Skip to main content

Plasma-Transferred Arc

  • Chapter
  • First Online:
Thermal Spray Fundamentals

Abstract

The development of the plasma transferred arc coating process was directed towards reducing the cost of corrosion and wear resistant parts. Regular steel parts with an appropriate PTA coating can exhibit superior corrosion and wear behavior even compared to specialty alloys. The process is significantly different from the other coating processes as the substrate is part of the electrical circuit that delivers the power for the coating process. The substrate in most of the cases serves as the anode of the arc transferred from the torch, and only sometimes as the cathode. Thus it must consist of an electrically conducting material. First equipment and operating parameters are described with the coating materials used and the corresponding applications. Then the process characterization is presented with the temperature distributions in the arc and arc voltages, heat flux to substrate and process modeling. The different process modifications and adaptations are described, especially with the influence of the pilot arc, the nitriding of coating, the modulation of deposition parameters, the PTA combination with tape casting and the PTA deposition with a negative work piece polarity. Examples of applications are at last presented, especially against wear and abrasive wear, against wear and corrosion, refurbishing worn parts and finally free standing shape fabrication

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

FTC:

Fused tungsten carbide

PTA:

Plasma-transferred arc

SAW:

Submerged arc welding

slm:

Standard liters per minute

TIG, MIG:

Tungsten inert gas welding or metal inert gas welding, respectively

References

  1. Gebert A, Bouaifi B (2005) Oberflächenschutz durch Auftragschweiβen, Moderne Beschichtungsverfahren. Wiley, New York, NY

    Google Scholar 

  2. Hallen H, Lugscheider E, Ait-Mekideche A (1991) Plasma transferred arc surfacing with high deposition rates. In: Bernecki T (ed) Proceedings of the fourth national thermal spray conference, Pittsburgh, PA. ASM International, Materials Park, OH, pp 537–539

    Google Scholar 

  3. DuMola RJ, Heath GR (1997) New developments in the plasma transferred arc process. In: Berndt CC (ed) Proceedings of the united thermal spray conference, Indianapolis, IN. ASM International, Materials Park, OH, pp 427–434

    Google Scholar 

  4. Wilden J, Bergmann JP, Frank H (2006) Plasma transferred arc welding-modeling and experimental optimization. J Therm Spray Technol 15(4):779–784

    Article  Google Scholar 

  5. Gatto A, Bassoli E, Fornari M (2004) Plasma transferred arc deposition of powdered high performance alloys: process parameters optimisation as a function of alloy and geometrical configuration. Surf Coat Technol 187:265–271

    Article  Google Scholar 

  6. Wassermann R, Quaas J, Chalard J-C, Noel L, Steine H-T (1978) Installation for surfacing using plasma-arc welding. US Patent 4,125,754

    Google Scholar 

  7. Bouaifi B, Schreiber F, Göllner J, Schulze S (1996) Eigenschaften und Beständigkeit von Plasma-Pulver-Auftragschweißungen aus hartstoffverstärkten CrNiMoN-legierten Duplex-Stählen. DVS-Berichte 175:425–428

    Google Scholar 

  8. Shubert GC (1987) Welding apparatus method for depositing wear surfacing material and a substrate having a weld bead thereon. US Patent 4,689,463

    Google Scholar 

  9. Lindland D, Shubert G (1988) Method for applying a weld bead to a thin section of a substrate. US Patent 4,739,146

    Google Scholar 

  10. Saltzmann GA, Wertz TA, Friedman IL (1989) Method for refurbishing cast gas turbine engine components and refurbished component. US Patent 4,878,953

    Google Scholar 

  11. Saltzman G, Sahoo P (1991) Applications of plasma arc weld surfacing in turbine engines. In: Berndt CC (ed) Proceedings of the fourth national thermal spray conference, Pittsburgh, PA. ASM International, Materials Park, OH, pp 541–548

