Skip to main content

Surface Preparation

  • Chapter
  • First Online:
Thermal Spray Fundamentals

Abstract

Thermal spraying begins with proper surface preparation, which is absolutely essential. Steps must be undertaken correctly in order for the coating to perform the design expectation because coating adhesion quality is directly related to the cleanliness, the roughness and sometimes the proper machining for optimal coating performance. The coating material and the nature of the substrate are the major factors in determining what kind of surface preparation is necessary to achieve a resistant bonding. It is also important to keep in mind that the coating must never end abruptly at the part extremity. The different surface preparations comprise: machining, cleaning by various means, and masking preventing deposit formation on areas where it is not wanted. The surface roughening, characterized by different measurements, can be achieved by three main means: grit blasting, high pressure water roughening and laser treatment, which are described in details in this chapter. This description comprised the equipment, the main parameters and their action on surface roughness, with, for grit blasting the influence of the grit used (material and size).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

BS:

Bond strength

References

  1. Davis JR (ed) (2004) Handbook of thermal spray technology. ASM International, Materials Park, OH

    Google Scholar 

  2. Mellali M, Grimaud A, Léger AC, Fauchais P, Lu J (1997) Alumina grit blasting parameters for surface preparation in the plasma spraying operation. J Therm Spray Technol 6(2):217–227

    Article  Google Scholar 

  3. (1985) Thermal spraying, practice, theory and applications. American Welding Society, 550 N. W. LeJeune Road, P. O. 351040, Miami, Florida 33135

    Google Scholar 

  4. (1994) ASM handbook volume 05: surface engineering, 1056 pages, ASM Int., Materials Park, OH 44073–0002, USA

    Google Scholar 

  5. Wang L (2004) Erosion testing and surface preparation using abrasive water-jetting. J Mater Eng Performance 13(1):103–106

    Article  Google Scholar 

  6. Stratford S (2000) Dry ice blasting for paint stripping and surface preparation. Metal Finishing 98(6):493–499

    Article  Google Scholar 

  7. Spur G, Uhlmann E, Elbing F (1999) Dry-ice blasting for cleaning: process, optimization and application. Wear 233–235:402–411

    Article  Google Scholar 

  8. Elbinga F, Anagrehb N, Dorna L, Uhlmann E (2003) Dry ice blasting as pretreatment of aluminum surfaces to improve the adhesive strength of aluminum bonding joints. Int J Adhes Adhesives 23:69–79

    Article  Google Scholar 

  9. Bardi U, Carrafiello L, Groppetti R, Niccolai F, Rizzi G, Scrivani A, Tedeschi F (2004) On the surface preparation of nickel superalloys before CoNiCrAlY deposition by thermal spray. Surf Coat Technol 184:156–162

    Article  Google Scholar 

  10. Dong S, Song B, Hansz B, Liao H, Coddet C. Improvement in the microstructure and property of plasma sprayed metallic, alloy and ceramic coatings by using dry ice blasting. In: 5th RIPT conference, CEC Limoges, Dec 2011, e-proceedings

    Google Scholar 

  11. Montavon G (2004) Quality control of thermal sprayed coatings, Course Thermal spraying, Aliderte Limoges France

    Google Scholar 

  12. (1994) Whitehouse, Handbook of surface metrology. Lavoisier, Paris, 984 pages

    Google Scholar 

  13. Vorburger TV, Teague EC (1981) Optical techniques for on-line measurements of surface finish. Precision Eng 3(2):61–83

    Article  Google Scholar 

  14. Tonshoff HK, Janocha H, Seidel M (1988) Image processing in a production environment. Ann CIRP 37(2):579–589

    Article  Google Scholar 

  15. Shin YC, Oh SJ, Coker SA (1995) Surface roughness measurement by ultrasonic sensing for in-process monitoring. ASME J Eng Ind 117:439–447

    Article  Google Scholar 

  16. Bradley C (2000) Automated surface roughness measurement. Int J Adv Manuf Technol 16:668–674

    Article  Google Scholar 

  17. Lockwood DJ (2007) Light scattering and nanoscale surface roughness. Springer, New York

    Google Scholar 

  18. Cedelle J, Vardelle M, Fauchais P (2006) Influence of stainless steel substrate preheating on surface topography and on millimetre- and micrometer-sized splat formation. Surf Coat Technol 201(3–4):1373–1382

