Skip to main content

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

This chapter presents the most common fundamental transduction principles used in microsensors. Each section provides an overview of the theory and then gives an example of a sensor that uses the transduction principle being described. A classification of measurands is presented as well as the most common transduction techniques including piezoresistance, piezoelectricity, capacitive, resistive, tunneling, thermoelectricity, optical and radiation-based techniques, and electrochemical.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Eaton WP, Smith JH (1997) Micromachined pressure sensors: review and recent developments. Smart Mater. Struct., 6:530–539

    Article  CAS  Google Scholar 

  • Garcia C, Zhukov A, Zhukova V, Ipatov M, Blanco JM, Gonzalez J (2005) Effect of tensile stresses on GMI of Co-rich amorphous microwires. IEEE Trans. Magnetics, 41 (10):3688–3690

    Article  CAS  Google Scholar 

  • Gardner JW (1994) Microsensors: Principles and Applications. Wiley, West Sussex, England

    Google Scholar 

  • Han M, Liang DF, Deng LJ (2005) Review paper, sensors development using its unusual properties of Fe/Co-based amorphous soft magnetic wire. J. Mat. Sci., 40:5573–5580

    Article  CAS  Google Scholar 

  • Halfner E (1969) The piezoelectric crystal unit-definitions and methods of measurement. Proc. IEEE 57, No. 2

    Google Scholar 

  • Horowitz S, Nishida T, Cattafesta L, Sheplak M (2006) Solid State Sensors, Actuators, and Microsystems Workshop, Hilton Head Island, SC, June 4, 2006

    Google Scholar 

  • Humenyuk I, Torbiero B, Assie-Souleille S, Colin R, Dollat X, Franc B, Martinez A, Temple-Boyer P (2006) Development of pNH4-ISFETS microsensors for water analysis. Microelectronics J., 37:475–479

    Article  CAS  Google Scholar 

  • Janata J (2003) Electrochemical microsensors. Proc. IEEE, 91 (6):864–869

    Article  CAS  Google Scholar 

  • Ko S, Kim Y, Lee S, Choi S, Kim S (2003) Micromachined piezoelectric membrane acouostic device. Sensors and Actuators A, Physical, 103:130–134

    Article  Google Scholar 

  • Liu CH, Kenny TW (2001) A high-precision, wide-bandwidth micromachined tunneling accelerometer. J. MEMS, 10 (3):425–433

    Google Scholar 

  • Moskovits M (2005) Surface-enhanced Raman spectroscopy–A brief retrospective. J. Raman Spectroscopy, 36 (6/7):485–496

    Article  CAS  Google Scholar 

  • Norton H (1982) Sensor and Analyzer Handbook. Prentice Hall, NJ, pp. 18–24

    Google Scholar 

  • Ried R, Kim E, Hong D, Muller R (1993) piezoelectric microphone with on-chip CMOS circuits. J. MEMS, 993 (23):111–120

    Google Scholar 

  • Royer M, Holmen J, Wurm M, Aadland O (1983) ZnO on Si integrated acoustic sensor. Sensors and Actuators, A: Physical, 4:357–362

    CAS  Google Scholar 

  • Stuart DA, Haes AJ, Yonzon CR, Hicks EM, Van Duyne RP (2005) Biological applications of localised surface plasmonic phenomenae. IEE Proc.–Nanobiotechnol., 152(1):13–32

    Article  CAS  Google Scholar 

  • Sze SM (1994) Semiconductor Sensors. Wiley, New York

    Google Scholar 

  • Exceptionally high Young’s modulus observed for individual carbon nanotubes”, Treacy, M.M.J. (NEC Res. Inst., Princeton, NJ, USA); Ebbesen, T.W.; Gibson, J.M., Nature, v 381, n 6584, 20 June 1996, p 678–680

    Google Scholar 

  • Valentini L, Cantalini C, Armentano I, Kenny JM, Lozzi L, Santucci S (2004) Highly sensitive and selective sensors based on carbon nanotubes thin films for molecular detection. Diamond Relat. Mat., 13:1301–1305

    Article  CAS  Google Scholar 

  • White RM (1987) A sensor classification scheme. IEEE Trans. Ultrason. Ferroelec, Freq. Contr. UFFC- 34:124

    Article  CAS  Google Scholar 

  • Zribi A, Iorio L, Lewis D (2005) Oil-free stress impedance pressure sensor for harsh environments. IEEE. Vol 2005, p 1275–1277

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Fortin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fortin, J. (2009). Transduction Principles. In: Zribi, A., Fortin, J. (eds) Functional Thin Films and Nanostructures for Sensors. Integrated Analytical Systems. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68609-7_2

Download citation

Publish with us

Policies and ethics