Skip to main content

The Apoptotic Mitochondrial Pathway – Modulators, Interventions and Clinical Implications

  • Chapter
Mitochondria

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 2))

  • 2271 Accesses

Abstract

The orderly, energy-dependent death by apoptosis is an essential process that ensures the functional and structural integrity of a variety of adult tissues and organs. This process is associated with morphological and biochemical changes, culminating in nuclear DNA fragmentation and cell shrinkage but without the dramatic disruption of the sarcolemma that is the main feature of death by necrosis (Hetts 1998). However, to ensure the safe and effective physiological role of apoptosis, a number of regulators and controllers are involved. Loss of control over apoptosis can lead to pathological conditions (e.g. proliferative disorders and degenerative conditions (reviewed in (Hetts 1998)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ace inhibitor myocardial infarction collaborative group (1998) Indications for ACE inhibitors in the early treatment of acute myocardial infarction: systematic overview of individual data from 100000 patients in randomized trials. Circulation 97: 2202–2212

    Google Scholar 

  • Andreka P, Nadhazi Z, Muzes G, Sxantho G, Vandor L, Konya L, Turner MS, TulassayZ , Bishopric NH (2004a) Possible therapeutic targets in cardiac myocyte apoptosis. Curr Pharm Des 10(20): 2445–61

    PubMed  CAS  Google Scholar 

  • Andreka P, Tran T, Webster KA, Bishopric NH (2004b) Nitric oxide and promotion of cardiac myocyte apoptosis. Mol Cell Biochem 263(1-2): 35–53

    PubMed  CAS  Google Scholar 

  • Arnoult D, Gaume B, Karbowski M, Sharpe J, Cecconi F, Youle R (2003) Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bak-mediated permeabilization. EMBO J 22(17): 4385–4399

    PubMed  CAS  Google Scholar 

  • Ascensao A, Magalhaes J, Soares JM, Ferreira R, Neuparth MJ, Marques F, Oliveira PJ, Duarte JA (2005) Moderate endurance training prevents doxorubicin-induced in vivo mitochondriopathy and reduces the development of cardiac apoptosis. Am J Physiol Heart Circ Physiol 289(2): H722–31

    PubMed  CAS  Google Scholar 

  • Baldi A, Abbate A, Bussani R, Patti G, Melfi R, Angelini A, Dobrina A, Rossiello R, Silvestri F, Baldi F, DiSciascio G (2002) Apoptosis and post-infarction left ventricular remodeling. J Mol Cell Cardiol 34(2): 165–1

    PubMed  CAS  Google Scholar 

  • Benjamin IJ, Schneider MD (2005) Learning from failure: congestive heart failure in the postgenomic age. J Clin Invest 115: 495–9

    PubMed  CAS  Google Scholar 

  • Bialik S, Cryns VL, Drimcic A, Miyata S, Wollowick AL, Srinivasan A, Kitsis RN (1999) The mitochondrial apoptotic pathway is activated by serum and glucose deprivation in cardiac myocytes. Circ Res 85: 403–14

    PubMed  CAS  Google Scholar 

  • Bojunga J, Nowak D, Mitrou P S, Hoelzer D, Zeuzem S, Cchow KU (2004) Antioxidative treatment prevents activation of death-receptor- and mitochondrion-dependent apoptosis in the hearts of diabetic rats. Diabetologia 47: 2072–80

    PubMed  CAS  Google Scholar 

  • Bortner CD, Cidlowski JA (1998) A necessary role for cell shrinkage in apoptosis. Biochem Pharmacol 56: 1549–1559

    PubMed  CAS  Google Scholar 

  • BorutaiteV, Brown GC (2003) Mitochondria in apoptosis of ischemic heart. FEBS Lett 541: 1–5

    PubMed  CAS  Google Scholar 

  • Bratton S, Walker G, Srinivasula S, Sun X, Butterworth M, Alnemri E, Cohen G (2001) Recruitment, activation and retention of caspases-9 and-3 by Apaf-1 apoptosome and associated XIAP complexes. Embo J 20: 998–1009

    PubMed  CAS  Google Scholar 

  • Byrne JA, Grieve DJ, Cave AC, Shan AM (2003) Oxidative stress and heart failure. Arch Mal Coeur Vaiss 96: 214–21