    Article  Google Scholar 

  19. Conroy M et al (2005) A comparison of surface metrology techniques. J Phys Conf Ser 13:458–465

    Article  Google Scholar 

  20. Hu Zhongxiang, Zhu Lei, Teng Jiaxu, Ma Xuehong, Shi Xiaojun (2008) Evaluation of three-dimensional surface roughness parameters based on digital image processing. Int J Adv Manuf Technol

    Google Scholar 

  21. Al-Kindi GA, Shirinzadeh B (2007) An evaluation of surface roughness parameters measurement using vision-based data. Int J Mach Tools Manuf 47:697–708

    Article  Google Scholar 

  22. Tomovich SJ, Peng Z (2005) Optimised reflection imaging for surface roughness analysis using confocal laser scanning microscopy and height encoded image processing. J Phys Conf 13:426–429

    Article  Google Scholar 

  23. Thomas TR (1999) Rough surfaces. Imperial College press, London

    Google Scholar 

  24. Bahbou F, Nylen P (2005) Relationship between surface topography parameters and adhesion strength for plasma spraying. In: Lugscheider E (ed) ITSC 2005. DVS, Düsseldorf, Germany, e-proceedings

    Google Scholar 

  25. Fukumoto M, Huang Y (1999) Flattening mechanism in thermal sprayed Ni particles impinging on flat substrate surface. J Therm Spray Technol 8(3):427–432

    Article  Google Scholar 

  26. Tanaka Y, Fukumoto M (1999) Investigation of dominating factor on flattening behaviour of plasma sprayed ceramic particles. Surf Coat Technol 12(121):124–130

    Article  Google Scholar 

  27. Fukumoto M, Ohgitani I, Yasui T (2004) Effect of substrate surface change on flattening behaviour of thermal sprayed particles. Mater Trans 45(6):1869–1873

    Article  Google Scholar 

  28. Amada A, Hirose T (2000) Planar fractal characteristics of blasted surfaces and its relation with adhesion strength of coatings. Surf Coat Technol 130:158–163

    Article  Google Scholar 

  29. Amada S, Yamada H (1996) Introduction of fractal dimension to adhesive strength evaluation of plasma-sprayed coatings. Surf Coat Technol 78:50–55

    Article  Google Scholar 

  30. Amada S, Hirose T (1998) Influence of the grit blasting pre-treatment on the adhesion strength of plasma sprayed coatings: fractal analysis of roughness. Surf Coat Technol 102:132–137

    Article  Google Scholar 

  31. Amada S, Satoh A (2000) Fractal analysis of surface roughened by grit blasting. J Adhes Sci Technol 14(1):27–41

    Article  Google Scholar 

  32. Guessasma S, Montavon G, Coddet C (2003) On the implementation of the fractal concept to quantify thermal spray deposit surface characteristics. Surf Coat Technol 173(1):24–38

    Article  Google Scholar 

  33. Reisel G, Heimann RB (2004) Correlation between surface roughnesses of plasma sprayed chromium oxide coatings and powder grain size distribution: a fractal approach. Surf Coat Technol 185:215–221

    Article  Google Scholar 

  34. Bacova V, Draganovska D (2004) Analysis of the quality of blasted surfaces. Mater Sci 40(1):125–131

    Article  Google Scholar 

  35. Deng J, Junlong S (2008) Sand erosion performance of B4C based ceramic nozzles. Int J Refractory Metals Hard Mater 26:128–134

    Article  Google Scholar 

  36. Deng J (2009) Wear behaviors of ceramic nozzles with laminated structure at their entry. Wear 266(1–2):30–36

    Article  Google Scholar 

  37. Griffiths BJ, Gawne DT, Dong G (1996) The erosion of steel surfaces by grit-blasting spraying as a preparation for plasma. Wear 194:95–102

