Fisher R, eds. The Mycota: Growth, Differentiation and Sexuality, Vol. 1. 2nd ed. Berlin: Springer-Verlag, 2006, (in press).

    Google Scholar 

  9. Davis R. Neurospora: Contributions of a Model Organism. Oxford: Oxford University Press, 2000.

    Google Scholar 

  10. Davis RH, Perkins DD. Neurospora: A model of model microbes. Nat Rev Genet 2002; 3:397–403.

    Article  PubMed  CAS  Google Scholar 

  11. Roca MG, Arlt J, Jeffree CE et al. Cell biology of conidial anastomosis tubes in Neurospora crassa. Eukaryot Cell 2005; 4:911–919.

    Article  PubMed  CAS  Google Scholar 

  12. Roca MG, Davide LC, Mendes-Costa MC et al. Conidial anastomosis tubes in Colletotrichum. Fungal Genet Biol 2003; 40:138–145.

    Article  PubMed  Google Scholar 

  13. Bary de A, Woronin M. Sphaeria Lemaneae, Sordaria coprophila, fimiseda, Arthrobotrys oligospora. In: de Bary A, Woronin M, eds. Beitrage zür Morphologie und Physiology der Pilze. Winter: Frankfurt am main: Verlag von C, 1870:1–89.

    Google Scholar 

  14. Manners JG, Bampton SS. Fusion of uredospore germ tubes in Puccinia graminis. Nature 1957; 179:483–484.

    Article  Google Scholar 

  15. Read ND, Beckett A. Ascus and ascospore morphogenesis. Mycol Res 1996; 100:1281–1314.

    Article  Google Scholar 

  16. Gustin MC, Albertyn J, Alexander M et al. MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 1998; 62:1264–1300.

    PubMed  CAS  Google Scholar 

  17. Pandey A, Roca MG, Read ND et al. Role of a mitogen-activated protein kinase pathway during conidial germination and hyphal fusion in Neurospora crassa. Eukaryot Cell 2004; 3:348–358.

    Article  PubMed  CAS  Google Scholar 

  18. Lev S, Sharon A, Hadar R et al. A mitogen-activated protein kinase of the corn leaf pathogen Cochliobolus heterostrophus is involved in conidiation, appressorium formation, and pathogenicity: Diverse roles for mitogen-activated protein kinase homologs in foliar pathogens. Proc Natl Acad Sci USA 1999; 96:13542–13547.

    Article  PubMed  CAS  Google Scholar 

  19. Takano Y, Kikuchi T, Kubo Y et al. The Colletotrichum lagenarium MAP kinase gene CMK1 regulates diverse aspects of fungal pathogenesis. Mol Plant Microbe Interact 2000; 13:374–383.

    Article  PubMed  CAS  Google Scholar 

  20. Xu JR, Hamer JE. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev 1996; 10:2696–2706.

    Article  PubMed  CAS  Google Scholar 

  21. Li D, Bobrowicz P, Wilkinson HH et al. A mitogen-activated protein kinase pathway essential for mating and contributing to vegetative growth in Neurospora crassa. Genetics 2005; 170:1091–1104.

    Article  PubMed  CAS  Google Scholar 

  22. Xiang Q, Rasmussen C, Glass NL. The ham-2 locus, encoding a putative transmembrane protein, is required for hyphal fusion in Neurospora crassa. Genetics 2002; 160:169–180.

    PubMed  CAS  Google Scholar 

  23. Fleißner A, Sarkar S, Jacobson DJ et al. The so locus is required for vegetative cell fusion and postfertilization events in Neurospora crassa. Eukaryot Cell 2005; 4:920–930.

    Article  PubMed  CAS  Google Scholar 

  24. Hickey PC, Jacobson D, Read ND et al. Live-cell imaging of vegetative hyphal fusion in Neurospora crassa. Fungal Genet Biol 2002; 37:109–119.

    Article  PubMed  Google Scholar 

  25. Harris SD, Read ND, Roberson RW et al. Polarisome meets Spitzenkörper: Microscopy, genetics, and genomics converge. Eukaryot Cell 2005; 4:225–229.

    Article  PubMed  CAS  Google Scholar 

  26. Barron GL. The Nematode-Destroying Fungi. Guelph, Ontario: Canadian Biological Publications, 1977.

    Google Scholar 

  27. Pramer D, Stoll NR. Nemin: A morphogenic substance causing trap formation by predaceous fungi. Science 1959; 129:966–969.

    Article  PubMed  CAS  Google Scholar 

  28. Nordbring-Hertz B, Friman E, Veenhuis M. Hyphal fusion during initial stages of trap formation in Arthrobotrys oligospora. Antonie van Leeuwenhoek 1989; 55:237–244.