    PubMed  CAS  Google Scholar 

  • Caldarone CA, Barner EW, Wang L, Karimi M, Mascio CE, Hammel JM, Segar J L, Du C, Scholz TD (2004) Apoptosis-related mitochondrial dysfunction in the early postoperative neonatal lamb heart. Ann Thorac Surg 78: 948–955

    PubMed  Google Scholar 

  • Chen QM, Tu VC (2002) Apoptosis and heart failure: mechanisms and therapeutic implications. Am J Cardiovasc Drugs 2: 43–57

    PubMed  CAS  Google Scholar 

  • Chen Z, Chua CC, Ho YS, Hamdy RC, Chua BHL (2001) Overexpression of Bcl-2 attenuates apoptosis and protects against myocardial I/R injury in transgenic mice. Am J Physiol Heart Circ Physiol 280: H2313–H2320

    PubMed  CAS  Google Scholar 

  • Cheng W, Li B, Kajstura J, Li P, Wolin M, Sonnenblick E, Hintze T, Olivetti G, Anversa P (1995) Stretch-induced programmed myocyte cell-death. J Clin Invest 96: 2247–2259

    PubMed  CAS  Google Scholar 

  • Communal C, Singh K, Pimentel D, Colucci W (1998). Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the beta-adrenergic pathway. Circulation 98: 1329–1334

    PubMed  CAS  Google Scholar 

  • Cook SA, Sugden PH, Clerk A. (1999) Regulation of bcl-2 family proteins during development and in response to oxidative stress in cardiac myocytes: association with changes in mitochondrial membrane potential. Circ Res 85: 940–949

    PubMed  CAS  Google Scholar 

  • Crow MT, Mani K, Nam YJ, Kitsis RN (2004) The mitochondrial death pathway and cardiac myocyte apoptosis. Circ Res 95: 957–970

    PubMed  CAS  Google Scholar 

  • Czerski L, Nunez G (2004) Apoptosome formation and caspase activation: is it different in the heart? J Mol Cell Cardiol 37: 643–652

    PubMed  CAS  Google Scholar 

  • d’Anglemont de Tassigny A, Souktani R, Henry P, Ghaleh B, Berdeaux A (2004) Volume-sensitive chloride channels (I Cl,vol ) mediated doxorubicin-induced apoptosis through apoptotic volume decrease in cardiomyocytes. Fundam Clin Pharmacol 18: 531–539

    PubMed  Google Scholar 

  • de Moissac D, Gurevich RM, Zheng H, Singal PK, Kirshenbaum LA (2000) Caspase activation and mitochondrial cytochrome C release during hypoxia-mediated apoptosis of adult ventricular myocytes. J Mol Cell Cardiol 32: 53–63

    PubMed  CAS  Google Scholar 

  • Deply E, Hatem SN, Andrieu N, De Vaumas C, Henaff M, Rucker-Martin C, Ajffrezou JP, Laurent G, Levade T, Mercadier JJ (1999) Doxorubicin induces slow ceramide accumulation and late apoptosis in cultured adult rat ventricular myocytes. Cardiovasc Res 43: 398–407

    Google Scholar 

  • Diez J, Fortuno M, Zalba G, Etayo J, Fortuno A, Ravassa S, Beaumont J (1998) Altered regulation of smooth muscle cell proliferation and apoptosis in small arteries of spontaneously hypertensive rats. Eur Heart J 19: G29–G33

    PubMed  Google Scholar 

  • Doonan F, Cotter TG (2004) Apoptosis: A potential therapeutic target for retinal degenerations. Curr Neurovasc Res 1: 41–53

    PubMed  CAS  Google Scholar 

  • Druzhyna NM, Hollensworth SB, Kelley MR, Wilson GL, Ledoux SP (2003) Targeting human 8-oxoguanine glycosylase to mitochondria of oligodendrocytes protects against menadione-induced oxidative stress. Glia 42: 370–378

    PubMed  Google Scholar 

  • Ekhterae D, Lin Z, Lundberg MS, Crow MT, Brosius F C III, Nunez G (1999) ARC inhibits cytochrome c release from mitochondria and protects against hypoxia-induced apoptosis in heart-derived H9c2 cells. Circ Res 85: e70–7

    PubMed  CAS  Google Scholar 

  • Fischer U, Schulze-Osthoff K (2005) New approaches and therapeutics targeting apoptosis in disease. Pharmacol Rev 57: 187–215

    PubMed  CAS  Google Scholar 

  • Flather MD, Yusuf S, Kober L, Pfeffer M, Hall A, Murray G, Torppedersen C, Ball S, Pogue J, Moye L, Braunwald E (2000) Long-term ACE inhibitor therapy in patients with heart failure or left-ventricular dysfunction: a systematic overview of dtaa from individual patients. The Lancet 355: 1575–1581

    CAS  Google Scholar 

  • Frustaci A, Kajstura J, Chimenti C, Jakoniuk I, Leri A, Maseri A, Nadal-Ginard B, Anversa P (2000) Myocardial cell death in human diabetes. Circ Res 87: 1123–1132

    PubMed  CAS  Google Scholar 

  • Fumarola C, Guidotti GG (2004) Stress-induced apoptosis: toward a symmetry with receptor-mediated cell death. Apoptosis 9: 77–82

    PubMed  CAS  Google Scholar 

  • Gill C, Mestril R, Samali A (2002) Losing heart: the role of apoptosis in heart disease–a novel therapeutic target? FASEB J 16: 135–46

    PubMed  CAS  Google Scholar 

  • Gonzalez A, Lopez B, Ravassa S, Querejeta R, Larman M, Diez J, Fortuno MA (2002) Stimulation of apoptosis in essential hypertension: potential role of angiotensin II. Hypertension 39: 75–80

    PubMed  CAS  Google Scholar 

  • Gottlieb R, Burleson K, Kloner R, Babior B, Engler R (1994) Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 94: 1621–1628

    PubMed  CAS  Google Scholar 

  • Goussev A, Sharov VG, Shimoyama H, Tanimura M, Lesch M, Goldstein S, Sabbah HN (1998) Effects of ACE inhibition on cardiomyocyte apoptosis in dogs with heart failure. Am J Physiol Heart Circ Physiol 275: H626–H631

    CAS  Google Scholar 

  • Green PS, Leeuwenburg C (2002) Mitochondrial dysfunction is an early indicator of doxorubucin-induced apoptosis. Biochim Biophys Acta 1588: 94–101

    PubMed  CAS  Google Scholar 

  • Grishko V, Pastukh V, Solodushko V, Gillespie M, Azuma J, Schaffer S (2003) Apoptotic cascade initiated by angiotensin II in neonatal cardiomyocytes: role of DNA damage. Am J Physiol Heart Circ Physiol 285: H2364–H2372

    PubMed  CAS  Google Scholar 

  • Gupta S, Knowlton AA (2002) Cytosolic heat shock protein 60, hypoxia, and apoptosis. Circulation 106: 2727–33

    PubMed  CAS  Google Scholar 

  • Gurevich RM, Regula KM, Kirshenbaum LA (2001). Serpin protein CrmA suppresses hypoxia-mediated apoptosis of ventricular myocytes. Circulation 103: 1984–91

    PubMed  CAS  Google Scholar 

  • Harada K, Sugaya T, Murakami K, Yazaki Y, Komuro I (1999) Angiotensin II type 1A receptor knockout mice display less left ventricular remodeling and improved survival after myocardial infarction. Circulation 100: 2093–2099

    PubMed  CAS  Google Scholar 

  • Heinrich H, Holz J (1998) Myocardial apoptosis in the overloaded and the aging heart: a critical role of mitochondria? Eur Cytokine Netw 9: 693–5

    PubMed  CAS  Google Scholar 

  • Hetts SW (1998). To die or not to die: an overview of apoptosis and its role in disease. JAMA 279: 300–7

    PubMed  CAS  Google Scholar 

  • Hollander JM, Lin KM, Scott BT, Dillmann WH (2003) Overexpression of PHGPx and HSP60/10 protects against ischemia/reoxygenation injury. Free Radic Biol Med 35: 742-–1

    PubMed  CAS  Google Scholar 

  • Hu Y, Benedict M, Ding L, Nunez G (1999) Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1-mediated caspase-9 activation and apoptosis. Embo J 18: 3586–3595

    PubMed  CAS  Google Scholar 

  • Ide T, Tsutsui H, Hayashidani S, Kang D, Suematsu N, Nakamura KE, Utsumi H, Hamasaki N, Takeshita A (2001) Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circ Res 88: 529–555

    PubMed  CAS  Google Scholar 

  • James TN, St Martin E, Willis P W III, Lohr TO (1996) Apoptosis as a possible cause of gradual development of complete heart block and fatal arrhythmias associated with absence of the AV node, sinus node and internodal pathways. Circulation 93: 1424–1438

    PubMed  CAS  Google Scholar 

  • Jang YM, Kendaiah S, Drew B, Phillips T, Selman C, Julian D, Leeuwenburg C (2004) Doxorubicin treatment in vivo activates caspase-12 mediated cardiac apoptosis in both male and female rats. FEBS Lett 577: 483–490

    PubMed  CAS  Google Scholar 

  • Kajstura J, Cheng W, Sarabgarajan R, Li P, Li B, Nitahara J, Chapnick S, Reiss K, Olivetti G, Anversa P (1996) Necrotic and apoptotic myocyte cell death in the aging heart of Fischer 344 rats. Am J Physiol Heart Circ Physiol 40: H1215–H1228

    Google Scholar 

  • Kajstura J, Cigola E, Malhotra A, Li P, Cheng W, Meggs LG, Anversa P (1997) Angiotensin II induces apoptosis of adult ventricular myocytes in vitro. J Mol Cell Cardiol 29: 859–870

    PubMed  CAS  Google Scholar 

  • Kawaguchi H, Shin WS, Wang Y, Inukai M, Kato M, Matsuo-Okai Y, Sakamoto A, Uehara Y, Kaneda Y, Toyo-Oka T (1997) In vivo gene transfection of human endothelial cell nitric oxide synthase in cardiomyocytes causes apoptosis-like cell death. Identification using Sendai virus-coated liposomes. Circulation 95: 2441–7

    PubMed  CAS  Google Scholar 

  • Khoynezhad A, Jalali Z, Tortolani AJ (2004) Apoptosis: pathophysiology and therapeutic implications for the cardiac surgeon. Ann Thorac Surg 78: 1109–18

    PubMed  Google Scholar 

  • Kirchhoff SR, Gupta S, Knowlton AA (2002) Cytosolic heat shock protein 60, apoptosis, and myocardial injury. Circulation 105: 2899–904

    PubMed  CAS  Google Scholar 

  • Knowlton AA, Kapadia S, Torre-Amione G, Durand JB, Bies R, Young J, Mann DL (1998) Differential expression of heat shock proteins in normal and failing human hearts. J Mol Cell Cardiol 30: 811–8

    PubMed  CAS  Google Scholar 

  • Kumar D, Kirshenbaum L, Li T, Danelisen I, Singal P (1999) Apoptosis in isolated adult cardiomyocytes exposed to adriamycin. Heart in Stress 874: 156–168

    CAS  Google Scholar 

  • Leri A, Claudio P, Li Q, Wang X, Reiss K, Wang S, Malhotra A, Kajstura J, Anversa P (1998) Stretch-mediated release of angiotensin II induces myocyte apoptosis by activating p53 that enhances the local renin-angiotensin system and decreases the Bcl-2-to-Bax protein ratio in the cell. J Clin Invest 101: 1326–1342

    PubMed  CAS  Google Scholar 

  • Leri A, Liu Y, Li B, Fiordaliso F, Malhotra A, Latini R, Kajstura J, Anversa P (2000) Up-regulation of AT1 and AT2 receptors in postinfarcted hypertrophied myocytes and stretch-mediated apoptotic cell death. Am J Pathol 156: 1663–1672

    PubMed  CAS  Google Scholar 

  • Li JM, Shah AM (2004) Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology. Am J Physiol Regul Integr Comp Physiol 287: R1014–30

    PubMed  CAS  Google Scholar 

  • Li L, Luo L, Wang X (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412: 95–99

    PubMed  CAS  Google Scholar 

  • Li P, Nijhawan D, Budihardjo I, Srinivasula S, Ahmad M, Alnemri E, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91: 479–489

    PubMed  CAS  Google Scholar 

  • Liao XD, Wang XH, Jin HJ, Chen LY, Chen Q (2004) Mechanical stretch induces mitochondria-dependent apoptosis in neonatal rat cardiomyocytes and G2/M accumulation in cardiac fibroblasts. Cell Res 14: 16–26

    PubMed  CAS  Google Scholar 

  • Liu P, Xu B, Forman LJ, Carsia R, Hock CE (2002) L-NAME enhances microcirculatory congestion and cardiomyocyte apoptosis during myocardial ischemia-reperfusion in rats. Shock 17: 185–92

    PubMed  Google Scholar 

  • Liu X, Chua CC, Gao J, Chen Z, Landy CLC, Hamdy R, Chua BHL (2004) Pifithrin-a protects against doxorubicin-induced apoptosis and acute cardiotoxicity in mice. Am J Physiol Heart Circ Physiol 286: H933–H939

    PubMed  CAS  Google Scholar 

  • Logue SE, Gustafsson AB, Samali A, Gottlieb RA (2005) Ischemia/reperfusion injury at the intersection with cell death. J Mol Cell Cardiol 38: 21–33

    PubMed  CAS  Google Scholar 

  • Lou H, Danielsen I, Singal PK (2005) Involvement of mitogen-activated protein kinases in adriamycin-induced cardiomyopathy. Am J Physiol Heart Circ Physiol 288: H1925–H1930

    PubMed  CAS  Google Scholar 

  • Lundberg KC, Szweda LI (2004) Initiation of mitochondrial-mediated apoptosis during cardiac reperfusion. Arch Biochem Biophys 432: 50–7

    PubMed  CAS  Google Scholar 

  • Malhotra R, Brosius FC III (1999) Glucose uptake and glycolysis reduce hypoxia-induced apoptosis in cultured neonatal rat cardiac myocytes. J Biol Chem 274: 12567–75

    PubMed  CAS  Google Scholar 

  • Mallat Z, Tedgui A, Fontaliran F, Frank R, Durigom M, Fontaine G (1996) Evidence of apoptosis in arrhythmogenic right ventricular dysplasia. Circulation 94: 2493–2493

    Google Scholar 

  • Marin-Garcia J, Goldenthal MJ, Moe GW (2001) Mitochondrial pathology in cardiac failure. Cardiovasc Res 49: 17–26

    PubMed  CAS  Google Scholar 

  • Mockridge JW, Benton EC, Andreeva LV, Latchman DS, Marber MS, Heads RJ (2000) IGF-1 regulates cardiac fibroblast apoptosis induced by osmotic stress. Biochem Biophys Res Commun 273: 322–7

    PubMed  CAS  Google Scholar 

  • Morales MP, Galvez A, Eltit JM, Ocaranza P, Diaz-Araya G, Lavandero S (2000) IGF-1 regulates apoptosis of cardiac myocyte induced by osmotic-stress. Biochem Biophys Res Commun 270: 1029–35

    PubMed  CAS  Google Scholar 

  • Mozaffari MS, Schaffer SW (2003) Effect of hypertension and hypertension-glucose intolerance on myocardial ischemic injury. Hypertension 42: 1042–1049

    PubMed  CAS  Google Scholar 

  • Namiki A, Brogi E, Kearney M, Kim E, Wu T, Varticovski L, Isner J (1995) Hypoxia induces vascular endothelial growth-factor nRNA expression and protein-production in human endothelial-cells in-vitro. Circulation 92: 527–527

    Google Scholar 

  • Narula J, Haider N, Virmani R, DiSalvo T, Kolodgie F, Hajjar R, Schmidt U, Semigran M, Dec G, Khaw B (1996) Apoptosis in myocytes in end-stage heart failure. New England J Med 335: 1182–1189

    CAS  Google Scholar 

  • Narula J, Pandey P, Arbustini E, Haider N, Narula N, Kolodgie FD, Dal Bello B, Semigran MJ, Bielsa-Masdeu A, Dec GW, Israels S, Ballester M, Virmani R, Saxena S, Kharbanda S (1999) Apoptosis in heart failure: release of cytochrome c from mitochondria and activation of caspase-3 in human cardiomyopathy. Proc Natl Acad Sci USA 96: 8144–9

    PubMed  CAS  Google Scholar 

  • Nitahara J, Cheng W, Liu Y, Li B, Leri A, Li P, Mogul D, Gambert S, Kajstura J, Anversa P (1998) Intracellular calcium, DNase activity and myocyte apoptosis in aging Fischer 344 rats. J Mol Cell Cardiol 30: 519–535

    PubMed  CAS  Google Scholar 

  • Nitobe J, Yamaguchi S, Okuyama S, Nozaki N, Sata M, Miyamoto T, Takeishi Y, Kubota I, Tomoike H (2003) Reactive oxygen species regulate FLICE inhibitory protein (FLIP) and susceptibility to Fas-mediated apoptosis in cardiac myocytes. Cardiovasc Res 57: 119–128

    PubMed  CAS  Google Scholar 

  • Novogovodov SA, Szulc ZM, Luberto C, Jones JA, Bielawski J, Bielawska A, Hannun YA, Obeid LM (2005) Positively charged ceramide is a potent induced of mitochondrial permeabilization. J Biol Chem 280: 16096–16015

    Google Scholar 

  • Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara J, Quaini E, DiLoreto C, Beltrami C, Krajweski S, Reed J, Anversa P (1997) Apoptosis in the failing human heart. New England J Med 336: 1131–1141

    CAS  Google Scholar 

  • Pacher P, Csordas G, Hajnoczky G (2001) Mitochondrial Ca2+ signaling and cardiac apoptosis. Biol Signals Recept 10: 200–23

    PubMed  CAS  Google Scholar 

  • Qin F, Shite J, Mao W, Liang CS (2003) Selegiline attenuates cardiac oxidative stress and apoptosis in heart failure: association with improvement of cardiac function. Eur J Pharmacol 461: 149–58

    PubMed  CAS  Google Scholar 

  • Rabkin S, Kong J (2000) Nifedipine does not induce but rather prevents apoptosis in cardiomyocytes. Eur J Pharmacol 388: 209–217

    PubMed  CAS  Google Scholar 

  • Rayment N, Haven A, Madden B, Murday A, Trickey R, Shipley M, Davies M, Katz D (1999) Myocyte loss in chronic heart failure. J Pathol 188: 213–219

    PubMed  CAS  Google Scholar 

  • Ravassa S, Fortuno MA, Gonzalez A, Lopez B, Zalba G, Fortuno A, Diez J (2000) Mechanisms of increased susceptibilityof angiotensin II-induced apoptosis in ventricular cardiomyocytes of spontaneously hypertensive rats. Hypertension 36: 1065–1071

    PubMed  CAS  Google Scholar 

  • Razavi HM, Hamilton JA, Feng, Q (2005) Modulation of apoptosis by nitric oxide: implications in myocardial ischemia and heart failure. Pharmacol Ther 106: 147–62

    PubMed  CAS  Google Scholar 

  • Regula KM, Ens K, Kirshenbaum LA (2002) Inducible expression of BNIP3 provokes mitochondrial defects and hypoxia-mediated cell death of ventricular myocytes. Circ Res 91: 226–31

    PubMed  CAS  Google Scholar 

  • Ricci C, Pastukh V, Schaffer SW (2005) Involvement of the mitochondrial permeability transition pore in angiotensin II-mediated apoptosis. Exp Clin Cardiol 10: 160–164

    PubMed  CAS  Google Scholar 

  • Richter C, Schweizer M, Cossarizza A, Franceschi C (1996) Control of apoptosis by the cellular ATP level. FEBS Lett 378: 107–110

    PubMed  CAS  Google Scholar 

  • Riedl SJ, Shi Y (2004) Molecular mechanisms of caspase regulation during apoptosis. Nature Rev Mol Cell Biol 5: 897–907

    CAS  Google Scholar 

  • Rossig L, Hoffmann J, Hugel B, Mallat Z, Haase A, Freyssinet JM, Tedgui A, Aicher A, Zeiher AM, Dimmeler S (2001) Vitamin C inhibits endothelial cell apoptosis in congestive heart failure. Circulation 104: 2182–7

    PubMed  CAS  Google Scholar 

  • Saito S, Hiroi Y, Zou Y, Aikawa R, Toko H, Shibasaki F, Yazaki Y, Nagai R, Komuro I (2000) Beta-adrenergic pathway induces apoptosis through calcineurin activation in cardiac myocytes. J Biol Chem 275: 34528–33