    Article  Google Scholar 

  38. Bellmann R, Levy A (1981) Erosion mechanism in ductile metals. Wear 70:1–27

    Article  Google Scholar 

  39. Maruyama T, Akagi K, Kobayaski T (2006) Effects of blasting parameters on removability of residual grit. J Therm Spray Technol 15(4):817–821

    Article  Google Scholar 

  40. Scrivani A, Rizzi G, Giolli C (2006) Improved surface preparation of nickel-superalloys for MCrAlY coatings on gas turbine. In: Larple B et al (eds) Proceedings of the 2006 ITSC conference. ASM International, Materials Park, OH, e-proceedings

    Google Scholar 

  41. Yankee SJ, Salsbury RL, Pletka BJ (1991) Quality control of hydroxylapatite coating: properties, processes and applications. In: Bernecki T (ed) Thermal spray 1991. ASM International, Materials Park, OH, pp 505–513

    Google Scholar 

  42. Amada S, Hirose T, Senda T (1999) Quantitative evaluation of residual grits under angled blasting. Surf Coat Technol 111:1–9

    Article  Google Scholar 

  43. Bahbou MF, Nylen P, Wigren J (2004) Effect of grit blasting and spraying angle on the adhesion strenght of a plasma-sprayed coating. J Therm Spray Technol 13(4):508–514

    Article  Google Scholar 

  44. Varacalle DJ Jr, Guillen DP, Deason DM, Rhodaberger W, Sampson E (2006) Effect of grit-blasting on substrate roughness and coating adhesion. J Therm Spray Technol 15(3):348–355

    Article  Google Scholar 

  45. Wigren J (1988) Grit blasting as surface preparation before plasma spraying. In: Hauck D (ed) Thermal spray: advances in coatings technology. ASM International, Materials Park, OH, pp 99–104

    Google Scholar 

  46. Celik E, Demirkiran AS, Avei E (1999) Effect of grit blasting of substrate on the corrosion behavior of plasma sprayed Al2O3 coatings. Surf Coat Technol 116–119:1061–1064

    Article  Google Scholar 

  47. He J, Dulin B, Wolfe T (2008) Peening effect of thermal spray coating process. J Therm Spray Technol 17(2):214–220

    Article  Google Scholar 

  48. Yang Y, Wang HG, Cao XP, Wang L (2006) Influence of substrate surface roughness on adhesive strength. In: Marple B et al (eds) Proceedings of the 2006 thermal spray conference. ASM International, Materials Park, OH, e-proceedings

    Google Scholar 

  49. Mohammadi Z, Ziaei-Moagyed AA, Sheik-Mehdi Mesgar A (2007) Grit blasting of Ti-6Al-4V alloys: optimization and its effect on adhesion strength of plasma sprayed hydroxyapatite coatings. J Mater Proc Technol 194:15–23

    Article  Google Scholar 

  50. Maruyama T, Akagi K, Kobayaski T (2007) Effect of the blasting angle on the amount of the residual grit on blasted substrates. In: Marple BP et al (eds) Thermal spray 2007. ASM International, Materials Park, OH, e-proceedings

    Google Scholar 

  51. Liao H, Vaslia P, Young Y, Coddet C (1999) Determination of the residual stress distribution from in situ measurements for thermally sprayed WC-Co coatings. J Therm Spray Technol 6(2):235–241

    Article  Google Scholar 

  52. (1964) ASM metals handbook, ASM Int., Materials Park, OH 44073–0002, USA

    Google Scholar 

  53. Abukawa S, Kobayashi K, Kobayashi Y (2006) The relationship of work distorsion and surface roughness on grit blasting process. In: Marple B et al (eds) Thermal spray 2006. ASM International, Materials Park, OH, e-proceedings

    Google Scholar 

  54. Taylor TA (1995) Surface roughening of metallic substrates by high pressure pure waterjet. Surf Coat Technol 76–77:95–100

    Article  Google Scholar 

  55. Taylor TA (1995) Surface roughening of superalloys by high pressure water jets. In: Berndt CC, Sampath S (eds) Thermal spray: science and technology. ASM International, Materials Park, OH, pp 351–358

