Skip to main content

Optofluidic Microscope – Fitting a Microscope onto a Sensor Chip

  • Chapter
CMOS Biotechnology

Part of the book series: Series on Integrated Circuits and Systems ((ICIR))

  • 1799 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfab- ricated fluorescence-activated cell sorter,” Nature Biotechnology, vol. 17, pp. 1109-1111, 1999.

    Article  Google Scholar 

  2. Y. C. Tai, J. Xie, Q. He, J. Liu, and T. Lee, “Integrated micro/nano fluidics for mass-spectrometry protein analysis,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 3, pp. 739-741, 2002.

    Google Scholar 

  3. J. Xie, Y. N. Miao, J. Shih, Q. He, J. Liu, Y. C. Tai, and T. D. Lee, “An elec-trochemical pumping system for on-chip gradient generation,” Analytical Chemistry, vol. 76, pp. 3756-3763, 2004.

    Article  Google Scholar 

  4. L. Licklider, X. Q. Wang, A. Desai, Y. C. Tai, and T. D. Lee, “A microma- chined chip-based electrospray source for mass spectrometry,” Analytical Chemistry, vol. 72, pp. 367-375, 2000.

    Article  Google Scholar 

  5. M. Tokeshi, Y. Kikutani, A. Hibara, K. Sato, H. Hisamoto, and T. Kitamori, “Chemical processing on microchips for analysis, synthesis, and bioassay,” Electrophoresis, vol. 24, pp. 3583-3594, 2003.

    Article  Google Scholar 

  6. L. J. Jin, J. Ferrance, and J. P. Landers, “Miniaturized electrophoresis: An evolving role in laboratory medicine,” Biotechniques, vol. 31, p. 1332, 2001.

    Google Scholar 

  7. P. S. Doyle, J. Bibette, A. Bancaud, and J. L. Viovy, “Self-assembled mag-netic matrices for DNA separation chips,” Science, vol. 295, pp. 2237-2237, 2002.

    Article  Google Scholar 

  8. D. Trau, T. M. H. Lee, A. I. K. Lao, R. Lenigk, I. M. Hsing, N. Y. Ip, M. C. Carles, and N. J. Sucher, “Genotyping on a complementary metal oxide semiconductor silicon polymerase chain reaction chip with integrated DNA microarray,” Analytical Chemistry, vol. 74, pp. 3168-3173, 2002.

    Article  Google Scholar 

  9. S. R. Liu, “A microfabricated hybrid device for DNA sequencing,” Electrophoresis, vol. 24, pp. 3755-3761, 2003.

    Article  Google Scholar 

  10. R. D. Loberg, Y. Fridman, B. A. Pienta, E. T. Keller, L. K. McCauley, R. S. Taichman, and K. J. Pienta, “Detection and isolation of circulating tumor cells in urologic cancers: A review,” Neoplasia, vol. 6, pp. 302-309, 2004.

    Article  Google Scholar 

  11. D. Lange, C. W. Storment, C. A. Conley, and G. T. A. Kovacs, “A microflu-idic shadow imaging system for the study of the nematode Caenorhabditis elegans in space,” Sensors and Actuators B-Chemical, vol. 107, pp. 904-914, 2005.

    Article  Google Scholar 

  12. M. L. Adams, M. Enzelberger, S. Quake, and A. Scherer, “Microfluidic inte- gration on detector arrays for absorption and fluorescence micro-spectro-meters,” Sensors and Actuators a-Physical, vol. 104, pp. 25-31, 2003.

    Article  Google Scholar 

  13. D. Psaltis, R. S. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature, vol. 442, p. 381, 2006.

    Article  Google Scholar 

  14. X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis and C. Yang, “Optofluidic microscopy- a method for implementing a high resolution optical microscope on a chip,” Lab on a Chip, vol. 6, pp. 1274 -1276, 2006.

    Google Scholar 

  15. B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” Journal Of Chemical Physics, vol. 112, pp. 7761-7774, 2000.

    Article  Google Scholar 

  16. T. R. Corle, and G. S. Kino, Confocal scanning optical microscopy and re- lated imaging systems: San Diego: Academic Press, 1996.

    Google Scholar 

  17. E. Popov, M. Neviere, P. Boyer, and N. Bonod, “Light transmission through a subwavelength hole,” Optics Communications, vol. 255, pp. 338-348, 2005.

    Article  Google Scholar 

  18. E. X. Jin, and X. F. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Applied Physics Letters, vol. 86, pp. 111106-1-3, 2005.

    Article  Google Scholar 

  19. X. L. Shi, L. Hesselink, and R. L. Thornton, “Ultrahigh light transmission through a C-shaped nanoaperture,” Optics Letters, vol. 28, pp. 1320-1322, 2003.

    Article  Google Scholar 

  20. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science, vol. 297, pp. 820-822, 2002.

    Article  Google Scholar 

  21. H. J. Lezec, and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Optics Express, vol. 12, pp. 3629-3651, 2004.

    Article  Google Scholar 

  22. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature, vol. 391, pp. 667-669, 1998.

