Skip to main content

Although no surgical procedures have been performed on humans during space flight, the risk of a problem arising that requires surgical intervention is nonetheless real. From a timeweighted standpoint, until the advent of long-duration missions in the U.S. Skylab program and the Russian Salyut and Mir programs, the probability of an in-flight problem arising that would require a surgical solution was small; thus clinical experience and expertise in performing surgery on humans in microgravity remained quite limited. The lack of on-site surgical expertise was keenly felt when Russian space program officials were faced with the possible medical evacuation of a Salyut 7 cosmonaut who was experiencing abdominal pain thought to be due to appendicitis. Although that episode turned out to have been caused by probable ureterolithiasis rather than appendicitis—the cosmonaut recovered and did not require an early return to Earth—this experience nonetheless underscored a pressing need in space flight.

With further increases in crew size and mission duration projected in the near future for the International Space Station (ISS) and the exploration-class missions that will follow, the likelihood of events occurring in space flight that will require surgery will also increase. Moreover, the probability of trauma (including penetrating trauma, lacerations, crush injuries, and thermal and electrical burns) occurring will increase as astronauts and cosmonauts conduct ISS construction-related extravehicular activities that involve manipulation of highmass hardware. A surgical need could also be precipitated by exercise countermeasures, which may lead to minor and major orthopedic injuries. Routine surgical diseases such as appendicitis and cholecystitis can occur indiscriminately at seemingly random times. The physiological changes and deconditioning effects of prolonged weightlessness will influence surgical diseases and treatment in predictable as well as unknown ways. Finally, the possibility of previously unknown surgical problems in the unexplored long-duration microgravity environment must be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wilken DD. Significant medical experiences aboard Polaris submarines: A review of 360 patrols during the period 19631967. US Naval Submarine Medical Center Report 560, Groton, CT; 1969.

    Google Scholar 

  2. Tansey WA, Wilson JM, Schaefer KE. Analysis of health data from 10 years of Polaris submarine patrols. Undersea Biomedical Res 1979; 6 Suppl:S217-S246.

    Google Scholar 

  3. Campbell MR. Future surgical care in space. Surgical Services Management 1997; 3:13.

    Google Scholar 

  4. Campbell MR. Surgical care in space. Tex Med 1998; 94:69-74.

    PubMed  CAS  Google Scholar 

  5. Campbell MR. Surgical care in space. Aviat Space Environ Med 1999; 70:181-184.

    PubMed  CAS  Google Scholar 

  6. McGinnis P, Harris B. The re-emergence of space medicine as a distinct discipline. Aviat Space Environ Med 1998; 69: 1107-1111.

    PubMed  CAS  Google Scholar 

  7. Davis JR. Medical issues for a mission to Mars. Aviat Space Environ Med 1999; 70:162-168.

    PubMed  CAS  Google Scholar 

  8. Musgrave S. Surgical aspects of space flight. Surg Annu 1976; 8:1-23.

    PubMed  CAS  Google Scholar 

  9. Barratt MR. Medical support for the international space station. Aviat Space Environ Med 1998; 70:155-161.

    Google Scholar 

  10. Campbell MR, Billica RD, Johnston SL 3rd, et al. Performance of advanced trauma life support procedures in microgravity. Aviat Space Environ Med 2002; 73:907-912.

    PubMed  Google Scholar 

  11. Boyce J. Medical care and transport in space flight. Problems in Critical Care 1990; 4:534-555.

    Google Scholar 

  12. Billica RD, Doarn CR. A health maintenance facility for space station Freedom. Cutis 1991; 48:315-318.

    PubMed  CAS  Google Scholar 

  13. Houtchens B. Medical care systems for long duration space missions. Clin Chem 1992; 39:13-21.

    Google Scholar 

  14. McCuaig K, Houtchens B. Management of trauma and emergency surgery in space. J Trauma 1992; 33:610-625.

    Article  PubMed  CAS  Google Scholar 

  15. Rice BH. Conservative nonsurgical management of appendicitis. US Naval Submarine Medical Center Report 444, Groton, CT; 1969.

    Google Scholar 

  16. Glover SD, Taylor EW. Surgical problems presenting at sea during 100 British Polaris submarine patrols. J R Nav Med Serv 1981; 67:65-69.

    PubMed  CAS  Google Scholar 

  17. Lugg DJ. Antarctic epidemiology: A survey of ANARE stations 1947-1972. In: Polar Human Biology. Chicago, IL: Year Book Medical Publishers; 1974:93-105.

    Google Scholar 

  18. Satava RM. Surgery in space. Phase I: Basic surgical principles in a simulated space environment. Surgery 1988; 103:633-637.

    PubMed  CAS  Google Scholar 

  19. Stazhadze LL, Goncharov IB, Neumyzakin IP, et al. Anesthesia, surgical aid and resuscitation in manned space missions. Acta Astronautica 1981; 8:1109.