    Google Scholar 

  56. Momber AW, Wong YC, Ij R, Budiharma E (2002) Hydrodynamic profiling and grit blasting of low-carbon steel surfaces. Tribology Int 35:271–281

    Article  Google Scholar 

  57. Knapp JK, Taylor JA (1996) Waterjet roughened surface analysis and bond strength. Surf Coat Technol 86–87:22–27

    Article  Google Scholar 

  58. Momber AW, Kovacevic R (1998) Principles of abrasives water jet machining. Springer, London

    Book  Google Scholar 

  59. Kovacevic R, Hashish M, Mohan R, Ramula M, Kim TJ, Geskin ES (1997) State of the art of research and development in abrasive-water-jetting machining. Trans ASME J Manuf Sci Eng 119:776–785

    Article  Google Scholar 

  60. Zeng J, Kim TJ (1996) An erosion model for abrasive waterjet milling of polycrystalline ceramics. Wear 199:275–282

    Article  Google Scholar 

  61. Ness E, Zibbell R (1996) Abrasion and erosion of hard materials related to wear in the abrasive water jet. Wear 196:120–125

    Article  Google Scholar 

  62. Coddet C, Marchione T (1993) Process for the preparation and coating a surface and apparatus for practicing sand process (in French). French patent FR9209277, 21 July 1993

    Google Scholar 

  63. Coddet C, Marchione T (1997a) Process for the preparation and coating a surface and apparatus for practicing sand process. European patent extension EP0580534A1, 23 Apr 1997

    Google Scholar 

  64. Coddet C, Marchione T (1997b) Process for the preparation and coating a surface and apparatus for practicing sand process. US patent extension, US 5668564, 18 Nov 1997

    Google Scholar 

  65. Coddet C, Marchione T (1999) Process for the preparation and coating a surface and apparatus for practicing sand process. Canadian patent extension, CA 2101004, 13 July 1999

    Google Scholar 

  66. Coddet C, Montavon G, Ayrault-Costil S, Freneaux O, Rigolet F, Barbezte G, Folio F, Diard A, Wazen P (1999) Surface preparation and thermal spray in a single step: the PROTAL process- example of application for an aluminium-base substrate. J Therm Spray Technol 8(2):235–242

    Article  Google Scholar 

  67. Landau L, Lifshitz E (1984) Statistical physics. MIR, Moscow, Russia

    Google Scholar 

  68. Leung NP, Zupka W, Ziemlich W (1992) Cleaning techniques for removal of surface particulates. J Appl Phys 7:3513–3523

    Google Scholar 

  69. Li H, Costil S, Liao H-L, Coddet C (2006) Role of the laser surface preparation on the adhesion of Ni-5 wt% Al coatings deposited using the PROTAL® process. J Therm Spray Technol 15(2):191–197

    Article  Google Scholar 

  70. Costil S, Li H, Coddet C (2004) New developments in the PROTAL® process. In: ITSC2004. DVS, Düsseldorf, Germany, e-proceedings

    Google Scholar 

  71. Li H, Costil S, Liao H-L, Coddet C (2005) Role of laser surface preparation on the adhesion of Ni-5wt% S. CostilAl coatings deposited using the PROTAL® process. In: Lugscheider E (ed) ITSC 2005: explore its potential! ASM International, Materials Park, OH, e-proceedings

    Google Scholar 

  72. Liao H, Gammondi A, Costil S, Coddet C (2003) Influence of surface laser cleaning combined with substrate preheating on the splat morphology. In: Moreau C, Marple B (eds) Thermal spray 2003: advancing the science and applying the technology. ASM International, Materials Park, OH, pp 883–888

    Google Scholar 

  73. Bahbou F, Nylen P, Barbezat G (2004) A parameter study of the PROTAL® process to optimize the adhesion of Ni5Al coatings. In: ITSC 2004. DVS, Düsseldorf, Germany, e-proceedings

    Google Scholar 

  74. Li H, Costil S, Deng S-H, Liao H-L, Coddet C, Ji U, Huang W-J (2006) Benefit of surface oxide removal on thermal spray coating adhesion using the PROTAL® process. In: Marple B (ed) ITSC 2006. ASM International, Materials Park, OH, e-proceedings