    Google Scholar 

  12. Hallen H, Mathesius H, Ait-Mekideche A, Hettiger F, Morkramer U, Lugscheider E (1992) New applications for high power PTA surfacing in the steel industry. In: Berndt CC (ed) Proceedings of the international thermal spray conference & exposition, Orlando, FL. ASM International, Materials Park, OH, pp 899–902

    Google Scholar 

  13. Kammer PA, Weinstein M, DuMola RJ (1991) Characteristics and applications for composite wear-resistant overlays. In: Bernecki T (ed) Proceedings of the fourth national thermal spray conference, Pittsburgh, PA. ASM International, Materials Park, OH, pp 513–518

    Google Scholar 

  14. Schreiber F, Krefeld D (2002) Mobile plasma powder hand deposition welding: practice experience. In: Lugscheider E (ed) Proceedings of the international thermal spray conference 2002, Essen, Germany, 4–6 Mar 2002. DVS, Düsseldorf, Germany, pp 273–277

    Google Scholar 

  15. Ducos M (1985) Applications industrielles des plasmas d'arc de faible puissance et des plasmas inductifsinductifs, Les Plasmas dans l'Indudtrie, (ed.) G. Laroche (pub.) DopÕe, ElectricitÕ de France, France (in French)

    Google Scholar 

  16. Gebert A, Wocilka D, Bouaifi B, Alaluss K, Matthes K-J (2008) Neuentwicklungen für den Verschleiβ-und Korrosionsschutz beim Plasma-Pulver-Auftragschweiβen (New developments for wear an corrosion protection by weld surfacing with plasma transmitted arc process). Mat-wiss u Werkstofttech 39(1):99–104

    Article  Google Scholar 

  17. Lugscheider E, Ait-Mekideche A (1991) Advances in PTA surfacing. In: Berndt CC (ed) Proceedings of the fourth thermal spray conference, Pittsburgh, PA. ASM International, Materials Park, OH, pp 529–535

    Google Scholar 

  18. Yang LJ, Loh NL (1995) The wear properties of plasma transferred arc cladded stellite specimens. Surf Coat Technol 71:196–20

    Article  Google Scholar 

  19. Bharath RR, Ramanathan R, Sundararajan B, Srinivasan PB (2008) Optimization of process parameters for deposition of Stellite on S45CrSi93 steel by plasma transferrred arc technique. Mater Des 29:1725–1731

    Article  Google Scholar 

  20. Kim HJ, Yoon BH, Lee CH (2002) Wear performance of the Fe-based alloy coatings produced by plasma transferred arc weld-surfacing process. Wear 249:846–852

    Article  Google Scholar 

  21. Hou QY, He YZ, Zhang QA, Gao JS (2007) Influence of molybdenum on the microstructure and wear resistance of nickel-based alloy coating obtained by plasma transferred arc process. Mater Des 28:1982–1987

    Article  Google Scholar 

  22. Reimann H (1999) Metallic coatings for heavy-wear-protection. In: Lugscheider E, Kammer P (eds) Proceedings of the united thermal spray conference, Düsseldorf, Germany. DVS, Düsseldorf, Germany, pp 86–89

    Google Scholar 

  23. Dilthey U, Balashov B, Kondapalli S, Geffers C (2008) Entwicklung einer kostengünstigen und hoch verschleissbeständigen Eisenbasislegierung zum Auftragschweissen. Schweissen und Schneiden 60:200–204

    Google Scholar 

  24. Reisgen U, Dilthey U, Balashov B, Kondapalli S, Geffers C (2008) Investigation of wear resistance and microstructure of a newly developed chromium and vanadium containing iron-based hardfacing alloy. Mat-wiss u Werkstofttech 39(6):379–384

    Article  Google Scholar 

  25. Hou QY, He Y, Gao J (2006) Microstructure and properties of Fe-C-Cr-Cu coating deposited by plasma transferred arc process. Surf Coat Technol 201:3685–3690

    Article  Google Scholar 

  26. Bourithis L, Papaefthymiou S, Papadimitriou GD (2002) Plasma transferred arc boriding of a low carbon steel: microstructure and wear properties. Appl Surf Sci 200:203–218

    Article  Google Scholar 

  27. Iakovou R, Bourithis L, Papadimitriou GD (2002) Synthesis of boride coatings on steel using plasma transferred arc (PTA) process and its wear performance. Wear 252:1007–1015

    Article  Google Scholar 

  28. Liu YF, Liu XB, Xua XY, Yang SZ (2010) Microstructure and dry sliding wear behavior of Fe2TiSi/-Fe/Ti5Si3. Surf Coat Technol 205:814–819

    Article  Google Scholar 

  29. Cheng JB, Xu BS, Liang XB, Wu YX (2008) Microstructure and mechanical characteristics of iron-based coating prepared by plasma transferred arc cladding process. Mater Sci Eng A 492:407–412

    Article  Google Scholar 

  30. Lugscheider E, Ait-Mekideche A, Aache AM (1994) Verbesserung der Eigenschaften von Hartlegierungen durch auftraggeschweiβte carbidische Verbundpulver. Schweissen und Schneiden 46(3):109–112

    Google Scholar 

  31. Saltzman G (1986) Carbides add muscle to PTA antiwear coatings. Metal Prog 129:25–30

    Google Scholar 

  32. Saltzman G, Aufderhaar WB (1984) New antiwear coatings applied by plasma-transferred arc wearsurfacing. Lubr Eng 41:233–241

    Google Scholar 

  33. Shi K, Hu S, Zheng H (2011) Microstructure and fatigue properties of plasma transferred arc alloying TiC-W-Cr on gray cast iron. Surf Coat Technol 206:1211–1217

    Article  Google Scholar 

  34. Huang Z, Hou Q, Wang P (2008) Microstructure and properties of Cr3C2-modified nickel-based alloy coating deposited by plasma transferred arc process. Surf Coat Technol 202:2993–2999

    Article  Google Scholar 

  35. Hou Q, Huang Z, Wang JT (2011) Influence of nano-Al2O3 particles on the microstructure and wear resistance of nickel-based alloy coating deposited by plasma transferred arc overlay welding. Surf Coat Technol 205:2806–2812

    Article  Google Scholar 

  36. Hartmann U, Gebert A, Richter U, Leonhardt G (2007) Erhöhung der Verschleissfestigkeit von Elastomerverarbeitungsmaschinen durch innovative Beschichtungsverfahren. Mat-wiss u Werkstofttech 38(2):155–159

    Article  Google Scholar 

  37. Bouaifi B, Gebert A, Heinze H (1993) Plasma-Pulver-Auftragschweiβungen zum Verschleiβschutz abrasiv beanspruchter Bauteile mit Kantenbelastung. Schweissen und Schneiden 45:506–509

    Google Scholar 

  38. Bouaifi B, Reichmann B (1997) Neue Anwendungsfelder durch die Entwicklung des Hochleistungs-Plasma-Pulverauftragschweiβens. Schweissen und Schneiden 49:734–736

    Google Scholar 

  39. Heinze H, Gebert A, Bouaifi B, Ait-Mekideche A (1999) Korrosionsbeständige Auftragschweisschichten auf Eisenbasis mit hoher Verschleissbeständigkeit. Schweissen und Schneiden 51(9):550–559

    Google Scholar 

  40. Gebert A, Heinze H (2002) PTA powder cladding of knives for food processing industry. In: Lugscheider E (ed) Proceedings of ITSC, Essen, Germany. DVS, Düsseldorf, Germany, pp 991–993

    Google Scholar 

  41. Flores JF, Neville A, Kapur N, Gnanavelu A (2009) Erosion-corrosion degradation mechanisms of Fe-Cr-C and WC-Fe-Cr-C PTA overlays in concentrated slurries. Wear 267:1811–1820

    Article  Google Scholar 

  42. Draugelates U, Bouaifi B, Steinberg H (1993) Korrosionsschutz durch Auftragschweissen mit den reaktiven Metallen Titan, Tantal und Zirkonium. Werkst Korros 44:269–273