    Article  PubMed  CAS  Google Scholar 

  20. Yaroshenko GL, Terentiev VG, Mokrov MN. Characteristics of surgical intervention in conditions of weightlessness. Voenn Med Zh 1967; 10:69-70.

    Google Scholar 

  21. Campbell MR, Billica RD, Johnston SL. Animal surgery in microgravity. Aviat Space Environ Med 1993; 64:58-62.

    PubMed  CAS  Google Scholar 

  22. Campbell MR, Billica RD, Johnston SL. Surgical bleeding in microgravity. Surg Gynecol Obstet 1993; 177:121-125.

    PubMed  CAS  Google Scholar 

  23. McCuaig K. Aseptic technique in microgravity. Surg Gynecol Obstet 1992; 175:466-476.

    PubMed  CAS  Google Scholar 

  24. McCuaig K. Surgical problems in space: An overview. J Clin Pharmacol 1994; 34:513-517.

    PubMed  CAS  Google Scholar 

  25. Campbell MR, Dawson DL, Melton S, et al. Surgical instrument restraint in weightlessness. Aviat Space Environ Med 2001; 72:871-876.

    PubMed  CAS  Google Scholar 

  26. McCuaig K, Lloyd C, Gosbee J, et al. Simulation of blood flow in microgravity. Am J Surg 1992; 164:114-123.

    Article  Google Scholar 

  27. Mutke HG. Equipment for surgical interventions and childbirth in weightlessness. Acta Astronautica 1981; 8:399-403.

    Article  PubMed  CAS  Google Scholar 

  28. Campbell MR, Billica RD. A review of microgravity surgical investigations. Aviat Space Environ Med 1992; 62:524-528.

    Google Scholar 

  29. Markham SM, Rock JA. Microgravity testing of a surgical isola-tion containment system for space station use. Aviat Space Environ Med 1991; 62:691-693.

    PubMed  CAS  Google Scholar 

  30. Markham S, Rock J. Deploying and testing an expandable surgical chamber in microgravity. Aviat Space Environ Med 1989; 60: 76-79.

    PubMed  CAS  Google Scholar 

  31. Rock J. An expandable surgical chamber for use in a weightless environment. Aviat Space Environ Med 1984; 55:403-404.

    PubMed  CAS  Google Scholar 

  32. Rock JA, Fortney SM. Medical and surgical considerations for women in spaceflight. Obstet Gynecol Surv 1984; 39: 525-535.

    PubMed  CAS  Google Scholar 

  33. Colvard MD, Kuo P, Caleb R. Laser surgical procedures in the operational KC-135 aviation environment. Aviat Space Environ Med 1992; 63:619-623.

    PubMed  CAS  Google Scholar 

  34. Schweitzer EJ, Hauer JM, Swan KG, et al. Use of the Heimlich valve in a compact autotransfusion device. J Trauma 1987; 27: 537-542.

    Article  PubMed  CAS  Google Scholar 

  35. Mattox KL, Walker LE, Beall AC, et al. Blood availability for the trauma patient—Autotransfusion. J Trauma 1975; 15:663-669.

    PubMed  CAS  Google Scholar 

  36. Rumisek JD. Autotransfusion of shed blood: An untapped battle-field resource. Mil Med 1982; 147:193-196.

    PubMed  CAS  Google Scholar 

  37. Campbell MR. Surgical care in space: A review. J Am Coll Surg 2002; 194:802-812.

    Article  PubMed  Google Scholar 

  38. Campbell MR, Kirkpatrick AW, Billica RD, et al. Endoscopic surgery in weightlessness: The investigation of basic principles for surgery in space. Surg Endosc 2001; 15:1413-1418.

    PubMed  CAS  Google Scholar 

  39. Campbell MR, Billica RD, Jennings R, et al. Laparoscopic surgery in weightlessness. Surg Endosc 1996; 10:111-117.

    PubMed  CAS  Google Scholar 

  40. Satava RM. 3-D Vision technology applied to advanced minimally invasive surgery systems. Surg Endosc 1993; 7:429-431.

    Article  PubMed  CAS  Google Scholar 

  41. Green PS, Piantaniada TA, Hill JW, et al. Teleprescence: Dex-terous procedures in a virtual operating field. Am Surg 1991; 57:192.

    Google Scholar 

  42. Satava RM, Green PS. The next generation: Telepresence surgery—Current status and implications for endoscopy. Gas-trointest Endosc 1992; 38:277.

    Google Scholar 

  43. Bowersox JC, Cordts PR, LaPorta J. Use of an intuitive tele-manipulator system for remote trauma surgery: An experimental study. J Am Coll Surg 1998; 186:615-621.

    Article  PubMed  CAS  Google Scholar 

  44. Bowersox JC. Telepresence surgery. Br J Surg 1996; 83:433-434.

    Article  PubMed  CAS  Google Scholar 

  45. Satava RM. Minimally invasive surgery and its role in space exploration. Surg Endosc 2001; 15:1530.

    Article  PubMed  CAS  Google Scholar 

  46. Jones J, Johnston S, Campbell M, et al. Endoscopic surgery and telemedicine in microgravity: Developing contingency procedures for exploratory class space flight. Urology 1999; 53: 892-897.