    Google Scholar 

  75. Li H, Costil S, Deng S-H, Coddet C, Liao H-L, Richardt K, Lugscheider E, Bobzin K (2006) Ni-Cr coatings deposited on a magnesium alloy substrate using the Protal process. In: Marple B (ed) ITSC 2006. ASM International, Materials Park, OH, e-proceedings

    Google Scholar 

  76. Barnier V, Costil S, Li H, Coddet C, Oltea R (2007) Study of the aluminium oxidation induced by a Q-switched Nd:YAG laser treatment and its influence on the adhesion properties of a plasma-sprayed alumina coatings. In: Marple B et al (eds) Thermal spray: global coating solutions. ASM International, Materials Park, OH, pp 335–340, e-proceedings

    Google Scholar 

  77. Li H, Danlos Y, Costil S, Coddet C (2007) Influence of laser induced surface topography on the surface static wettability in Protal®. In: Marple B et al (eds) Thermal spray (2007), global coating solutions. ASM International, Materials Park, OH, pp 1070–1074, e-proceedings

    Google Scholar 

  78. Li H, Costil S, Coddet C (2005) Surface modification induced by the pulse Nd-YAG laser irradiation in the Protal®. In: Lugscheider E (ed) ITSC2005: explore its potential. ASM International, Materials Park, OH, e-proceedings

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Nomenclature

Nomenclature

a :

Radius of the area hit by blasting particles (m)

AA:

Arithmetic average \( \mathrm{AA}=\frac{h_1+{h}_2+\dots {h}_N}{N} \)

c m :

Sound velocity in the substrate (m/s)

c s :

Shock speed in the substrate (m/s)

c w :

Sound velocity in water (m/s)

d :

Blasting distance (m)

d o :

Sapphire orifice internal diameter for water jet (m)

E j :

Water jet energy (J)

l n :

Assessment length (m)

l t :

Transverse length (m)

L T :

Length of the profiled section with the water jet (m)

m g :

Air mass flow rate (kg/s)

m w :

Water jet mass flow rate (kg/s)

m p :

Grit particle flow rate (kg/s)

p :

Blasting pressure (MPa)

Ra:

Average roughness (μm) \( \mathrm{Ra}=\frac{1}{\mathcal{l}}{\displaystyle {\int}_0^{\mathcal{l}}z(x)}\; dx \)

R q :

Root mean square roughness (μm) \( {R}_q=\sqrt{\frac{1}{\mathcal{l}}{\displaystyle \underset{\mathcal{l}}{\int }z{(x)}^2\mathrm{d}x}}=\upsigma \)

R t :

Distance between the highest peak and the deepest undercut (μm)

R sm :

Arithmetic mean of the widths of the profile (μm)

R Δq :

Root mean square value \( {R}_{\varDelta q}=\sqrt{\frac{1}{\mathcal{l}}{\displaystyle {\int}_0^{\mathcal{l}}{\left(\frac{\mathrm{d}z(x)}{\mathrm{d}x}\right)}^2}\mathrm{d}x} \)

S n :

Blasting nozzle internal surface (m2)

S k :

Skewness parameter \( {S}_k=\frac{1}{\sigma^3}{\displaystyle {\int}_{-\infty}^{+\infty }{\left(z-m\right)}^3}\varphi (x)\mathrm{d}x \).

t b :

Blasting time (s)

t E :

Local exposure time (t E = L T /v t) to the water jet (s)

t EC :

Critical exposure time to a water jet (s)

v g :

Air velocity (m/s)

v j :

Water jet velocity (m/s)

v p :

Particle velocity (m/s)

v t :

Transverse velocity of the water jet/substrate (m/s)

φ :

Water jet nozzle efficiency parameter (-)

ρ g :

Air specific mass (kg/m3)

ρ m :

Specific mass of the substrate (kg/m3)

ρ w :

Specific mass of water (kg/m3)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fauchais, P.L., Heberlein, J.V.R., Boulos, M.I. (2014). Surface Preparation. In: Thermal Spray Fundamentals. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68991-3_12

Download citation

Publish with us

Policies and ethics