    Article  PubMed  CAS  Google Scholar 

  29. Pontecorvo G. The parasexual cycle in fungi. Annu Rev Microbiol 1956; 10:393–400.

    Article  PubMed  CAS  Google Scholar 

  30. Rosewich UL, Kistler HC. Role of horizontal gene transfer in the evolution of fungi. Annu Rev Phytopath 2000; 38:325–363.

    Article  CAS  Google Scholar 

  31. Read ND. Environmental sensing and the filamentous fungal lifestyle. In: Gadd, ed. Fungi in their Environment. Cambridge: Cambridge University Press, 2006; in press.

    Google Scholar 

  32. Kurjan J. The pheromone response pathway in Saccharomyces cerevisiae. Annu Rev Biochem 1992; 61:1097–1129.

    Article  PubMed  CAS  Google Scholar 

  33. Köhler E. Zur Kenntnis Der Vegetativen Anastomosen Der Pilze (II. Mitteilung). Planta 1930; 10:495–522.

    Article  Google Scholar 

  34. Madden K, Snyder M. Cell polarity and morphogenesis in budding yeast. Annu Rev Microbiol 1998; 52:687–744.

    Article  PubMed  CAS  Google Scholar 

  35. Tucker SL, Talbot NJ. Surface attachment and prepenetration stage development by plant patho genic fungi. Annu Rev Phytopathol 2001; 39:385–417.

    Article  PubMed  CAS  Google Scholar 

  36. Cortesi P, McCulloch CE, Song H et al. Genetic control of horizontal virus transmission in the chestnut blight fungus, Cryphonectria parasitica. Genetics 2001; 159:107–118.

    PubMed  CAS  Google Scholar 

  37. Debets F, Yang X, Griffiths AJ. Vegetative incompatibility in Neurospora: Its effect on horizontal transfer of mitochondrial plasmids and senescence in natural populations. Curr Genet 1994; 26:113–119.

    Article  PubMed  CAS  Google Scholar 

  38. Debets AJM, Griffiths AJ. Polymorphism of het-genes prevents resource plundering in Neurospora crassa. Mycol Res 1998; 102:1343–1349.

    Article  CAS  Google Scholar 

  39. Jacobson DJ, Beurkens K, Klomparens KL. Microscopic and ultrastructural examination of vegetative incompatibility in partial diploids heterozygous at het loci in Neurospora crassa. Fungal Genet Biol 1998; 23:45–56.

    Article  PubMed  CAS  Google Scholar 

  40. Saupe SJ. Molecular genetics of heterokaryon incompatibility in filamentous ascomycetes. Microbiol Mol Biol Rev 2000; 64:489–502.

    Article  PubMed  CAS  Google Scholar 

  41. Perkins DD, Radford A, Sachs MS. The Neurospora Compendium. San Diego: Academic Press, 2001.

    Google Scholar 

  42. Sarkar S, Iyer G, Wu J et al. Nonself recognition is mediated by HET-C heterocomplex formation during vegetative incompatibility. EMBO J 2002; 21:4841–4850.

    Article  PubMed  CAS  Google Scholar 

  43. Newmeyer D. A suppressor of the heterokaryon-incompatibility associated with mating type in Neurospora crassa. Can J Genet Cytol 1970; 12:914–926.

    PubMed  CAS  Google Scholar 

  44. Jacobson DJ. Control of mating type heterokaryon incompatibility by the tol gene in Neurospora crassa and N. tetrasperma. Genome 1992; 35:347–353.

    PubMed  CAS  Google Scholar 

  45. Vellani TS, Griffiths AJ, Glass NL. New mutations that suppress mating-type vegetative incompatibility in Neurospora crassa. Genome 1994; 37:249–255.

    Article  PubMed  CAS  Google Scholar 

  46. Shiu PK, Glass NL. Molecular characterization of tol, a mediator of mating-type-associated vegetative incompatibility in Neurospora crassa. Genetics 1999; 151:545–555.

    PubMed  CAS  Google Scholar 

  47. Xiang Q, Glass NL. Identification of vib-1, a locus involved in vegetative incompatibility mediated by het-c in Neurospora crassa. Genetics 2002; 162:89–101.

    PubMed  CAS  Google Scholar 

  48. Xiang Q, Glass NL. Chromosome rearrangements in isolates that escape from het-c heterokaryon incompatibility in Neurospora crassa. Curr Genet 2004; 44:329–338.

    Article  PubMed  CAS  Google Scholar 

  49. Freitag M, Hickey PC, Raju NB et al. GFP as a tool to analyze the organization, dynamics and function of nuclei and microtubules in Neurospora crassa. Fungal Genet Biol 2004; 41:897–910.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nick D. Read .

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Read, N.D., Roca, M.G. (2006). Vegetative Hyphal Fusion in Filamentous Fungi. In: Cell-Cell Channels. Springer, New York, NY. https://doi.org/10.1007/978-0-387-46957-7_5

Download citation

Publish with us

Policies and ethics