    Article  Google Scholar 

  43. Tomita T, Takatani Y, Okita K, Harada Y (1998) Improvement of wear property of NbC/high Cr-high Ni overlay alloy coating formed by plasma transferred arc welding process. In: Coddet C (ed) Proceedings of the 15th international thermal spray conference, Nice, France. ASM International, Materials Park, OH, pp 253–258

    Google Scholar 

  44. Alaluss K, Matthes K-J (2007) Beanspruchungsgerechte Formgebung von Umformwerkzeugen durch formgebendes Plasma-Pulver-Auftragschweiβen (Load adjusted shaping of forming tools using build-up PTA welding). Mat-wiss u Werkstofttech 38(7):565–571

    Article  Google Scholar 

  45. Dilthey U, Kabatnik L, Lugscheider E, Schlimbach K, Langer G (1999) Möglichkeiten zur Steigerung der Oberflächenfestigkeit bei Aluminiumlegierungen mit Plasma-Pulver-Schweiβverfahren (Improving of the wear resistance of aluminum alloys by plasma transferred arc welding). Mat-wiss u Werkstofttech 30(11):697–702

    Article  Google Scholar 

  46. Lugscheider E, Langer G, Schlimbach K, Dilthey U, Kabatnik L (1999) Possibilites for improving wear-properties of aluminum-alloys by plasma powder welding process. In: Lugscheider E, Kammer P (eds) Proceedings of the united thermal spray conference, Düsseldorf, Germany. DVS, Düsseldorf, Germany, pp 410–413

    Google Scholar 

  47. Deuis RL, Yellup JM, Subramanian C (1998) Metal-matrix composite coatings by PTA surfacing. Compos Sci Technol 58:299–309

    Article  Google Scholar 

  48. Skarvelis P, Papadimitriou GD (2009) Microstructural and tribological evaluation of potential self-lubricating coatings with MoS2\MnS additions produced by the plasma transferred arc technique. Tribol Int 42:1765–1770

    Article  Google Scholar 

  49. Skarvelis P, Papadimitriou GD (2009) Plasma transferred arc composite coatings with self lubricating properties, based on Fe and Ti sulfides: microstructure and tribological behavior. Surf Coat Technol 203:1385–1394

    Article  Google Scholar 

  50. Wang H, Jiang W, Valant M, Kovacevic R (2003) Microplasma powder deposition as a new solid freeform fabrication process. Proc Inst Mech Eng:1641–1650

    Google Scholar 

  51. Hollis K, Bartram B, Withers J, Storm R, Massarello J (2006) Plasma transferred arc deposition of beryllium. J Therm Spray Technol 15(4):785–789

    Article  Google Scholar 

  52. Hsu KC, Etemadi K, Pfender E (1983) Studey of the free-burning high-intensity argon arc. J Appl Phys 54(3):1293–1301

    Article  Google Scholar 

  53. Lowke JJ, Morrow R, Haidar J (1997) A simplified unified theory of arcs and their electrodes. J Phys D Appl Phys 30:2033–2042

    Article  Google Scholar 

  54. Lowke JJ, Tanaka M, Ushio M (2005) Mechanisms giving increased weld depth due to a flux. J Phys D Appl Phys 38(18):3438–3445

    Article  Google Scholar 

  55. Bini R, Monno M, Boulos MI (2007) Effect of cathode nozzle geometry and process parameters on the energy distribution for an argon transferred arc. Plasma Chem Plasma Process 27:359–380

    Article  Google Scholar 

  56. Etemadi K (1982) Investigation of high-current arcs by computer-controlled plasma spectroscopy. PhD Thesis, University of Minnesota

    Google Scholar 

  57. Young RM, Chyou YP, Fleck E, Pfender E (1983) An experimental arc plasma reactor for the synthesis of refractory materials. In: Boulos MI, Munz RJ (eds) Proceedings of the 6th international symposium on plasma chemistry, Montreal, QC. International Union of Pure and Applied Chemistry, pp 211–218

    Google Scholar 

  58. Peters J, Heberlein J, Lindsay J (2007) Spectroscopic diagnostics in a highly constricted oxygen arc. J Phys D Appl Phys 40:3960–3971