    Article  PubMed  CAS  Google Scholar 

  47. Billica RD, Simmons SC, Mathes KL, et al. Perception of medi-cal risk of spaceflight. Aviat Space Environ Med 1996; 67:467-473.

    PubMed  CAS  Google Scholar 

  48. Kirkpatrick AW, Campbell MR, Novinkov OL, et al. Blunt trauma and operative care in microgravity: A review of micro-gravity physiology and surgical investigations with implications for critical care and operative treatment in space. J Am Coll Surg 1997; 184:441-453.

    PubMed  CAS  Google Scholar 

  49. Taylor G, Neale L, Dardano J. Immunological analysis of U.S. Space Shuttle crewmembers. Aviat Space Environ Med 1986; 57:213-217.

    PubMed  CAS  Google Scholar 

  50. Taylor G, Janney R. In vivo testing confirms a blunting of the human cell-mediated immune mechanism during spaceflight. J Leukoc Biol 1992; 51:129-132.

    PubMed  CAS  Google Scholar 

  51. Sears JK, Arzenyi ZE. Cutaneous wound healing in space. Cutis 1991; 48:307-308.

    PubMed  CAS  Google Scholar 

  52. Davidson J, Aquino A, Woodward S, et al. Sustained microgravity reduces intrinsic wound healing and growth factor responses in the rat. FASEB J 1999; 13:325-329.

    PubMed  CAS  Google Scholar 

  53. Kaplansky A, Durnova G, Burkovskaya T, et al. The effect of microgravity on bone fracture healing in rats flown on Cosmos 2044. Physiologist 1991; 34:S196-S199.

    PubMed  CAS  Google Scholar 

  54. Kirchen ME, O’Connor KM, Gruber HE, et al. Effects of micro-gravity on bone healing in a rat fibular osteotomy model. Clin Orthop 1995; 318:231-242.

    PubMed  Google Scholar 

  55. Johnson RL, Hoffler GW, Nicogossian AE, et al. Lower body negative pressure: Third manned Skylab mission. In: Johnston RS, Dietlein LF (eds.), Biomedical Results from Skylab. Washington, DC: US Government Printing Office; 1977:284-312. NASA SP-377.

    Google Scholar 

  56. Hamilton GC, Stepaniak PC, Stizza D, et al. Considerations for medical transport from space station via assured crew return vehicle (ACRV). Unpublished final report, NASA Grant NAG-9-263, 1989.

    Google Scholar 

  57. Kirkpatrick AW, Dulchavsky SA, Boulanger BR, et al. Extraterrestrial resuscitation of hemorrhagic shock: Fluids. J Trauma 2001; 50:162-168.

    Article  PubMed  CAS  Google Scholar 

  58. Hirschberg A, Mattox K. “Damage control” in trauma surgery. Br J Trauma 1993; 80:1501-1502.

    Google Scholar 

  59. Kirkpatrick AW, Campbell MR, Brenneman FD, et al. Trauma laparotomy in space: A discussion of the potential indications, conduct of operation, and technical support for the treatment of abdominal trauma during long-duration space exploration. Presented at the 28th International Conference of Environmental Systems, Danvers, MA, 13-16 July 1998. SAE Technical Paper Series 981601.

    Google Scholar 

  60. Norfleet W. Anesthetic concerns of spaceflight. Anesthesiology 2000; 92:1219-1222.

    Article  PubMed  CAS  Google Scholar 

  61. Hart R, Campbell MR. Digital radiography in space. Aviat Space Environ Med 2002; 73:601-606.

    PubMed  Google Scholar 

  62. Rozzyski G, Ochsner M, Jaffin J, et al. Prospective evaluation of surgeon’s use of ultrasound in the evaluation of trauma patients. J Trauma 1993; 34:516-527.

    Article  Google Scholar 

  63. Sargsyan AE, Hamilton D, Kirkpatrick AW, et al. Ultrasound evaluation of the magnitude of pneumothorax: A new concept. Am Surg 2001; 67:232-236.

    PubMed  CAS  Google Scholar 

  64. Dulchavsky S, Schwartz K, Hamilton D, et al. Prospective evalu-ation of thoracic ultrasound in the detection of pneumothorax. J Trauma 1999; 47:970-971.

    Article  PubMed  CAS  Google Scholar 

  65. Kirkpatrick AW, Nicolaou S, Campbell MR, et al. Percutaneous aspiration of fluid for management of peritonitis in space. Aviat Space Environ Med 2002; 73:925-930.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Campbell, M.R., Billica, R.D. (2008). Surgical Capabilities. In: Barratt, M.R., Pool, S.L. (eds) Principles of Clinical Medicine for Space Flight. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68164-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68164-1_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98842-9

  • Online ISBN: 978-0-387-68164-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics