Skip to main content

Lineage-Specific Transcription Factor Aberrations in AML

  • Chapter
  • First Online:
Acute Myelogenous Leukemia

Part of the book series: Cancer Treatment and Research ((CTAR,volume 145))

  • 2540 Accesses

Abstract

Transcription factors play a key role in the commitment of hematopoietic stem cells to differentiate into specific lineages [78]. This is particularly important in that a block in terminal differentiation is the key contributing factor in acute leukemias. This general theme of the role of transcription factors in differentiation may also extend to other tissues, both in terms of normal development and cancer. Consistent with the role of transcription factors in hematopoietic lineage commitment is the frequent finding of aberrations in transcription factors in AML patients. Here, we intend to review recent findings on aberrations in lineage-restricted transcription factors as observed in patients with acute myeloid leukemia (AML).

Declaration: All authors declare that they have no interest in a company – or a competitor of a company – whose product was analyzed in the present work. All authors agree with the manuscript in its present form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akashi K, Traver D, Miyamoto T, Weissman IL. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature. 2000;404:193–197.

    Article  CAS  PubMed  Google Scholar 

  2. Avivi I, Rowe JM. Prognostic factors in acute myeloid leukemia. Curr Opin Hematol. 2005;12:62–67.

    Article  CAS  PubMed  Google Scholar 

  3. Barjesteh van Waalwijk van Doorn-Khosrovani S, Erpelinck C, van Putten WL, et al. High EVI1 expression predicts poor survival in acute myeloid leukemia: a study of 319 de novo AML patients. Blood. 2003;101:837–845.

    Article  CAS  Google Scholar 

  4. Behre G, Singh SM, Liu H, et al. Ras signaling enhances the ability of CEBPA to induce granulocytic differentiation by phosphorylation of serine 248. J Biol Chem. 2002;277:26293–26299.

    Article  CAS  PubMed  Google Scholar 

  5. Bienz M, Ludwig M, Mueller BU, et al. Risk assessment in patients with acute myeloid leukemia and a normal karyotype. Clin Cancer Res. 2005;11:1416–1425.

    Article  CAS  PubMed  Google Scholar 

  6. Bullinger L, Dohner K, Bair E, et al. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med. 2004;350:1605–1616.

    Article  CAS  PubMed  Google Scholar 

  7. Calligaris R, Bottardi S, Cogoi S, Apezteguia I, Santoro C. Alternative translation initiation site usage results in two functionally distinct forms of the GATA-1 transcription factor. Proc Natl Acad Sci USA. 1995;92:11598–11602.

    Article  CAS  PubMed  Google Scholar 

  8. Chim CS, Wong ASY, Kwong YL. Infrequent hypermethylation of CEBPA promoter in acute myeloid leukaemia. Br J Haemat. 2002;119:988–990.

    Article  CAS  Google Scholar 

  9. Cook WD, McCaw BJ, Herring CD, et al. PU.1 is a suppressor of myeloid leukemia, inactivated in mice by gene deletion and mutation of its DNA-binding domain. Blood. 2004;104:3437–3444.

    Article  CAS  PubMed  Google Scholar 

  10. Dahl R, Walsh JC, Lancki D, et al. Regulation of macrophage and neutrophil cell fates by the PU.1:C/EBPalpha ratio and granulocyte colony-stimulating factor. Nat Immunol. 2003;4:1029–1036.

    Article  CAS  PubMed  Google Scholar 

  11. Dakic A, Metcalf D, Di Rago L, et al. Pu.1 regulates the commitment of adult hematopoietic progenitors and restricts granulopoiesis. J Exp Med. 2005;201:1487–1502.

    Article  CAS  PubMed  Google Scholar 

  12. DeKoter RP, Singh H. Regulation of B lymphocyte and macrophage development by graded expression of PU.1 Science. 2000;288:1439–1441.

    Article  CAS  PubMed  Google Scholar 

  13. Dohner K, Tobis K, Bischof T, et al. Mutation analysis of the transcription factor PU.1 in younger adults (16 to 60 years) with acute myeloid leukemia: a study of the AML Study Group Ulm (AMLSG ULM). Blood. 2002;100:4680–4681.

    Article  Google Scholar 

  14. Emambokus N, Vegiopoulos A, Haman B, et al. Progression through key stages of hematopoiesis is dependent on distinct threshold levels of c-myb. EMBO J. 2003;22;4478–4488.

    Article  PubMed  Google Scholar 

  15. Falini B, Mecucci C, Tiacci E, et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med. 2005;352:254–266.

    Article  CAS  PubMed  Google Scholar 

  16. Fröhling S, Schlenk RF, Krauter J. Acute myeloid leukemia with deletion 9q within a noncomplex karyotype is associated with CEBPA loss-of-function mutations. Genes Chrom Cancer. 2005;42:427–432.

    Article  PubMed  CAS  Google Scholar 

  17. Fröhling S, Schlenk RF, Stolze I, et al. CEBPA mutations in younger adults with acute myeloid leukemia and normal cytogenetics: prognostic relevance and analysis of cooperating mutations. J Clin Oncol. 2004;22:624–633.

    Article  PubMed  CAS  Google Scholar 

  18. Gilliland DG, Tallman MS. Focus on acute leukemias. Cancer Cell. 2002;1:417–420.

    Article  CAS  PubMed  Google Scholar 

  19. Gombart AF, Hofmann WK, Kawano S, et al. Mutations in the gene encoding the transcription factor CCAAT/enhancer binding protein alpha in myelodysplastic syndromes and acute myeloid leukemias. Blood. 2002;99:1332–1340.

    Article  CAS  PubMed  Google Scholar 

  20. Gurbuxani S, Vyas P, Crispino JD. Recent insights into the mechanisms of myeloid leukemogenesis in Down syndrome. Blood. 2004;103:399–406.

    Article  CAS  PubMed  Google Scholar 

  21. Hall MA, Curtis DJ, Metcalf D. The critical regulator of embryonic hematopoiesis, SCL, is vital in the adult for megakaryopoiesis, erythropoiesis, and lineage choice in CFU-S12. Proc Natl Acad Sci USA. 2003;100:992–997.

    Article  CAS  PubMed  Google Scholar 

  22. Harada H, Harada Y, Niimi H, Kyo T, Kimura A, Inaba T. High incidence of somatic mutations in the AML1/RUNX1 gene in myelodysplastic syndrome and low blast percentage myeloid leukemia with myelodysplasia. Blood. 2004;103:2316–2324.

    Article  CAS  PubMed  Google Scholar 

  23. Helbling D, Mueller BU, Timchenko NA, et al. CBFB-SMMHC is correlated with increased calreticulin expression and suppresses the granulocytic differentiation factor CEBPA in AML with inv(16). Blood. 2005;106:1369–1375.

    Article  CAS  PubMed  Google Scholar 

  24. Helbling D, Mueller BU, Timchenko NA, et al. The leukemic fusion gene AML1-MDS1-EVI1 suppresses CEBPA in acute myeloid leukemia by activation of calreticulin. Proc Natl Acad Sci USA. 2004;101:13312–13317.

    Article  CAS  PubMed  Google Scholar 

  25. Hitzler JK, Zipursky A. origins of leukaemia in children with Down’s syndrome. Nat Rev Cancer. 2005;5:11–20.

    Article  CAS  PubMed  Google Scholar 

  26. Hope KJ, Jin L, Dick JE. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol. 2004;5:738–743.

    Article  CAS  PubMed  Google Scholar 

  27. Huntly BJ, Shigematsu H, Deguchi K, et al. MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell. 2004;6:587–596.

    Article  CAS  PubMed  Google Scholar 

  28. Ichikawa M, Asai T, Saito T, et al. AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med. 2004;10:299–304.

    Article  CAS  PubMed  Google Scholar 

  29. Iwama A, Oguro H, Negishi M, et al. Enhanced self-renewal of hematopoietic stem cells mediated by the polycomb gene product Bmi-1. Immunity. 2004;21:843–851.

    Article  CAS  PubMed  Google Scholar 

  30. Jamieson CH, Ailles LE, Dylla SJ, et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast crisis CML. N Engl J Med. 2004;351:657–667.

    Article  CAS  PubMed  Google Scholar 

  31. Kelly LM, Gilliland DG. Genetics of myeloid leukemias. Annu Rev Genomics Hum Genet. 2002;3:179–198.

    Article  CAS  PubMed  Google Scholar 

  32. Kim HG, De Guzman CG, Swindle CS, et al. The ETS family transcription factor PU.1 is necessary for the maintenance of fetal liver hematopoietic stem cells. Blood. 2004;104:3894–3900.

    Article  CAS  PubMed  Google Scholar 

  33. Langabeer SE, Gale RE, Rollinson SJ, Morgan GJ, Linch DC. Mutations of the AML1 gene in acute myeloid leukemia of FAB types M0 and M7. Genes Chromosomes Cancer. 2002;34:24–32.

    Article  CAS  PubMed  Google Scholar 

  34. Lange B. The management of neoplastic disorders of haematopoiesis in children with Down’s syndrome. Br J Haematol. 2000;110:512–524.

    Article  CAS  PubMed  Google Scholar 

  35. Leroy H, Roumier C, Huyghe P, et al. CEBPA point mutations in haematological malignancies. Leukemia. 2005;19:329–334.

    Article  CAS  PubMed  Google Scholar 

  36. Lessard J, Sauvageau G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature. 2003;423:255–260.

    Article  CAS  PubMed  Google Scholar 

  37. Lin LI, Chen CY, Lin DT, et al. Characterization of CEBPA mutations in acute myeloid leukemia: most patients with CEBPA mutations have biallelic mutations and show distinct immunophenotype of the leukemic cells. Clin Cancer Res. 2005;11:1372–1379.

    Article  CAS  PubMed  Google Scholar 

  38. Look AT. Oncogenic transcription factors in the human acute leukemias. Science. 1997;278:1059–1064.

    Article  CAS  PubMed  Google Scholar 

  39. Marcucci G, Mrozek K, Bloomfield CD. Molecular heterogeneity and prognostic biomarkers in adults with acute myeloid leukemia and normal cytogenetics. Curr Opinion Hematol. 2005;12:68–75.

    Article  CAS  Google Scholar 

  40. Matsuno N, Osato M, Yamashita N, et al. Dual mutations in the AML1 and FLT3 genes are associated with leukemogenesis in acute myeloblastic leukemia of the M0 subtype. Leukemia. 2003;17:2492–2499.

    Article  CAS  PubMed  Google Scholar 

  41. Michaud J, Wu F, Osato M, Cottles GM, et al. In vitro analyses of known and novel RUNX1/AML1 mutations in dominant familial platelet disorder with predisposition to acute myelogenous leukemia: implications for mechanisms of pathogenesis. Blood. 2002;99:1364–1372.

    Article  CAS  PubMed  Google Scholar 

  42. Migliaccio AR, Rana RA, Sanchez M, et al. GATA-1 as a regulator of mast cell differentiation revealed by the phenotype of the GATA-1 low mouse mutant. J Exp Med. 2003;197:281–296.

    Article  CAS  PubMed  Google Scholar 

  43. Mizuki M, Schwable J, Steur C, et al. Suppression of myeloid transcription factors and induction of STAT response genes by AML-specific Flt3 mutations. Blood. 2003;101:3164–3173.

    Article  CAS  PubMed  Google Scholar 

  44. Mueller BU, Pabst T, Osato M, et al. Heterozygous PU.1 mutations are associated with acute myeloid leukemia. Blood. 2002;100:998–1007.

    Article  CAS  PubMed  Google Scholar 

  45. Mueller BU, Pabst T, Petkovic V, et al. ATRA resolves the differentiation block in t(15;17) acute myeloid leukemia by restoring PU.1 expression through CEBP induction. Blood. 2006;107:3330–3338.

    Article  CAS  PubMed  Google Scholar 

  46. Nerlov C. C/EBPα mutations in acute myeloid leukaemias. Nat Rev. 2004;4:394–400.

    Article  CAS  Google Scholar 

  47. Nichols KE, Crispino JD, Poncz M, et al. Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA1. Nat Genet. 2000;24:266–270.

    Article  CAS  PubMed  Google Scholar 

  48. Nutt SL, Metcalf D, D’Amico A, et al. Dynamic regulation of PU.1 expression in multipotent hematopoietic progenitors. J Exp Med. 2005;201:221–231.

    Article  CAS  PubMed  Google Scholar 

  49. Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell. 1996;84:321–330.

    Article  CAS  PubMed  Google Scholar 

  50. Orkin SH. Diversification of haematopoietic stem cells to specific lineages. Nat Rev Genet. 2000;1:57–64.

    Article  CAS  PubMed  Google Scholar 

  51. Osato M, Asou N, Abdalla E, et al. Biallelic and heterozygous point mutations in the runt domain of the AML1/PEBP2alphaB gene associated with myeloblastic leukemias. Blood. 1999;93:1817–1824.

    CAS  PubMed  Google Scholar 

  52. Pabst T, Mueller BU, Harakawa N, et al. AML1-ETO downregulates the granulocytic differentiation factor CEBPA in t(8:21) myeloid leukemia. Nat Med. 2001;7:444–451.

    Article  CAS  PubMed  Google Scholar 

  53. Pabst T, Mueller BU, Zhang P, et al. Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (CEBPA), in acute myeloid leukemia. Nat Genet. 2001;27:263–270.

    Article  CAS  PubMed  Google Scholar 

  54. Pabst T, Stillner E, Neuberg D, et al. Mutations of the myeloid transcription factor CEBPA are not associated with the blast crisis of chronic myeloid leukemia. Br J Haematol. 2006. In press.

    Google Scholar 

  55. Parkin SE, Baer M, Copeland TD, et al. Regulation of CCAAT/enhancer binding protein (C/EBP) activator proteins by heterodimerization with C/EBP□ (Ig/EBP). J Biol Chem. 2002;277:23563–23572.

    Article  CAS  PubMed  Google Scholar 

  56. Passegue E, Jamieson CH, Ailles LE, Weissman IL. Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc Natl Acad Sci USA. 2003;100(suppl 1):11842–11849.

    Article  CAS  PubMed  Google Scholar 

  57. Passegue E, Wagner EF, Weissman IL. JunB deficiency leads to a myeloproliferative disorder arising from hematopoietic stem cells. Cell. 2004;119:431–443.

    Article  CAS  PubMed  Google Scholar 

  58. Perrotti D, Calabretta B. Translational regulation by the p210 BCR/ABL oncoprotein. Oncogene. 2004;23:3222–3229.

    Article  CAS  PubMed  Google Scholar 

  59. Perrotti D, Cesi V, Trotta R, et al. BCR-ABL suppresses CEBPA expression through inhibitory action of hnRNP E2. Nat Genet. 2002;30:48–58.

    Article  CAS  PubMed  Google Scholar 

  60. Perrotti D, Marcucci G, Caliguri MA. Loss of CEBPA and favorable prognosis of acute myeloid leukemias: a biological paradox. J Clin Oncol. 2004;22:582–584.

    Article  CAS  PubMed  Google Scholar 

  61. Preudhomme C, Sagot C, Boisset N, et al. Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia : a study from the Acute Leukemia French Association (ALFA). Blood. 2002;100:2717–2723.

    Article  CAS  PubMed  Google Scholar 

  62. Preudhomme C, Warot-Loze D, Roumier C, et al. High incidence of biallelic point mutations in the Runt domain of the AML1/PEBP2 alpha B gene in Mo acute myeloid leukemia and in myeloid malignancies with acquired trisomy 21. Blood. 2000;96:2862–2869.

    CAS  PubMed  Google Scholar 

  63. Rosenbauer F, Wagner K, Kutok JL, et al. Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor PU.1. Nat Genet. 2004;36:624–630.

    Article  CAS  PubMed  Google Scholar 

  64. Ross SE, Radomska HS, Wu B, et al. Phosphorylation of C/EBPα inhibits granulopoiesis. Mol Cell Biol. 2004;24:675–686.

    Article  CAS  PubMed  Google Scholar 

  65. Schwieger M, Löhler J, Fischer M. A dominant-negative mutant of CEBPA, associated with acute myeloid leukemias, inhibits differentiation of myeloid and erythroid progenitors of man but not mouse. Blood. 2004;103:2744–2752.

    Article  CAS  PubMed  Google Scholar 

  66. Scott EW, Fisher RC, Olson MC, et al. PU.1 function in a cell-autonomous manner to control the differentiation of multipotential lymphoid-myeloid progenitors. Immunity. 1997;6:437–447.

    Article  CAS  PubMed  Google Scholar 

  67. Sellick GS, Spendlove HE, Catovsky D, et al. Further evidence that germline CEBPA mutations cause dominant inheritance of acute myeloid leukemia. Leukemia. 2005;19:1276–1278.

    Article  CAS  PubMed  Google Scholar 

  68. Shimizu R, Kuroha T, Ohneda O, et al. Leukemogenesis caused by incapacitated GATA-1 function. Mol Cell Biol. 2004;24:10814–10825.

    Article  CAS  PubMed  Google Scholar 

  69. Shivdasani RA, Fujiwara Y, McDevitt MA, Orkin SH. A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development. EMBO J. 1997;16:3965–3973.

    Article  CAS  PubMed  Google Scholar 

  70. Shivdasani RA, Mayer EL, Orkin SH. Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature. 1995;373:432–434.

    Article  CAS  PubMed  Google Scholar 

  71. Silva FP, Morolli B, Storlazzi CT, et al. Identification of RUNX1/AML1 as a classical tumor suppressor gene. Oncogene. 2003;22:538–547.

    Article  CAS  PubMed  Google Scholar 

  72. Smith ML, Arch R, Smith LL, et al. Development of a human acute myeloid leukaemia screening panel and consequent identification of novel gene mutation in FLT3 and CCND3. Br J Haemat. 2005;128:318–323.