    PubMed  CAS  Google Scholar 

  • Saraste A, Pulkki K, Kallajoki M, Heikkila P, Laine P, Nieminen M, Mattila S, Parvinem M, VoipioPulkki L (1997) Cardiomyocyte apoptosis is observed in explanted failing human hearts with and without coronary artery disease. Circulation 96: 651–651

    Google Scholar 

  • Saraste A, Pulkki K, Kallajoki M, Henriksen K, Parvinen M, VoipioPulkki L (1997) Apoptosis in human acute myocardial infarction. Circulation 95: 320–323

    PubMed  CAS  Google Scholar 

  • Saraste A, VoipioPulkki L, Parvinen M, Pulkki K (1997) Apoptosis in the heart. New England J Med 336: 1025–1026

    CAS  Google Scholar 

  • Schaffer S, Ricci C, Pastukh V, Wilson G (2005) DNA damage-involvement in fatty acid-mediated apoptosis. J Mol Cell Cardiol 38, 859

    Google Scholar 

  • Scheubel RJ, Bartling B, Simm A, Silber RE, Drogaris K, Darmer D, Holtz J (2002) Apoptotic pathway activation from mitochondria and death receptors without caspase-3 cleavage in failing human myocardium: fragile balance of myocyte survival? J Am Coll Cardiol 39: 481–8

    PubMed  CAS  Google Scholar 

  • Sharov VG, Sabbah HN, Ali AS, Shimoyama H, Lesch M, Goldstein S (1997) Abnormalities of cardiocytes in regions bordering fibrous scars of dogs with heart failure. Int J Cardiol 60: 273–9

    PubMed  CAS  Google Scholar 

  • Shizukuda Y, Buttrick P, Geenen D, Borczuk A, Kitsis R, Sonnenblick E (1998) beta-Adrenergic stimulation causes cardiocyte apoptosis: influence of tachycardia and hypertrophy. Am J Physiol Heart Circ Physiol 44: H961–H968

    Google Scholar 

  • Sorescu D, Griendling KK (2002) Reactive oxygen species, mitochondria, and NAD(P)H oxidases in the development and progression of heart failure. Congest Heart Fail 8: 132–40

    PubMed  CAS  Google Scholar 

  • Sugino H, Ozono R, Kurisu S, Matsuuura H, Ishida M, Oshima T, Kambe M, Teranishi Y, Masaki H, Matsubara H (2001) Apoptosis is not increased in myocardium overexpressing type 2 angiotensin II receptor in transgenic mice. Hypertension 37: 1394–1398

    PubMed  CAS  Google Scholar 

  • Suleiman MS, Halestrap AP, Griffiths EJ (2001) Mitochondria: a target for myocardial protection. Pharmacol Ther 89: 29–46

    PubMed  CAS  Google Scholar 

  • Sun HY, Wang NP, Halkos ME, Kerendi F, Kin H, Wang RX, Guyton RA, Zhao ZQ (2004) Involvement of Na+/H+ exchanger in hypoxia/re-oxygenation-induced neonatal rat cardiomyocyte apoptosis. Eur J Pharmacol 486: 121–31

    PubMed  CAS  Google Scholar 

  • Susin S, Lorenzo H, Zamzami N, Marzo I, Snow B, Brothers G, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett D, Aebersold R, Siderovski D, Penninger J, Kroemer G (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397: 441–446

    PubMed  CAS  Google Scholar 

  • Szabolcs M, Michler RE, Yang X, Aji W, Roy D, Athan E, Sciacca RR, Minanova OP, Cannon PJ (1996) Apoptosis of cardiac myocytes during cardiac allograft rejection: relation to induction of nitric oxide synthase. Circulation 94: 1665–1673

    PubMed  CAS  Google Scholar 

  • Takatani T, Takahashi K, Uozumi Y, Shikata E, Yamamoto Y, Ito T, Matsuda T, Schaffer SW, Fujio Y, Azuma J (2004) Taurine inhibits apoptosis by preventing formation of the Apaf-1/caspase-9 apoptosome. Am J Physiol Cell Physiol 287: C949–53

    PubMed  CAS  Google Scholar 

  • Tanaka K, Pracyk JB, Takeda K, Yu ZX, Ferrans V J, Deshpande SS, Ozaki M, Hwang PM, Lowenstein CJ, Irani K, Finkel T (1998) Expression of Id1 results in apoptosis of cardiac myocytes through a redox-dependent mechanism. J Biol Chem 273, 25922-8

    PubMed  CAS  Google Scholar 

  • Tanaka M, Ito H, Adachi S, Akimoto H, Nishikawa T, Kasajima T, Marumo F, Hiroe M (1994) Hypoxia induces apoptosis with enhanced expression of fas antigen messenger-RNA in cultured neonatal rat cardiomyocytes. Circulation 90: 426–426

    Google Scholar 

  • Tatsumi T, Shiraishi J, Keira N, Akashi K, Mano A, Yamanaka S, Matoba S, Fushiki S, Fliss H, Nakagawa M (2003) Intracellular ATP is required for mitochondrial apoptotic pathways in isolated hypoxic rat cardiac myocytes. Cardiovasc Res 59: 428–40

    PubMed  CAS  Google Scholar 

  • Thornberry N, Lazebnik Y (1998) Caspases: Enemies within. Science 281: 1312–1316.

    PubMed  CAS  Google Scholar 

  • Valen G (2003) The basic biology of apoptosis and its implications for cardiac function and viability. Ann Thorac Surg 75: S656–60

    PubMed  Google Scholar 

  • Van Loo G, Saelens X, Van Gurp M, MacFarlane M, Martin S, Vandenabelle P (2002) The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet. Cell Death and Differentiation 9: 1031–1042

    PubMed  Google Scholar 

  • Von Harsdorf R, Li PF, Dietz R (1999) Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis. Circulation 99: 2934–41

    Google Scholar 

  • Wang GW, Klein JB, Kang YJ (2001) Metallothionein inhibits doxorubicin-induced mitochondrial cytochrome c release and caspase-3 activation in cardiomyocytes. J Pharmacol Exp Ther 298: 461–468

    PubMed  CAS  Google Scholar 

  • Wang GW, Zhou Z, Klein JB, Kang YJ (2001) Inhibition of hypoxia/reoxygenation-induced apoptosis in metallothionein-overexpressing cardiomyocytes. Am J Physiol Heart Circ Physiol 280: H2292–9

    PubMed  CAS  Google Scholar 

  • Webster K, Discher D, Kaiser S, Hernandez O, Sato B, Bishopric N (1999) Hypoxia-activated apoptosis of cardiac myocytes requires reoxygenation or a pH shift and is independent of p53. J Clin Invest 104: 239–252

    PubMed  CAS  Google Scholar 

  • Yaoita H, Ogawa K, Maehara K, Maruyama Y (2000) Apoptosis in relevant clinical situations: contribution of apoptosis in myocardial infarction. Cardiovasc Res 45: 630–41

    PubMed  CAS  Google Scholar 

  • Yue T, Sanjay K, Feng G, Louden C, Wang C, Gu J, Lee J, Feuerstein G, Ma X (1998) Inhibition of P38 MAP kinase decreases cardiomyocyte apoptosis and improves cardiac function after myocardial ischemia and reperfusion. Naunyn-Schiedebergs Arch Pharmacol 358: R621–R621

    Google Scholar 

  • Zou H, Henzel W, Liu X., Lutschg A, Wang X (1997) Apaf-1, a human protein homologous to C-elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90: 405–413

    PubMed  CAS  Google Scholar 

  • Zou H, Li Y, Liu H, Wang X (1999) An APAF-1 center dot cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 274: 11549–11556

    PubMed  CAS  Google Scholar 

  • Zuurbier CJ, Eerbeek O, Meijer AJ (2005) Ischemic preconditioning, insulin, and morphine all cause hexokinase redistribution. Am J Physiol Heart Circ Physiol 289: H496–9

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Suleiman, MS., Schaffer, S.W. (2007). The Apoptotic Mitochondrial Pathway – Modulators, Interventions and Clinical Implications. In: Schaffer, S.W., Suleiman, MS. (eds) Mitochondria. Advances in Biochemistry in Health and Disease, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69945-5_12

Download citation

Publish with us

Policies and ethics