    Article  Google Scholar 

  23. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science, vol. 299, pp. 682-686, 2003.

    Article  Google Scholar 

  24. J. Wenger, P. F. Lenne, E. Popov, H. Rigneault, J. Dintinger, and T. W. Ebbesen, “Single molecule fluorescence in rectangular nano-apertures,” Optics Express, vol. 13, pp. 7035-7044, 2005.

    Article  Google Scholar 

  25. A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir, vol. 20, pp. 4813-4815, 2004.

    Article  Google Scholar 

  26. A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Applied Physics Letters, vol. 75, pp. 1515-1517, 1999.

    Article  Google Scholar 

  27. F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Applied Physics Letters, vol. 83, pp. 3245-3247, 2003.

    Article  Google Scholar 

  28. A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: Utilizing the near-field of bowtie optical nanoantennas,” Nano Letters, vol. 6, pp. 355-360, 2006.

    Article  Google Scholar 

  29. J. O. Tegenfeldt, O. Bakajin, C. F. Chou, S. S. Chan, R. Austin, W. Fann, L. Liou, E. Chan, T. Duke, and E. C. Cox, “Near-field scanner for moving mol - ecules,” Physical review letters, vol. 86, pp. 1378-1381, 2001.

    Article  Google Scholar 

  30. X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis and C. Yang, “Optofluidic microscopy- a method for implementing a high resolution optical microscope on a chip,” Lab on a Chip, vol. 6, pp. 1274 -1276, 2006.

    Article  Google Scholar 

  31. D. P. Tsai, A. Othonos, M. Moskovits, and D. Uttamchandani, “Raman- Spectroscopy Using a Fiber Optic Probe with Subwavelength Aperture,” Applied Physics Letters, vol. 64, pp. 1768-1770, 1994.

    Article  Google Scholar 

  32. K. Okamoto, and S. Kawata, “Radiation force exerted on subwavelength par- ticles near a nanoaperture,” Physical Review Letters, vol. 83, pp. 4534-4537, 1999.

    Article  Google Scholar 

  33. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the Diffraction Barrier - Optical Microscopy on a Nanometric Scale,” Science, vol. 251, pp. 1468-1470, 1991.

    Article  Google Scholar 

  34. D. Courjon, Near-field microscopy and near-field optics: London: Imperial College Press, 2003.

    Google Scholar 

  35. S. Inoue, and K. R. Spring, Video microscopy: the fundamentals, 2nd ed: New York: Plenum Press, 1997).

    Google Scholar 

  36. J. W. Goodman, Introduction to Fourier optics, 3rd ed: New York: McGraw- Hill, 2004).

    Google Scholar 

  37. L. G. Schulz, and F. R. Tangherlini, “Optical Constants of Silver, Gold, Copper, and Aluminum.2. the Index of Refraction-N,” Journal of the Optical Society of America, vol. 44, pp. 362-368, 1954.

    Article  Google Scholar 

  38. L. G. Schulz,“The Optical Constants of Silver, Gold, Copper, and Aluminum.1. the Absorption Coefficient-K,” Journal of the Optical Society of America, vol. 44, pp. 357-362, 1954.

    Google Scholar 

  39. D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, “Beyond the Bethe limit: Tunable enhanced light transmission through a single sub-wavelength aperture,” Advanced Materials, vol. 11, pp. 860-862, 1999.

    Article  Google Scholar 

  40. “COMSOL Multiphysics 3.2 (2006),” in COMSOL Inc. (http://www.comsol. com/).

  41. N. N. Rao, Elements of engineering electromagnetics, 6th ed: Upper Saddle River, N.J.: Pearson Prentice Hall, 2004.

    Google Scholar 

  42. J. P. Berenger, “Three-dimensional perfectly matched layer for the absorp-tion of electromagnetic waves,” Journal of Computational Physics, vol. 127, pp. 363-379, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  43. J. Jin, The finite element method in electromagnetics, 2nd ed: New York: Wiley, 2002.

    MATH  Google Scholar 

  44. F. Collino, and P. Monk, “The perfectly matched layer in curvilinear co-ordinates,” SIAM Journal on Scientific Computing, vol. 19, pp. 2061-2090, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  45. S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE Transactions on Antennas and Propagation, vol. 44, pp. 1630-1639, 1996.

    Article  Google Scholar 

  46. H. A. Bethe, “Theory of diffraction by small holes,” Physical Review, vol. 66, p. 163, 1944.

    Article  MATH  MathSciNet  Google Scholar 

  47. F. de Abajo, “Light transmission through a single cylindrical hole in a metal-lic film,” Optics Express, vol. 10, pp. 1475-1484, 2002.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yang, C., Heng, X., Cui, X., Psaltis, D. (2007). Optofluidic Microscope – Fitting a Microscope onto a Sensor Chip. In: Lee, H., Westervelt, R.M., Ham, D. (eds) CMOS Biotechnology. Series on Integrated Circuits and Systems. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68913-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68913-5_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-36836-8

  • Online ISBN: 978-0-387-68913-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics