Skip to main content

Segmentation of Three-dimensional Electron Tomographic Images

  • Chapter
Electron Tomography

Abstract

The intuitive understanding of the process of segmentation is that of a compartmentalization of the image into coherent regions and the extraction of independent objects. Perhaps the most sophisticated segmentation mechanism is human vision, which is capable of interpreting a large variety of groups, associating them into classes and compartments, as well as finding relationships among them. Computer-based image segmentation algorithms typically perform only a single task, which is coupled to a specific application. Humans use a large variety of different criteria to segment images, e.g. similarity, proximity, continuity and symmetry. In electron tomography, the observer usually searches for a known shape or multiply occurring shapes to guide his segmentation. The separation criteria used are the gray value and the contrast between the feature and the environment. In a general sense, the aim is to group pixels or voxels into subsets which correspond to meaningful regions or objects.When regarding pictures by eye, one has an intuitive sense for the boundaries of meaningful objects and regions. When using the computer, however, it is difficult to find quantitative criteria which define meaningful areas on the basis of pixel properties such as contours, brightness, color, texture, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bajaj, C., Yu, Z. and Auer, M. (2003). Volumetric feature extraction and visualization of tomographic molecular imaging. J. Struct. Biol. 144:132–143.

    Article  PubMed  Google Scholar 

  • Ballard, D. H. and Brown, C. M. (1982). Computer Vision. Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Baumeister, W., Grimm, R. and Walz, J. (1999). Electron tomography of molecules and cells. Trends Cell Biol. 9:81–85.

    Article  PubMed  CAS  Google Scholar 

  • Frangakis, A. S. and Hegerl, R. (2001). Noise reduction in electron tomographic reconstructions using nonlinear anisotropic diffusion. J. Struct. Biol. 135:239–250.

    Article  PubMed  CAS  Google Scholar 

  • Frangakis, A. S. and Hegerl, R. (2002). Segmentation of two-and three-dimensional data from electron microscopy using eigenvector analysis. J. Struct. Biol. 138:105–113.

    Article  PubMed  Google Scholar 

  • Kass, M., Witkin, A. and Terzopoulos, D. (1988). Snakes: active contour models. Int. J. Comput. Vis. 1:362–385.

    Google Scholar 

  • Li, Y., Leith, A. and Frank, J. (1997). Tinkerbell—a tool for interactive segmentation of 3D data. J. Struct. Biol. 120:266–275.

    Article  PubMed  CAS  Google Scholar 

  • Malik, J., Belognie, S., Leung, T. and Shi, J. (2001). Contour and texture analysis for image segmentation. Int. J. Comput. Vis. 43:7–27.

    Article  Google Scholar 

  • Malladi, R., Sethian, J. A. and Vemuri, B. C. (1996). A fast level set based algorithm for topology-independent shape modeling. J. Math. Imag. Vis. 6:269–289.

    Article  Google Scholar 

  • Marsh, B. J., Mastronarde, D.N., Buttle, K. F., Howell, K. E. and McIntosh, J. R. (2001). Organellar relationships in the Golgi region of the pancreatic beta cell line, HIT-T15, visualized by high resolution electron tomography. Proc. Natl Acad. Sci. USA 98:2399–2406.

    Article  PubMed  CAS  Google Scholar 

  • Medalia, O., Weber, I., Frangakis, A. S., Nicastro, D., Gerisch, G. and Baumeister, W. (2002). Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 298:1209–1213.

    Article  PubMed  CAS  Google Scholar 

  • Osher, S. and Sethian, J. A. (1988). Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulation. J. Comput. Phys. 79:12–49.

    Article  Google Scholar 

  • Perkins, G.A., Renken, C.W., Song, J. Y., Frey, T. G., Young, S. J., Lamont, S., Martone, M. E., Lindsey, S. and Ellisman, M. H. (1997). Electron tomography of large, multicomponent biological structures. J. Struct. Biol. 120:219–227.

    Article  PubMed  CAS  Google Scholar 

  • Russ, J. C. (2002). The Image Processing Handbook. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Sethian, J. A. (1996). Level Set Methods Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press.

    Google Scholar 

  • Shi, J. and Malik, J. (1997). Normalized cuts and image segmentation. Paper presented at: Proceedings of the IEEE Conferences on Computer Vision and Pattern Recognition.

    Google Scholar 

  • Volkmann, N. (2002). A novel three-dimensional variant of the watershed transform for segmentation of electron density maps. J. Struct. Biol. 138:123–129.

    Article  PubMed  CAS  Google Scholar 

  • Weickert, J. (1999). Anisotropic Diffusion in Image Processing, B. G. Teubner Stuttgart.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Frangakis, A.S., Hegerl, R. (2007). Segmentation of Three-dimensional Electron Tomographic Images. In: Frank, J. (eds) Electron Tomography. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69008-7_13

Download citation

Publish with us

Policies and ethics