    Article  Google Scholar 

  59. Evrard M, Blanchet B (1970) Etudes des plasmas d'arc du point de vue du soudage. Soudages et Techniques Connexes 7:261–298

    Google Scholar 

  60. Leylavergne M, Valetoux H, Coudert JF, Fauchais P, Leroux V (1998) Comparison of the behaviour of copper, cast iron and aluminum alloy substrates heated by a plasma transferred arc. In: Coddet C (ed) Proceedings of the 15th international thermal spray conference, Nice, France. ASM International, Materials Park, OH, pp 489–495

    Google Scholar 

  61. Jenista J, Heberlein J, Pfender E (1997) Model for anode heat transfer from an electric arc. In: Fauchais P (ed) Proceedings of the 4th international thermal plasma processes conference, Athens, Greece. Begell House Inc., New York, NY, pp 805–815

    Google Scholar 

  62. Heberlein J, Mentel J, Pfender E (2007) The anode region of electric arcs – a survey. J Phys D Appl Phys 43:023001

    Article  Google Scholar 

  63. Yang G, Heberlein J (2008) Anode heat transfer by electron current and electron conduction in an atmospheric pressure argon arc. In: Jemmaa NB (ed) Proceedings of the international conference on electrical contacts, Saint Malo, France. Universite de Rennes, Rennes, France, pp 313–316

    Google Scholar 

  64. Jenista J, Heberlein J, Pfender E (1997) Numerical model of the anode region of high-current electric arcs. IEEE Trans Plasma Sci 25(5):883–890

    Article  Google Scholar 

  65. Menart JA (1996) Theoretical and experimental investigations of radiative and total heat transfer in thermal plasmas. Ph.D. Thesis, University of Minnesota

    Google Scholar 

  66. Dilthey U, Ellermeier J, Gladkij P, Pavlenko AV (1993) Kombiniertes Plasma-Pulver-Auftragschweissen. Schweissen und Schneiden 45(5):241–244

    Google Scholar 

  67. Nestor OH (1962) Heat intensity and current density distributions at the anode of high current, inert gas arcs. J Appl Phys 33(5):1638–1648

    Article  Google Scholar 

  68. Ebert L, Thurner S, Neyka S (2009) Beeinflussung der Hartstoffverteilung beim Plasma-Pulver-Auftragschweiβen. Influencing the distribution of reinforcing particles in plasma transfer arc welding. Mat.-wiss u. Werkstofttech 40(12):878–881

    Google Scholar 

  69. Wilden J, Bergmann JP, Frank H, Pinzl S, Schrieber F (2004) Thin plasma-transferred-arc welded coatings – an alternative to thermally sprayed coatings? In: Ohmori A (ed) Proceedings of the international thermal spray conference, Osaka, Japan. ASM International, Materials Park, OH, pp 556–561

    Google Scholar 

  70. Matthes K-J, Alaluss K, Riedel F (2002) Nutzung der Finite-Elemente-Methode zur Optimierung des formgebenden Pulver-Plasmaauftragschweissens für die Herstellung hoch beanspruchbarer Umformwerkzeuge. Schweissen und Schneiden 54(4):178–184

    Google Scholar 

  71. Lakshminarayanan AK, Balasubramanian V, Varahamoorthy R, Babu S (2008) Predicting the dilution of plasma transferred arc hardfacing of stellite on carbon steel using response surface methodology. Met Mater Int 14(6):779–789

    Article  Google Scholar 

  72. DuPont JN (1998) On optimization of the powder plasma arc surfacing process. Metallugical Mater Trans B 29B:932–934

    Article  Google Scholar 

  73. Just C, Badisch E, Wosik J (2010) Influence of welding current on carbide/matrix interface properties in MMCs. J Mater Process Technol 210:408–414

    Article  Google Scholar 

  74. Bouaifi B, Ait-Mekideche A, Gebert A, Wocilka D (2001) Nutzung von stickstoffhaltigen Hochtemperaturplasmen zum reaktiven beschichten mittels Plasmaauftragschweiβen. Schweissen und Schneiden 53:478–482

    Google Scholar 

  75. Bach F-W, SP, Zühlsdorf J (1999) Plasma powder welding under raised pressure environment. In: Lugscheider E, Kammer P (eds) Proceedings of the united thermal spray conference, Düsseldorf, Germany. DVS, Düsseldorf, Germany, pp 757–760

    Google Scholar 

  76. Wang W, Qian SQ, Zhou XY (2009) Microstructure and properties of TiN/Ni composite coating prepared by plasma transferred arc scanning process. Trans Nonferrous Met Soc China 19:1180–1184

    Article  Google Scholar 

  77. Matthes K-J, Alaluss K (1996) Formgebendes Plasma-Pulverauftragschweissen mit Impulslichtbogen unter Beachtung minimaler Verformung. Schweissen und Schneiden 48(9):668–672

    Google Scholar 

  78. D’Oliveira CM, Paredes RS, Santos RL (2005) Pulsed current plasma transferred arc hardfacing. Mater Process Technol 171:167–174

    Article  Google Scholar 

  79. Proner A, Dacquet JP, Rouanet R (1997) The plasma high energy: a new hardfacing technique. Begell House, Inc., New York, NY

    Google Scholar 

  80. Proner A, Ducos M, Dacquet JP (1997) Process for coating of hardfacing a part by means of a plasma tranferred arc. US Patent US 5,624,717

    Google Scholar 

  81. Leylavergne M, Chartier T, Grimaud A, Baumard JF, Fauchais P (1998) PTA reclamation of cast iron and aluminum alloys substrate with NiCu film deposited by tape casting. In: Proceedings of the 15th international thermal spray conference, Nice, France, pp 373–377

    Google Scholar 

  82. Leylavergne M, Chartier T, Grimaud A, Fauchais P (1999) PTA reclamation of cast iron and nickel-based alloy substrates with films deposited by tape casting. In: Lugscheider PAKE (ed) Proceedings of the united thermal spray conference, Düsseldorf, Germany. DVS, Düsseldorf, Germany, pp 253–258

    Google Scholar 

  83. Leylavergne M, Chartier T, Grimaud A, Fauchais P (2000) PTA reclamation of cast iron substrates using tape casting process – the role of the organic binder concentration. In: Berndt CC (ed) Proceedings of the international thermal spray conference, Montreal, Canada. ASM International, Materials Park, OH, pp 1169–1177

    Google Scholar 

  84. Leylavergne M, Chartier T, Denoirjean A, Grimaud A, Abelard P, Fauchais P (2001) Cast iron substrates reclamation by tape casting of NiCu treated by plasma transferred arc: optimization of the tape and its plasma treatment. Thin Solid Films 391:1–10

    Article  Google Scholar 

  85. Dilthey U, Kondapalli S, Balashow B, Riedel F (2008) Improving wear resistance of aluminium alloys by developing FTC and TiC based composite coatings using plasma powered arc welding process. Surf Eng 24(1):75–80

    Article  Google Scholar 

  86. Gebert A, Wocilka D, Bouaifi B, Schütz M (2002) Wear and corrosion prevention at light metals by means of welding methods. In: Lugscheider E (ed) Proceedings of ITSC, Essen, Germany. DVS, Düsseldorf, Germany, pp 268–272

    Google Scholar 

  87. Bouaifi B, Plegge T, Sommer D, Hettiger F, Hallen H (1992) High performance plasma-powder weld surfacing – increase in efficiency and in service life of components subject to wear and corrosion. Schweissen und Schneiden 44:675–677

    Google Scholar 

  88. Kesavan D, Kamaraj M (2010) The microstructure and high temperature wear performance of a nickel base hardfaced coating. Surf Coat Technol 204:4034–4043

    Article  Google Scholar 

  89. Bartys H, Guerin JD, Bricout JP, Oudin J (1998) Thermal spraying applied onto high energy railway braking: characterization of friction performances. In: Coddet C (ed) Proceedings of the 15th international thermal spray conference, Nice, France. ASM International, Materials Park, OH, pp 1127–1132

    Google Scholar 

  90. Wang XB, Cai LJ, Yang ZH, Xiao C, Xu LF (2009) Selection of covering materials for synthesising fabrication of TiB2 based coating with PTA process. Surf Eng 25(6):470–475

    Article  Google Scholar 

  91. Branagan DJ, Marshall MC, Meacham BE (2006) High toughness high hardness iron based PTAW weld materials. Mater Sci Eng A 428:116–123

    Article  Google Scholar 

  92. Flores JF, Neville A, Kapur N, Gnanavelu A (2009) An experimental study of the erosion-corrosion behavior of plasma transferred arc MMCs. Wear 267:213–222

    Article  Google Scholar 

  93. Harper DH, Gill MJ, Hart KWD, Anderson M (2002) Plasma transferred arc overlays reduce operating costs in oil sand processing. In: Lugscheider E (ed) Proceedings of the ITSC, Essen, Germany. DVS, Düsseldorf, Germany, pp 278–283

    Google Scholar 

  94. Hart KWD, Harper DH, Gill MJ (2000) Case studies in wear resistance using HVOF, PTAW and spray fusion surfacing. In: Berndt CC (ed) Proceedings of the international thermal spray conference, Montreal, Canada. ASM International, Materials Park, OH, pp 1117–1125

    Google Scholar 

  95. Huang X, Wang R, Xu LF, Luo H, Yin X (1998) Applications of PTA powder welding in petroleum chemical industry. In: Coddet C (ed) Proceedings of the 15th international thermal spray conference, Nice, France. ASM International, Materials Park, OH, pp 1013–1017

    Google Scholar 

  96. Draugelates U, Bouaifi B, Giessler S (1998) Zweipulver-Plasmaauftragschweissen von oxidkeramikhaltigen Nickelbasislegierungen. Schweissen und Schneiden 50:713–716

    Google Scholar 

  97. Draugelates U, Bouaifi B, Schreiber F, Göllner J, Schultze S, Boese E (1998) Korrosionsverhalten von Plasma-Auftragschweissungen aus Titan-Legierungen. Mater Corros 49:744–752

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Nomenclature

Nomenclature

A conv :

The area over which the convective heat transfer takes place (m2)

D :

Arc attachment spot diameter (m)

e :

Electronic charge (A s)

E :

Electric field (V/m)

E i :

Ionization potential of the plasma gas (V)

I :

Arc current (A)

j e :

Electron current density (A/m2)

j i :

The ion current density (A/m2)

k :

Thermal conductivity of electrons (W/m K)

k :

“Constriction parameter” (cm−2)

k B :

Boltzmann constant (1.38 × 10−23 J/K)

k h :

Thermal conductivity of heavy species (W/m K)

p :

Melted layer thickness (m)

q a :

Anode heat flux (W/m2)

q e :

Electron enthalpy flux (W/m2)

q m :

Maximum heat flux for a given condition (W/m2)

q(r):

Substrate heat flux (W/m2)

Q sub :

Total heat transfer to the substrate (W)

r :

Radial coordinate (m)

r e :

Arc radius (radius of current path) (m)

T e :

Electron temperature (K)

T h :

Heavy species temperature (K)

v :

Plasma velocity (m/s)

v :

Traverse velocity of the torch (m/s)

V :

Arc voltage (V)

V an :

The anode fall voltage (V)

α :

Fraction of the electrical power transferred to the anode

Φ a :

Work function of the anode material (V)

ρ :

Mass density of the plasma (kg/m3)

\( {\overline{\sigma}}_{\mathrm{ar}} \) :

Electrical conductivity of argon averaged over the arc cross section (mho/m)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fauchais, P.L., Heberlein, J.V.R., Boulos, M.I. (2014). Plasma-Transferred Arc. In: Thermal Spray Fundamentals. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68991-3_10

Download citation

Publish with us

Policies and ethics