    Article  CAS  Google Scholar 

  73. Smith ML, Cavenagh JD, Lister TA, Fitzgibbon J. Mutation of CEBPA in familial acute myeloid leukemia. N Engl J Med. 2004;351:2403–2407.

    Article  CAS  PubMed  Google Scholar 

  74. Snaddon J, Smith ML, Neat M, et al. Mutations of CEBPA in acute myeloid leukemia FAB types M1 and M2. Genes Chromosomes Cancer. 2003;37:72–78.

    Article  CAS  PubMed  Google Scholar 

  75. Song WJ, Sullivan MG, Legare RD, et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet. 1999;23:166–75.

    Article  CAS  PubMed  Google Scholar 

  76. Takahashi S, Onodera K, Motohashi H, et al. Arrest in primitive erythroid cell development caused by promoter-specific disruption of the GATA-1 gene. J Biol Chem. 1997;272:12611–12615.

    Article  CAS  PubMed  Google Scholar 

  77. Tenen DG, Hromas R, Licht JD, Zhang DE. Transcription factors, normal myeloid development, and leukemia. Blood. 1997;90:489–519.

    CAS  PubMed  Google Scholar 

  78. Tenen, DG. Transcription factors in myeloid differentiation and leukemia. Nat Rev Cancer. 2003;3:89–101.

    Article  CAS  PubMed  Google Scholar 

  79. Timchenko NA, Iakova P, Welm AL, et al. Calreticulin interacts with C/EBPα and C/EBPβ mRNAs and represses translation of C/EBP proteins. Mol Cell Biol. 2002;22:7242–7257.

    Article  CAS  PubMed  Google Scholar 

  80. Truong BTH, Lee YJ, Lodie TA, et al. CCAAT/enhancer binding proteins repress the leukemic phenotype of acute myeloid leukemia. Blood. 2003;101:1141–1148.

    Article  CAS  PubMed  Google Scholar 

  81. Valk PJM, Delwel R, Lowenberg B. Gene expression profiling in acute myeloid leukemia. Curr Opinion Hemat. 2005;12:76–81.

    Article  CAS  Google Scholar 

  82. Valk PJM, Verhaak RGW, Beijen MA, et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med. 2004;350:1617–1628.

    Article  CAS  PubMed  Google Scholar 

  83. Van Waalwijk van Doorn-Khosrovani SB, Erpelnick C, Meijer J, et al. Biallelic mutations in the CEBPA gene and low CEBPA expression levels as prognostic markers in intermediate-risk AML. Hematol J. 2003;4:31–40.

    Article  CAS  Google Scholar 

  84. Vangala RK, Heiss-Neumann MS, Rangatia JS, et al. The myeloid transcription factor PU.1 is inactivated by AML1-ETO in t(8;21) myeloid leukemia. Blood. 2003;101:270–277.

    Article  CAS  PubMed  Google Scholar 

  85. Wang GL, Iakova P, Wilde M, et al. Liver tumors escape negative control of proliferation via PI3K/Akt-mediated block of CEBPA growth inhibitory activity. Genes Dev. 2004;18:912–925.

    Article  CAS  PubMed  Google Scholar 

  86. Wechsler J, Greene M, McDevitt MA, et al. Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat Genet. 2002;32:148–152.

    Article  CAS  PubMed  Google Scholar 

  87. Yu C, Cantor AB, Yang H, et al. Targeted deletion of a high-affinity GATA-binding site in the GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo. J Exp Med. 2002;195:1387–1395.

    Article  CAS  PubMed  Google Scholar 

  88. Zhang P, Iwasaki-Arai J, Iwasaki H, et al. Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBPα. Immunity. 2004;21:853–863.

    Article  CAS  PubMed  Google Scholar 

  89. Zheng R, Friedman AD, Levis M, et al. Internal tandem duplication mutation of FLT3 blocks myeloid differentiation through suppression of C/EBPα expression. Blood. 2004;103:1883–1890.

    Article  CAS  PubMed  Google Scholar 

  90. Zipursky A. Transient leukemia – a benign form of leukaemia in newborn infants with trisomy 21. Br J Haematol. 2003;120:930–968.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Research grants: This work was supported by grants from the Swiss National Science Foundation SF 3100A0-100445 to B.U.M. and SF 310000-109388 to TP.We apologize to all authors whose contribution to the field could not be cited due to limitations in space.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatrice U. Mueller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mueller, B.U., Pabst, T. (2009). Lineage-Specific Transcription Factor Aberrations in AML. In: Nagarajan, L. (eds) Acute Myelogenous Leukemia. Cancer Treatment and Research, vol 145. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69259-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-69259-3_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-69257-9

  • Online ISBN: 978-0-387-69259-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics