Skip to main content

Composition and Biosynthesis of Lignocellulosic Biomass

  • Chapter
Genetic Improvement of Bioenergy Crops

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Akiyama, T., Magara, K., Matsumoto, Y., Meshitsuka, G., Ishizu, A., and Lundquist, K. (2000) Proof of the presence of racemic forms of arylglycerol-β-aryl ether structure in lignin: studies on the stereo structure of lignin by ozonation. J. Wood Sci. 46, 414–415.

    CAS  Google Scholar 

  • Amor, Y., Haigler, C.H., Johnson, S., Wainscott, M., and Delmer, D.P.A (1995) Membraneassociated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc. Natl. Acad. Sci. U.S.A. 92, 9353–9357.

    PubMed  CAS  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815.

    Google Scholar 

  • Arioli, T., Peng, L., Betzner, A.S., Burn, J., Wittke, W., Herth, W., Camilleri, C., Höfte, H., Plazinski, J., Birch, R., Cork, A., Glover, J., Redmond, J., and Williamson, R.E. (1998) Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279, 717–720.

    PubMed  CAS  Google Scholar 

  • Bacic, A., and Stone, B. A. (1980) A (1→ 3)- and (1→ 4)-linked β- cell walls of wheat. Carbohydr. Res. 82, 372–377.

    CAS  Google Scholar 

  • Bao, W., O’Malley, D.M., Whetten, R., and Sederoff, R.R. (1993) A laccase associated with lignification in loblolly pine xylem. Science 260, 672-674.

    PubMed  CAS  Google Scholar 

  • Barber, C., Rösti, J., Rawat, A., Findlay, K., Roberts, K., and Seifert, G.J. (2006) Distinct properties of the five UDP-D-glucose/UDP- D-galactose 4-epimerase isoforms of Arabidopsis thaliana. J. Biol. Chem. 281, 17276–17285.

    PubMed  CAS  Google Scholar 

  • Baskin, T.I., Betzner, A.S., Hoggart, R., Cork, A., and Williamson, R.E. (1992) Root morphology mutants in Arabidopsis thaliana. Aust. J. Plant Physiol. 19, 427.

    Google Scholar 

  • Becnel, J., Natarajan, M., Kipp, A., and Braam, J. (2006) Developmental expression patterns of Arabidopsis XTH genes reported by transgenes and Genevestigator. Plant Mol. Biol. 61, 451–467.

    PubMed  CAS  Google Scholar 

  • Benfey, P.N., Linstead, P.J., Roberts, K., Schiefelbein, J.W., Hauser, M.T., and Aeschabacher, R.A. (1993) Root development in Arabidopsis: four mutants with dramatically altered root morphogenesis. Development 119, 57–70.

    PubMed  CAS  Google Scholar 

  • Bernal, A.J., Jensen, K.J., Harholt, J., Serensen, S., Moller, I., Blaukopf, C., Johansen, B., de Lotto, R., Pauly, M., Scheller, V.H., and Willats, W.G.T. (2007) Disruption of ATCSLD5 results in reduced growth, reduced xylan and homogalacturonan synthase activity and altered xylan occurrence in Arabidopsis. Plant J. 52, 791–802.

    PubMed  CAS  Google Scholar 

  • Bieniawska, Z., Barratt, D.H.P., Garlick, A.P., Thole, V., Kruger, N.J., Martin, C., Zrenner, R., and Smith, A.M. (2007) Analysis of the sucrose synthase gene family in Arabidopsis. Plant J. 49, 810–828.

    PubMed  CAS  Google Scholar 

  • Boerjan, W., Ralph, J., and Baucher, M. (2003) Lignin biosynthesis. Annu. Rev. Plant Biol. 54, 519–546.

    PubMed  CAS  Google Scholar 

  • Bonin, C.P., Potter, I., Vanzin, G.F., and Reiter, W.D. (1997) The MUR1 gene of Arabidopsis thaliana encodes an isoform of GDP-D-mannose-4, 6-dehydratase, catalyzing the first step in the de novo synthesis of GDP-L-fucose. Proc. Natl. Acad. Sci. U.S.A. 94, 2085–2090.

    PubMed  CAS  Google Scholar 

  • Bonin, C.P., and Reiter, W.D. (2000) A bifunctional epimerase-reductase acts downstream of the MUR1 gene product and completes the de novo synthesis of GDP-L-Fucose in Arabidopsis. Plant J. 21, 445–454.

    PubMed  CAS  Google Scholar 

  • Bonin, C. P.; Fresjpir. G.; Hahn, M. G.; Vanzin, G. F., and Reiter, W.-D. (2003) The GMD1 and GMD2 genes of Arabidopsis encode isoforms of GDP-D-Mannose 4, 6-dehydratase with cell type-specific expression patterns. Plant Physiol. 132, 883–892.

    PubMed  CAS  Google Scholar 

  • Bout, S., and Vermerris, W. (2003) A candidate gene-approach to clone the sorghum Brown midrib gene encoding caffeic acid O-methyltransferase. Mol. Genet. Genomics 269, 205–214.

    PubMed  CAS  Google Scholar 

  • Brady, S.M., Song, S., Dhugga, K.S., Rafalski, J.A., and Benfey, P.N. (2007) Combining expression and comparative evolutionary analysis. The COBRA gene family. Plant Physiol. 143, 172–187.

    PubMed  CAS  Google Scholar 

  • Brown, D.M., Zeef, A.H., Ellis, J., Goodacre, R., and Turner, S.R. (2005) Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 17, 2281–2295.

    PubMed  CAS  Google Scholar 

  • Brown, Jr. R.M. (2004) Cellulose structure and biosynthesis: what is in store for the 21st century? J. Polym. Sci. 42, 487–495.

    CAS  Google Scholar 

  • Brown, Jr., R.M., and Montezinos, D. (1976) Cellulose microfibrils: visualization of biosynthetic and orienting complexes in association with the plasma membrane. Proc. Natl. Acad. Sci. U.S.A. 73, 143–147.

    PubMed  CAS  Google Scholar 

  • Bunzel, M., and Ralph, J. (2006) NMR characterization of lignins isolated from fruit and vegetable insoluble dietary fiber. J. Agric. Food Chem. 54, 8352–8361.

    PubMed  CAS  Google Scholar 

  • Bunzel, M., Ralph, J., Lu, F., Hatfield, R.D., and Steinhart, H. (2004) Lignins and ferulateconiferyl alcohol cross-coupling products in cereal grains. J. Agric. Food Chem. 52, 6496–6502.

    PubMed  CAS  Google Scholar 

  • Burget, E.G., Verma, R., Mølhøj, M., and Reiter, W.-D. (2003) The biosynthesis of LArabinose in plants: molecular cloning and characterization of a Golgi-localized UDP-Dxylose 4-epimerase encoded by the MUR4 gene of Arabidopsis. Plant Cell 15, 523–531.

    PubMed  CAS  Google Scholar 

  • Burn, J.E., Hocart, C.H., Birch, R.J., Cork, A.C., and Williamson, R.E. (2002) Functional analysis of the cellulose synthase genes CesA1, CesA2, and CesA3 in Arabidopsis. Plant Physiol. 129, 797–807.

    PubMed  CAS  Google Scholar 

  • Burton, R.A., Wilson, S.M., Hrmova, M., Harvey, A.J., Shirley, N.J., Medhurst, A., Stone, B.A., Newbigin, E.J., Bacic, A., and Fincher, G.B. (2006) Cellulose synthase–like CslF genes mediate the synthesis of cell wall (1,3;1,4)-ß-D-glucans. Science 311, 1940–1942.

    PubMed  CAS  Google Scholar 

  • Campbell, J.A., Davies, G.J., Bulone, V., and Henrissat, B. (1997) Biochem. J. 326, 929–939.

    CAS  Google Scholar 

  • Caparrós-Ruiz, D., Fornalé, S., Civardi, L., Puigdoménech, P., and Rigau, J. (2006) Isolation and characterisation of a family of laccases in maize. Plant Sci. 171, 217–225.

    Google Scholar 

  • Carnachan, S.M., and Harris, P.J. (2000) Ferulic acid is bound to the primary cell walls of all gymnosperm families. Biochem. System. Ecol. 28, 865–879.

    CAS  Google Scholar 

  • Carpita, N. (1996) Structure and biogenesis of the cell walls of grasses. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 445–476.

    PubMed  CAS  Google Scholar 

  • Carpita, N.C., and Gibeaut, D.M. (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 3, 1–30.

    PubMed  CAS  Google Scholar 

  • Carpita, N.C., and McCann M.C. (2000) The cell wall. In: B.B. Buchanan, W. Gruissem and R.L. Jones (Eds.), Biochemistry and Molecular Biology of Plants. J. Wiley and Sons, Somerset, NJ, pp. 52–108.

    Google Scholar 

  • Carpita, N., Tierney, M., and Campbell, M. (2001) Molecular biology of plant cell wall: searching for the genes that define structure, architecture and dynamics. Plant Mol. Biol. 47, 1–5.

    PubMed  CAS  Google Scholar 

  • Carpita, N., and Vergara, C. (1998) A recipe for cellulose. Science 279, 672–673.

    PubMed  CAS  Google Scholar 

  • Carpita, N.C., and Whittern, D. (1986) A highly substituted glucuronoarabinoxylan from developing maize coleoptiles. Carbohydr. Res. 146, 129–140.

    CAS  Google Scholar 

  • Cassab, G.I. (1998) Plant cell wall proteins. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 281–309.

    PubMed  CAS  Google Scholar 

  • Cavalier, D.M., and Keegstra, K. (2006) Two xyloglucan xylosyltransferases catalyze the addition of multiple xylosyl residues to cellohexaose. J. Biol. Chem. 281, 34197–34207.

    PubMed  CAS  Google Scholar 

  • Ching, A., Dhugga, K.S., Appenzeller, L., Meeley, R., Bourett, T.M., Howard, R.J., and Rafalski, A. (2006) Brittle stalk 2 encodes a putative glycosylphosphatidylinositolanchored protein that affects mechanical strength of maize tissues by altering the composition and structure of secondary cell walls. Planta 224, 1174–1184.

    PubMed  CAS  Google Scholar 

  • Chu, Z., Chen, H., Zhang, Y., Zhang, Z., Zheng, N., Yin, B., Yan, H., Zhu, L., Zhao, X., Yuan, M., Zhang, X., and Xie, Q. (2007) Knockout of the AtCESA2 gene affects microtubule orientation and causes abnormal cell expansion in Arabidopsis. Plant Physiol. 143, 213–224.

    PubMed  CAS  Google Scholar 

  • Cocuron, J.C., Lerouxel, O., Drakakai, G., Alonso, A.P., Liepman, A.H., Keegstra, K., Raikhel, N., and Wilkerson, C.G. (2007) A gene from the cellulose synthase-like C family encodes a ß-1, 4 glucan synthase. Proc. Natl. Acad. Sci. U.S.A. 104, 8550–8555.

    PubMed  CAS  Google Scholar 

  • Coleman, H.D., Ellis, D.D., Gilbert, M., and Mansfield, S.D. (2006) Up-regulation of sucrose synthase and UDP-glucose pyrophosphorylase impacts plant growth and metabolism. Plant Biotechnol. J. 4, 87–101.

    PubMed  CAS  Google Scholar 

  • Cosgrove, D.J. (2001) Enhancement of accessibility of cellulose by expansins, US Patent 6326470.

    Google Scholar 

  • Cosgrove, D.J., Bedinger, P., and Durachko, D.M. (1997) Group 1 allergens of grass pollen as cell wall-loosening agents. Proc. Natl. Acad. Sci. U.S.A. 94, 6559–6564.

    PubMed  CAS  Google Scholar 

  • Cosgrove, D.J., and Li, Z.C. (1993) Role of expansin in cell enlargement of oat coleoptiles. Plant Physiol. 103, 1321–1328.

    PubMed  CAS  Google Scholar 

  • Cosgrove, D.J., Li, L.C., Cho, H.T., Hoffmann-Benning, S., Moore, R.C., and Blecker, D. (2002) The growing world of expansins. Plant Cell Physiol. 43, 1436–14444.

    PubMed  CAS  Google Scholar 

  • Coutinho, P.M., Deleury, E., Davies, G.J., and Henrissat, B. (2003a) An evolving hierarchical family classification of glycosyltransferases. J. Mol. Biol. 328, 307–317.

    CAS  Google Scholar 

  • Coutinho, P.M. and Henrissat, B. (1999) Carbohydrate-active enzymes: an integrated database approach. In: H.J. Gilbert, G. Davies, B. Henrissat and B. Svensson (Eds.), Recent Advances in Carbohydrate Bioengineering. The Royal Society of Chemistry. Cambridge, UK, pp. 3–12.

    Google Scholar 

  • Coutinho, P.M., Stam, M., Blanc, E., and Henrissat, B. (2003b) Why are there so many carbohydrate- active enzyme-related genes in plants? Trends Plant Sci. 8, 563–565.

    CAS  Google Scholar 

  • Cutler, S., and Somerville, C. (1997) Cellulose synthesis: cloning in silico. Curr. Biol. 7, R108–R111.

    PubMed  CAS  Google Scholar 

  • Dahlgren, G. (1989) An updated angiosperm classification. Bot. J Linn. Soc. 100, 197–204.

    Google Scholar 

  • Darley, C.P., Forrester, A.M., McQueen-Mason, S.J. (2001) The molecular basis of plant cell wall extension. Plant Mol. Biol. 47, 179–195.

    PubMed  CAS  Google Scholar 

  • Davin, L.B., and Lewis, N.G. (2000) Dirigent proteins and dirigent sites explain the mystery of specificity of radical precursor coupling in lignan and lignin biosynthesis. Plant Physiol. 123, 453–461.

    PubMed  CAS  Google Scholar 

  • Davin, L.B., and Lewis, N.G. (2005a) Lignin primary structures and dirigent sites. Curr. Opin. Biotechnol. 16, 1–9.

    Google Scholar 

  • Davin, L.B., and Lewis, N.G. (2005b) Dirigent phenoxy radical coupling: advances and challenges. Curr. Opin. Biotechnol. 16, 1–9.

    Google Scholar 

  • de Obeso, M., Caparro-Ruiz, D., Vignols, F., Puigdomenech, P., and J. Rigau (2003) Characterisation of maize peroxidases having differential patterns of mRNA accumulation in relation to lignifying tissues. Gene 309, 23–33.

    PubMed  Google Scholar 

  • de Silva, J., Jarman, C.D., Arrowsmith, D.A., Stronach, M.S., Chengappa, S., Sidebottom, C., and Reid, J.S.G. (1993) Molecular characterization of xyloglucan-specific endo-(1-4)-ß-Dglucanase (xyloglucan endo-transglycosylase) from nasturtium seeds. Plant J. 3, 701–711.

    PubMed  Google Scholar 

  • Delmer, D.P. (1999) Cellulose biosynthesis: Exciting times for a difficult field of study. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 245–276.

    PubMed  CAS  Google Scholar 

  • Denton, F.R. (1998) Beetle juice. Science 281, 1285.

    PubMed  CAS  Google Scholar 

  • Desprez, T., Juraniec, M., Crowell, E., Jouy, H., Pochylova, Z., Parcy, F., Höfte, H., Gonneau, M., Vernhettes, S. (2007) Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 104, 15572–15577.

    PubMed  CAS  Google Scholar 

  • Desprez, T., Vernhettes, S., Fagard, M., Refregier, G., Desnos, T., Aletti, E., Py, N., Pelletier, S., and Höfte, H. (2002) Resistance against herbicide isoxaben and cellulose deficiency caused by distinct mutations in same cellulose synthase isoform CESA6. Plant Physiol. 128, 482–490.

    PubMed  CAS  Google Scholar 

  • Dhugga, K.S. (2005) Plant Golgi cell wall synthesis: from genes to enzyme activities. Proc. Natl. Acad. Sci. U.S.A. 102, 1815–1816.

    PubMed  CAS  Google Scholar 

  • Dhugga, K.S., Barreiro, R., Whitten, B., Stecca, K., Hazebroek, J., Randhawa, G.S., Dolan, M., Kinney, A.J., Tomes, D., Nichols, S., and Anderson, P. (2004) Guar seed ß-mannan synthase is a member of the cellulose synthase super gene family. Science 303, 363–366.

    PubMed  CAS  Google Scholar 

  • Diet, A., Link, B., Seifert, G.J., Schellenberg, B., Wagner, U., Pauly, M., Reiter, W.-D., and Ringli, C. (2006) The Arabidopsis root hair cell wall formation mutant lrx1 is suppressed by mutations in the RHM1 gene encoding a UDP-L-rhammnose synthase. Plant Cell 18, 1630–1641.

    PubMed  CAS  Google Scholar 

  • Ding, S.-Y. and Himmel, M.E. (2006) The maize primary cell wall microfibril: a new model derived from direct visualization. J. Agric. Food Chem. 54, 597–606.

    PubMed  CAS  Google Scholar 

  • Doblin, S., Kurek, I., Jacob-Wilk, D. and D. P. Delmer (2002) Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol. 43, 1407–1420.

    PubMed  CAS  Google Scholar 

  • Ebringerová, A., and Heinze, T. (2000) Xylan and xylan derivatives – biopolymers with valuable properties. 1. Naturally occurring xylans structures, isolation procedures and properties. Macromolec. Rapid Comm. 21, 542–556.

    Google Scholar 

  • Fagard, M., Desnos, T., Desprez, T., Goubet, F., Refregier, G., Mouille, G., McCann, M., Rayon, C., Vernhettes, S., and Hofte, H. (2000) PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis. Plant Cell 12, 2409–2424.

    PubMed  CAS  Google Scholar 

  • Faik, A., Price, N.J., Raikhel, N.V., and Keegstra, K. (2002) An Arabidopsis gene encoding an α-xylosyltransferase involved in xyloglucan biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 99, 7797–7802.

    PubMed  CAS  Google Scholar 

  • Fanutti, C., Gidley, M.J., and Reid, J.S.G.(1993) Action of a pure xyloglucanendotransglycosylase (formerly called xyloglucan-specificendo-(1,4)-β-D-glucanase) from the cotyledons of germinated nasturtium seeds. Plant J. 3, 691– 700.

    PubMed  CAS  Google Scholar 

  • Farkas, V., Sulova, Z., Stratilova, E., Hanna, R., and Maclachlan, G. (1992) Cleavage of xyloglucan by nasturtium seeed xyloglucanase and transglycosylation to xyloglucan subunit oligosaccharides. Arch. Biochem. Biophys. 298, 365–370.

    PubMed  CAS  Google Scholar 

  • Favery, B., Ryan, E., Foreman, J., Linstead, P., Boudonck, K., Steer, M., Shaw, P., and Dolan, L. (2001) KOJAK encodes a cellulose synthase-like protein required for root hair cell morphogenesis in Arabidopsis. Genes Dev. 15, 79–89.

    PubMed  CAS  Google Scholar 

  • Fernie, A.R., Willmitzer, L., and Trethewey, R.N. (2002) Sucrose to starch: a transition in molecular. Plant Physiol. Trends Plant Sci. 7, 35–41.

    PubMed  CAS  Google Scholar 

  • Franke, R., Hemm, M.R., Denault, J.W., Ruegger, M.O., Humphreys, J.M., and Chapple, C. (2002a) Changes in the secondary metabolism and deposition of an unusual lignin in the REF8 mutant of Arabidopsis. Plant J. 30, 47–59.

    CAS  Google Scholar 

  • Franke, R., Humphreys, J.M., Hemm, M.R., Denault, J.W., Ruegger, M.O., Cusumano, J.C., and Chapple, C. (2002b) The Arabidopsis REF8 gene encodes the 3-hydroxylase of phenylpropanoid metabolism. Plant J. 30, 33–45.

    CAS  Google Scholar 

  • Freshour, G., Bonin, C.P., Reiter, W.D., Albersheim, P., Darvill, A.G., and Hahn, M.G. (2003) Distribution of fucose-containing xyloglucans in cell walls of the mur1 mutant of Arabidopsis. Plant Physiol. 131, 1602–1612.

    PubMed  CAS  Google Scholar 

  • Freudenberg, K. (1965) Lignin: its constitution and formation from p-hydroxycinnamyl alcohols. Science 148, 595–600.

    PubMed  CAS  Google Scholar 

  • Fry, S.C. (2004) Primary cell wall metabolism: tracking the careers of wall polymers in living plant cells. New Phytol. 161, 641–675.

    CAS  Google Scholar 

  • Gallagher, S.R., (1992) GUS Protocols: Using the GUS Gene as a Reporter of Gene Expression. Academic Press, San Diego.

    Google Scholar 

  • Gang, D.R., Costa, M.A., Fujita, M., Dinkova-Kostova, A.T., Wang, H.-B., Burlat, V., Martin, W., Sarkanen, S., Davin, L.B., and Lewis, N.G. (1999) Regiochemical control of mono lignol radical coupling: a new paradigm for lignin and lignan biosynthesis. Chem. Biol. 6, 143–151.

    PubMed  CAS  Google Scholar 

  • Girke, T., Lauricha, J., Tran, H., Keegstra, K., and Raikhel, N. (2004) The cell wall navigator database. A systems-based approach to organism-unrestricted mining of protein families involved in cell wall metabolism. Plant Physiol. 136, 3003–3008.

    PubMed  CAS  Google Scholar 

  • Goffner, D., Campbell, M.M., Campargue, C., Clastre, M., Borderies, G., Boudet, A., and Boudet, A.M. (1994) Purification and characterization of cinnamoyI-CoA: NADP oxidoreductase in Eucalyptus gunnii. Plant Physiol. 106, 625–632.

    PubMed  CAS  Google Scholar 

  • Goujon, T., Sibout, R., Eudes, A., MacKay, J., and Jouanin, L. (2003a) Genes involved in the biosynthesis of lignin precursors in Arabidopsis thaliana. Plant Physiol. Biochem. 41, 677–687.

    CAS  Google Scholar 

  • Goujon, T., Sibout, R., Pollet, B., Maba, B., Nussaume, L., Bechtold, N., Lu, F., Ralph, J., Mila, I., Barrière, Y., Lapierre, C., and Jouanin, L. (2003b) A new Arabidopsis thaliana mutant deficient in the expression of O-methyltransferase impacts lignins and sinapoyl esters. Plant Mol. Biol. 51, 973–989.

    CAS  Google Scholar 

  • Grabber, J.H., Ralph, J., Hatfield, R.D., Quideau, S., Kuster, T., and Pell, A.N. (1996) Dehydrogenation polymer – cell wall complexes as a model for lignified grass walls. J. Agric. Food Chem. 44, 1453–1459.

    CAS  Google Scholar 

  • Guan, S.-Y., Mlynár, J., and Sarkanen, S. (1997) Dehydrogenative polymerization of coniferyl alcohol on macromolecular lignin templates. Phytochem. Anal. 45, 911–918.

    CAS  Google Scholar 

  • Guillaumie, S., San-Clemente, H., Deswarte, C., Martinez, Y., Lapierre, C., Murigneux, A., Barrière, Y., Pichon, M., and Goffner, D. (2007) MAIZEWALL. Database and developmental gene expression profiling of cell wall biosynthesis and assembly in maize. Plant Physiol. 143, 339–363.

    PubMed  CAS  Google Scholar 

  • Guillet-Claude, C., Birolleau-Touchard, C., Manicacci, D., Rogowsky, P.M., Rigau, J., Murigneux, A., Martinant, J.P., and Barrière, Y. (2004) Nucleotide diversity of the ZmPox3 maize peroxidase gene: relationships between a MITE insertion in exon 2 and variation in forage maize digestibility. BMC Genet. 5, 1–11.

    Google Scholar 

  • Ha, M.A., Apperley, D.C., Evans, B.W., Huxham, M., Jardine, W.G., Vietor, R.J., Reis, D., Vian, B., and Jarvis, M.C. (1998) Fine structure in cellulose microfibrils: NMR evidence from onion and quince. Plant J. 16, 183–190.

    CAS  Google Scholar 

  • Halpin, C., Knight, M.E., Foxon, G.A., Campbell, M.M., Boudet, A.M., Boon, J.J., Chabbert, B., Tollier, M.-T., Schuch, W. (1994) Manipulation of lignin quality by downregulation of cinnamyl alcohol dehydrogenase. Plant J. 6, 339–350.

    CAS  Google Scholar 

  • Harkin, J.M., and Obst, J.R. (1973) Lignification in trees: indication of exclusive peroxidase participation. Science 180, 296–298.

    PubMed  CAS  Google Scholar 

  • Harper, A., and Bar-Peled, M. (2002) Biosynthesis of UDP-xylose. Cloning and characterization of a novel Arabidopsis gene family, UXS, encoding soluble and putative membranebound UDP-glucuronic acid decarboxylase isoforms. Plant Physiol. 130, 2188–2198.

    PubMed  CAS  Google Scholar 

  • Hatfield, R. D., Ralph, J., and Grabber, J. H. (1998) Cell wall cross-linking by ferulates and diferulates in grasses. J. Sci. Food Agric. 79, 403–407.

    Google Scholar 

  • Hatfield, R., and Vermerris, W. (2001) Lignin formation in plants: the dilemma of linkage specificity. Plant Physiol. 126, 1351–1357.

    PubMed  CAS  Google Scholar 

  • Hazen, S.P., Scott-Craig, J.S., and Walton, J.D. (2002) Cellulose synthase-like genes of rice. Plant Physiol. 128, 336–340.

    PubMed  CAS  Google Scholar 

  • Herrmann, K.M., and Weaver, L.M. (1999) The shikimate pathway. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 473–503.

    PubMed  CAS  Google Scholar 

  • Higuchi, T. (1985) Biosynthesis of lignin. In: T. Higuchi (Ed.), Biosynthesis and Biodegradation of Wood Components. Orlando, Academic Press, pp. 141–160.

    Google Scholar 

  • Himmel, M.E., Ding, S.Y., Johnson, D.K., Adney, W.S., Nimlos, M.R., Brady, J.W., and Foust, T.D. (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315, 804–807.

    PubMed  CAS  Google Scholar 

  • Hoffmann, L., Maury, S., Martz, F., Geoffroy, P., and Legrand, M. (2003) Purification, cloning, and properties of an acyltransferase controlling shikimate and quinate ester intermediates in phenylpropanoid metabolism. J. Biol. Chem. 278, 95–103.

    PubMed  CAS  Google Scholar 

  • Holland, N., Holland, D., Helentjaris, T., Dhugga, K.S., Xoconostle-Cazares, B., Delmer, D.P. (2000) A comparative analysis of the plant cellulose synthase (CesA) gene family. J. Plant Physiol. 123, 1313–1323.

    CAS  Google Scholar 

  • Humphreys, J.M., and Chapple, C. (2002) Rewriting the lignin road map. Curr. Opin. Plant Biol. 5, 224–229.

    PubMed  CAS  Google Scholar 

  • Humphreys, J.M., Hemm, M.R., and Chapple, C. (1999) New routes for lignin biosythesis defined by biochemical characterization of recombinant ferulate 5-hydroxylase, a multifunctional cytochrome P450-dependent monooxygenase. Proc. Natl. Acad. Sci. U.S.A. 96, 10045–10050.

    PubMed  CAS  Google Scholar 

  • Iiyama, K. and Wallis, A. F. A. (1990) Determination of lignin in herbaceous plants by an improved acetyl bromide procedure. Journal of the Science of Food and Agriculture. J. Sci. Food Agric. 51, 145-161

    CAS  Google Scholar 

  • Iiyama, K.; Lam, T. B., and Stone, B. A. (1994) Covalent cross-links in the cell wall. Plant Physiol. 104, 315–320.

    PubMed  CAS  Google Scholar 

  • Izydorczyk, M.S., and Biliaderis, C.G. (1995) Cereal arabinoxylans: advances in structure and physiochemical properties. Carbohydr. Polym. 28, 33–48.

    CAS  Google Scholar 

  • Jacobs, A., and Dahlman, O. (2001) Characterization of the molar masses of hemicelluloses from wood and pulps employing size exclusion chromatography and matrix-sssisted laser desorption ionization time-of-flight mass spectrometry. Biomacromolecules. 2, 894–905.

    PubMed  CAS  Google Scholar 

  • Joseleau, J.-P. and Ruel, K. (1997) Study of lignification by noninvasive techniques in growing maize internodes. Plant Physiol. 114, 1123–1133.

    PubMed  CAS  Google Scholar 

  • Karhunen, P., Rummakko, P., Sipilä, J., and Brunow, G. (1995) The formation of dibenzodioxocin structures by oxidative coupling. A model reaction for lignin biosynthesis. Tetrahedron Lett. 36, 4501–4504.

    CAS  Google Scholar 

  • Kärkönen, A., and Fry, S.C. (2006) Novel characteristics of UDP-glucose dehydrogenase activities in maize: non-involvement of alcohol dehydrogenases in cell wall polysaccharide biosynthesis. Planta 223, 858–870.

    PubMed  Google Scholar 

  • Kärkönen, A., Murigneux, A., Martinant, J.P., Pepey, E., Tatout, C., Dudley, B.J., and Fry, S.C. (2005) UDP-glucose dehydrogenases of maize: a role in cell wall pentose biosynthesis. Biochem. 391, 409–415.

    Google Scholar 

  • Kim, C.M., Park, S.H., Il, J.B., Park, S.H., Piao, H.L., Eun, M.Y., Dolan, L., and Han, C.D. (2007) OsCSLD1, a cellulose synthase-like D1 gene, is required for root hair morphogenesis in rice. Plant Physiol. 143, 1220–1230.

    PubMed  CAS  Google Scholar 

  • Kim, H., Ralph, J., Lu, F., Ralph, S.A., Boudet, A.M., MacKay, J.J., Sederoff, R.R., Ito, T., Kawai, S., Ohashi, H., and Higuchi, T. (2003) NMR analysis of lignins in CAD-deficient plants. Part 1. Incorporation of hydroxycinnamaldehydes and hydroxybenzaldehydes into lignins. Org. Biomol. Chem. 1, 268–281.

    PubMed  CAS  Google Scholar 

  • Kobayashi, M., Nakagawa, H., Suda, I., Miyagawa, I. and Matoh, T. (2002) Purification and cDNA cloning of UDP- -xylose sythase) from pea seedlings. Plant cell Physiol. 43, 1259–1265.

    PubMed  CAS  Google Scholar 

  • Koyama, M., Helbert, W., Imai, T., Sugiyama, J., Henrissat, B. (1997) Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. Proc. Natl. Acad. Sci. U.S.A. 94, 9091–9095.

    PubMed  CAS  Google Scholar 

  • Kühnl, T., Koch, U., Heller, W., and Wellmann, E. (1989) Elicitor induced S-adenosyl-Lmethionine: caffeoyl-CoA 3-O-methyltransferase from carrot cell suspension. Plant Sci. 60, 21–25.

    Google Scholar 

  • Kurek, I., Kawagoe, Y., Jacob-Wilk, D., Doblin, M., Delmer, D. (2002) Dimerization of cotton fiber cellulose synthase catalytic sub-units occurs via oxidation of the zinc-binding domains. Proc. Natl. Acad. Sci. U.S.A. 99, 11109–11114.

    PubMed  CAS  Google Scholar 

  • Lacombe, E., Hawkins, S., Van Doorsselaere, J., Piquemal, J., Goffner, D., Poeydomenge, O., Boudet, A.-M., and Grima-Pettenati, J. (1997) Cinnamoyl CoA reductase, the first committed enzyme of the lignin branch biosynthetic pathway: cloning, expression and phylogenetic relationships. Plant J. 11, 429–441.

    PubMed  CAS  Google Scholar 

  • Landucci, L.L., Deka, G.C., and Roy, D.N. (1992) A 13C NMR study of milled wood lignins from hybrid Salix clones. Holzforsch. 46, 505–511.

    CAS  Google Scholar 

  • Langan, P., Sukumar, N., Nishiyama, Y., and Chanzy, H. (2005) Synchrotron X-ray structures of cellulose Iß and regenerated cellulose II at ambient temperature and 100 K. Cellulose 12, 551–562.

    CAS  Google Scholar 

  • Lee, S., Sharma, Y., Lee, T.K., Chang, M., and Davis, K.R. (2001) Lignification induced by Pseudomonas harboring avirulent genes on Arabidopis. Mol. Cells 12, 25–31.

    PubMed  CAS  Google Scholar 

  • Leplé, J.-C., Dauwe, R., Morreel, K., Storme, V., Lapierre, C., Pollet, B., Naumann, A., Kang, K.-Y., Kim, H., Ruel, K., Lefebvre, A., Joseleau, J.-P., Grima-Pettenati, J., De Rycke, R., Andersson-Gunneras, S., Erban, A., Fehrie, I., Petit-Conil, M., Kopka, J., Polle, A., Messens, E., Sundberg, B., Mansfield, S.D., Ralph, J., Pilate, G., and Boerjan, W. (2007). Down regulation of cinnamoyl-coenzyme A reductase in poplar: Multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. Plant Cell 19, 3669–3691.

    PubMed  Google Scholar 

  • Li, L., Cheng, X.F., Leshkevich, J., Umezawa, T., Harding, S.A., and Chiang, V.L. (2001) The last step of syringyl monolignol biosynthesis in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase. Plant Cell 13, 1567–1585.

    PubMed  CAS  Google Scholar 

  • Li, Y., Kajita, S., Kawai, S., Katayama, Y., and Morohoshi, N. (2003a) Down-regulation of an anionic peroxidase in transgenic aspen and its effect on lignin characteristics. J. Plant Res. 116, 175–182.

    CAS  Google Scholar 

  • Li, Y., Qian, Q., Zhou, Y., Yan, M., Sun, L., Zhang, M., Fu, Z., Wang, Y., Han, B., Pang, X., Chen, M., and Li, J. (2003b) BRITTLE CULM1, which encodes a Cobra-like protein, affects the mechanical properties of rice plants. Plant Cell 15, 2020–2031.

    CAS  Google Scholar 

  • Liepman, A.H., Nairn, C.J., Willats, W.G.T., Sorensen, I., Roberts, A.W., and Keegstra, K. (2007) Functional genomic analysis supports conservation of function among cellulose synthase-likeA gene family members and suggests diverse roles of mannans in plants. Plant Physiol. 143, 1881–1893.

    PubMed  CAS  Google Scholar 

  • Liepman, A.H., Wilkerson, C.G., and Keegstra, K. (2005) Expression of cellulose synthaselike (Csl) genes in insect cells reveals that CslA family members encode mannan synthases. Proc Natl Acad Sci U.S.A. 102, 2221–2226.

    PubMed  CAS  Google Scholar 

  • Lim, E.K., Li, Y., Parr, A., Jackson, R., Ashford, D.A., and Bowles, D.J. (2001) Identification of glucosyltransferase genes involved in sinapate metabolism and lignin synthesis in Arabidopsis. J. Biol. Chem. 276, 4344–4349.

    PubMed  CAS  Google Scholar 

  • Lu, F., and Ralph, J. (1999) Detection and determination of p-coumaroylated units in lignin. J. Agric. Food Chem. 47, 1988–1992.

    PubMed  CAS  Google Scholar 

  • Lynch, D., Lidgett, A., McInnes, R., Huxley, H., Jones, E., Mahoney, N., and Spangenberg, G. (2002) Isolation and characterisation of three cinnamyl alcohol dehydrogenase homologue cDNAs from perennial ryegrass (Lolium perenne L.), J. Plant Physiol. 159.

    Google Scholar 

  • MacKay, J.J., Liu, W., Whetten, R., Sederoff, R.R., and O’Malley, D.M. (1995) Genetic analysis of cinnamyl alcohol dehydrogenase in loblolly pine: single gene inheritance, molecular characterization and evolution. Mol. Gen. Genet. 247, 537–545.

    PubMed  CAS  Google Scholar 

  • MacKay, J.J., O’Malley, D.M., Presnell, T., Booker, F., Campbell, M.M., Whetten, R.W., and Sederoff, R.R. (1997) Inheritance, gene expression, and lignin characterization in a mutant pine deficient in cinnamyl alcohol dehydrogenase. Proc. Natl. Acad. Sci. U.S.A. 94, 8255–8260.

    PubMed  CAS  Google Scholar 

  • Madson, M., Dunand, C., Li, X., Verma, R., Vanzin, G.F., Caplan, J., Shoue, D.A., Carpita, N.C., and Reiter, W.D. (2003) The MUR3 gene of Arabidopsis encodes a xyloglucan galactosyltransferase that is evolutionarily related to animal exostosins. Plant Cell 15, 1662–1670.

    PubMed  CAS  Google Scholar 

  • Maeda, Y.; Awano, T.; Takabe, K., and Fujita, M. (2000) Immunolocalization of glucomannans in the cell wall of differentiating tracheids in Chamaecyparis obtusa. Protoplasma B213, 148–156.

    CAS  Google Scholar 

  • Marita, J., Vermerris, W., Ralph, J., and Hatfield, R.D. (2003) Variations in the cell wall composition of maize brown midrib mutants. J. Agric. Food Chem. 5, 1313–1321.

    Google Scholar 

  • McDougall, G.J., Stewart, D., and Morrison, I.M. (1996) Tyrosine residues enhance crosslinking of synthetic proteins into lignin dehydrogenation products. Phytochem. Anal. 41, 43–47.

    CAS  Google Scholar 

  • Mølhøj, M., Verma, R., and Reiter, W.D. (2003) The biosynthesis of the branched-chain sugar D-apiose in plants: functional cloning and characterization of a UDP-D -apiose/UDP-Dxylose synthase from Arabidopsis. Plant J. 35, 693–703.

    PubMed  Google Scholar 

  • Mølhøj, M., Verma, R., and Reiter, W.-D. (2004) The biosynthesis of D-galacturonate in plants. Functional cloning and characterization of a membrane-anchored UDP-Dglucuronate 4-epimerase from Arabidopsis. Plant Physiol. 135, 1221–1230.

    PubMed  Google Scholar 

  • Morreel, K., Ralph, J., Kim, H., Lu, F., Goeminne, G., Ralph, S., Messens, E., and Boerjan, W. (2004a) Profiling of oligolignols reveals monolignol coupling conditions in lignifying popular xylem. Plant Physiol. 136, 3537–3549.

    CAS  Google Scholar 

  • Morreel, K., Ralph, J., Lu, F., Goeminne, G., Busson, R., Herdewijn, P., Goeman, J.L., Van der Eycken, J., Boerjan, W., and Messens, E. (2004b) Phenolic profiling of caffeic acid O-methyltransferase-deficient poplar reveals novel benzodioxane oligolignols. Plant Physiol. 136, 4023–4036.

    CAS  Google Scholar 

  • Mueller, S.C., and Brown, Jr., R.M. (1980) Evidence for an intramembrane component associated with a cellulose microfibril synthesizing complex in higher plants. J. Cell Biol. 84, 315–326.

    PubMed  CAS  Google Scholar 

  • Myton, K.E., and Fry, S.C. (1994) Intraprotoplasmic feruoylation of arabinoxylans in Festuca arundinacea cell cultures. Planta 193, 326–330.

    CAS  Google Scholar 

  • Nair, R.B., Bastress, K.L., Ruegger, M.O., Denault, J.W., and Chapple, C. (2004) The Arabidopsis thaliana REDUCED EPIDERMAL FLUORESCENCE1 gene encodes an aldehyde dehydrogenase involved in ferulic acid and sinapic acid biosynthesis. Plant Cell 16, 544–554.

    PubMed  CAS  Google Scholar 

  • Nishitani, K., and Tominaga, R. (1992) Endo-xyloglucan transferase, a novel class of glycosyltransferase that catalyzes transfer of a segment of xyloglucan molecule to another xyloglucan molecule. J. Biol. Chem. 267, 21058–21064.

    PubMed  CAS  Google Scholar 

  • Nishiyama, Y., Langan, P., and Chanzy, H. (2002) Crystal structure and hydrogen-bonding system in cellulose Iß from synchrotron x-ray and neutron fiber diffraction. J. Am. Chem. Soc. 124, 9074–9082.

    PubMed  CAS  Google Scholar 

  • Nishiyama, Y., Sugiyama, J., Chanzy, H., and Langan, P. (2002) Crystal structure and hydrogen bonding system in cellulose Iβ, from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 124, 9074–9082.

    PubMed  CAS  Google Scholar 

  • Nishiyama, Y., Langan, P., and Chanzy, H. (2003) Crystal structure and hydrogen-bonding system in cellulose Iα from synchrotron X-rayand neutron fiber diffraction. J. Am. Chem. Soc. 125, 14300–14306.

    PubMed  CAS  Google Scholar 

  • Nelson, T., Tausta, S.L., Gandotra, N., and Liu, T. (2006) Laser microdissection of plant tissue: What you se is what you get. Ann. Rev. Plant Biol. 57, 181–201.

    CAS  Google Scholar 

  • Nobles, D.R., and Brown, Jr., M.R. (2004) The pivotal role of cyanobacteria in the evolution of cellulose synthases and cellulose synthase-like proteins. Cellulose 11, 437–448.

    CAS  Google Scholar 

  • Oka, T., Nemoto, T., and Jigami, Y. (2007) Functional analysis of Aradibopsis thaliana RHM2/MUM4, a multidomain protein involved in UDP-D-glucose to UDP-L-rhamnose conversion. J. Biol. Chem. 282, 5389–5403.

    PubMed  CAS  Google Scholar 

  • Okazawa, K., Sato, Y., Nakagawa, T., Asada, K., Kato, I., Tomita, E., and Nishitani, K. (1993) Molecular cloning and cDNA sequencing of endoxyloglucan transferase, a novel class of glycosltransferase that mediates molecular grafting between matrix polysaccharides in plant cell walls. J. Biol. Chem. 268, 25364–25368.

    PubMed  CAS  Google Scholar 

  • Osakabe, K., Tsao, C.C., Li, L., Popko, J.L., Umezawa, T., Carraway, D.T., Smeltzer, R.H., Joshi, C.P., and Chiang, V.L. (1999) Coniferyl aldehyde 5-hydroxylation and methylation direct syringyl lignin biosynthesis in angiosperms. Proc. Natl. Acad. Sci. U.S.A. 96, 8955–8960.

    PubMed  CAS  Google Scholar 

  • Pattathil, S., Harper, A.D., and Bar-Peled, M. (2005) Biosynthesis of UDP-xylose: characterization of membrane-bound ATUXS2. Planta 221, 538–548.

    PubMed  CAS  Google Scholar 

  • Pear, J.R., Kawagoe, Y., Schreckengost, W.E., Delmer, D.P., and Stalker, D.M. (1996) Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit oif cellulose synthase. Proc. Natl. Acad. Sci. U.S.A. 93, 12637–12642.

    PubMed  CAS  Google Scholar 

  • Peña, M.J., Zhong, R., Zhou, G.-K., Richardson, E.A., O’Neill, M.A., Darvill, A.G., York, W.S., and Ye, Z.-H. (2007) Arabidopsis irregular xylem8 and irregular xylem9: implications for the complexity of glucuronoxylan biosynthesis. Plant Cell 19, 549–563.

    PubMed  Google Scholar 

  • Perrin, R.M. (2001) Cellulose: how many cellulose synthases to make a plant? Curr. Biol. 11, R213–R216.

    PubMed  CAS  Google Scholar 

  • Perrin, R.M., DeRocher, A.E., Bar-Peled, M., Zeng, W., Norambuena, L., Orellana, A., Raikhel, N.V., and Keegstra, K. (1999) Xyloglucan fucosytransferase, an enzyme involved in plant cell wall biosynthesis. Science 284, 1976–1979.

    PubMed  CAS  Google Scholar 

  • Persson, S., Paredez, A., Carroll, A., Palsdottir, H., Doblin, M., Poindexter, P., Khitrov, N., Auer, M., and Somerville, C.R. (2007) Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 104, 15599–15571.

    Google Scholar 

  • Philippe, S., Saulnier, L., and Guillon, F. (2006) Arabinoxylan and (1 → 3), (1 → 4)-ß-Dglucan deposition in cell walls during wheat endosperm development. Planta 224, 449–461.

    PubMed  CAS  Google Scholar 

  • Pillonel, C., Mulder, M.M., Boon, J.J., Forster, B., and Binder, A. (1991) Involvement of cinnamyl-alcohol dehydrogenase in the control of lignin formation in Sorghum bicolor L. Moench. Planta 185, 538–544.

    CAS  Google Scholar 

  • Raes, J., Rohde, A., Christensen, J.H., Van de Peer, Y., and Boerjan, W. (2003) Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Pysiol. 133, 1051–1071.

    CAS  Google Scholar 

  • Ralph, J. (1996) An unusual lignin from Kenaf. J. Nat. Prod. 59, 341–342.

    CAS  Google Scholar 

  • Ralph, J., Bunzel, M., Marita, J.M., Hatfield, R.D., Lu, F., Kim, H., Schatz, P.F., Grabber, J.H., and Steinhart, H. (2004a) Peroxidase-dependent cross-linking reactions of phydroxycinnamates in plant cell walls. Phytochemistry Rev. 3, 79–96.

    CAS  Google Scholar 

  • Ralph, J., Hatfield, R.D., Piquemal, J., Yahiaoui, N., Pean, M., Lapierre, C., and Boudet, A.M. (1998) NMR characterization of altered lignins extracted from tobacco plants downregulated for lignification enzymes cinnamyl alcohol dehydrogenase and cinnamyl-CoA reductase. Proc. Natl. Acad. Sci. U.S.A. 95, 12803–12808.

    PubMed  CAS  Google Scholar 

  • Ralph, J., Kim, H., Lu, F., Grabber, J.H., Leplé, J.-C., Berrio-Sierra, J., Mir Derikvand, M., Jouanin, L., Boerjan, W., and Lapierre, C. (2008) Identification of the structure and origin of a thioacidolysis marker compound for ferulic acid incorporation into angiosperm lignins (and an indicator for cinnamoyl CoA reductase deficiency). Plant J. 53, 368–379.

    PubMed  CAS  Google Scholar 

  • Ralph, J., Lapierre, C., Marita, J.M., Kim, H., Lu, F., Hatfield, R.D., Ralph, S., Chapple, C., Franke, R., Hemm, M.R., Van Doorsselaere, J., Sederoff, R.R., O’Malley, D.M., Scott, J.T., Mackay, J.J., Yahiaoui, N., Boudet, A.M., Pean, M., Pilate, G., Jouanin, L., and Boerjan, W. (2001) Elucidation of new structures in lignins of CAD- and COMT-deficient plants by NMR. Phytochem. Anal. 57, 993–1003.

    CAS  Google Scholar 

  • Ralph, J., Lundquist, K., Brunow, G., Lu, F., Kim, H., Schatz, P.F., Marita, J.M., Hatfield, R.D., Ralph, S.A., Christensen, J.H., and Boerjan, W. (2004b) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochemistry 3, 29–60.

    CAS  Google Scholar 

  • Ralph, J., Peng, J., Lu, F., Hatfield, R.D., and Helm, R.F. (1999) Are lignins optically active? 47, 2991–2996.

    Google Scholar 

  • Ralph, J., Quideau, S., Grabber, J.H., and Hatfield, R.D. (1994) Identification and synthesis of new ferulic acid dehydromers present in grass cell walls. J. Chem. Soc.. Perkin Trans. 1,23, 3485–3498.

    Google Scholar 

  • Ranocha, P., Chabannes, M., Chamayou, S., Danoun, S., Jauneau, A., Boudet, A.M., and Goffner, D. (2002) Laccase down-regulation causes alterations in phenolic metabolism and cell wall structure in poplar. Plant Physiol. 129, 145–155.

    PubMed  CAS  Google Scholar 

  • Reiter, W.-D., Chapple, C., and Sommerville, C.R. (1997) Mutants of Arabidopsis thaliana with altered cell wall polysaccharide composition. Plant J. 12, 335–345.

    PubMed  CAS  Google Scholar 

  • Reiter, W.-D., Chapple, C.C.S., and Somerville, C.R. (1993) Altered growth and cell walls in a fucose-deficient mutant of Arabidopsis. Science 261, 1032–1035.

    PubMed  CAS  Google Scholar 

  • Reiter, W.-D. and Vanzin, G.F. (2001) Molecular genetics of nucleotide sugar interconversion pathways in plants. Plant Mol. Biol. 47, 95–113.

    PubMed  CAS  Google Scholar 

  • Richmond, T. (2000) Higher plant cellulose synthases. Genome Biol. 1,reviews 3001.1– 3001.6.

    Google Scholar 

  • Richmond, T.A., and Somerville, C.R. (2000) The cellulose synthase superfamily. J. Plant Physiol. 124, 495–498.

    CAS  Google Scholar 

  • Robertson, D., Smith, C. and Bolwell, G. P. (1996) Inducible UDP-glucose dehydrogenase from French bean (Phaseolus vulgaris L.) locates to vascular tissue and has alcohol dehydrogenase activity. Biochem. J. 313, 311–317.

    PubMed  CAS  Google Scholar 

  • Robinson, S., Warburton, K., Seymour, M., Clench, M., Thomas-Oates, J. (2007) Localization of water-soluble carbohydrates in wheat stems using imaging matrix-assisted laser desorption ionization mass spectrometry. New Phytol. 173, 438–444.

    PubMed  CAS  Google Scholar 

  • Roesler, J., Krekel, F., Amrhein, N., and Schmid, J. (1997) Maize phenylalanine ammonialyase has tyrosine ammonia-lyase activity. Plant Physiol. 113, 175–179.

    CAS  Google Scholar 

  • Rose, J.K., Braam, J., Fry, S.C., and Nishitani, K. (2002) The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: Current perspectives and a new unifying nomenclature. Plant Cell Physiol. 43, 1421–1435.

    PubMed  CAS  Google Scholar 

  • Roudier, F., Fernandez, A.G., Fujita, M., Himmelspach, R., Borner, G.H.H., Schindelman, G., Song, S., Baskin, T.I., Dupree, P., and Wasteneys, G.O. (2005) COBRA, an Arabidopsis extracellular glycosyl-phosphatidyl inositolanchored protein, specifically controls highly anisotropic expansion through its involvement in cellulose microfibril orientation. Plant Cell 17, 1749–1763.

    PubMed  CAS  Google Scholar 

  • Roudier, F., Schindelman, G., DeSalle, R., and Benfey, P.N. (2002) The COBRA family of putative GPI-anchored proteins in Arabidopsis. A new fellowship in expansion. Plant Physiol. 130, 538–548.

    CAS  Google Scholar 

  • Ruan, Y.-L., Llewellyn, D.J., and Furbank, R.T. (2003) Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. Plant Cell 15, 952–964.

    PubMed  CAS  Google Scholar 

  • Salnikov, V.V., Grimson, M.J., Delmer, D.P., and Haigler, C.H. (2001) Sucrose synthase localizes to cellulose synthesis sites in tracheary elements. Phytochem. 57, 823–833.

    CAS  Google Scholar 

  • Sarria, R., Wagner, T.A., O’Neill, M.A., Faik, A., Wilkerson, C.G., Keegstra, K., and Raikhel, N.V. (2001) Characterization of a family of Arabidopsis genes related to xyloglucan fucosyltransferase1. Plant Physiol. 127, 1595–1606.

    PubMed  CAS  Google Scholar 

  • Saxena, I.M., and Brown, Jr., R.M. (1995) Identification of a second cellulose synthase gene (acsAII) in Acetobacter xylinum. J. Bacteriol. 177, 1419.

    PubMed  CAS  Google Scholar 

  • Saxena, I.M., Brown, Jr. M.R., Fevre, M., Geremia, R.O., and Henrissat, B. (1995) Multidomain architecture of β-glycosyl transferases: Implications for mechanism of action. J. Bacteriol. 177, 1419–1424.

    PubMed  CAS  Google Scholar 

  • Saxena, I.M., Lin, F.C. and Brown, Jr., R.M. (1990) Cloning and sequencing of the cellulose synthase catalytic subunit gene of Acetobacter xylinum. Plant. Mol. Biol. 15, 673–683.

    CAS  Google Scholar 

  • Saxena, I.M., and Brown, Jr., R. M. (2005) Cellulose biosynthesis: Current views and evolving concepts. Ann. Bot. 96, 9–21.

    PubMed  CAS  Google Scholar 

  • Scheible, W.-R., Eshed, R., Richmond, T., Delmer, D., and Somerville, C. (2001) Modifications of cellulose synthase confer resistance to isoxaben and thiazolidinone herbicides in Arabidopsis ixr1 mutants. Proc. Natl. Acad. Sci. U.S.A. 98, 10079–10084.

    PubMed  CAS  Google Scholar 

  • Scheller, H.V., Jensen, J.K., Sorensen, S.O., Harholt, J., and Geshi, N. (2007) Biosynthesis of pectin. Physiol. Plant. 129, 283–295.

    CAS  Google Scholar 

  • Schiefelbein, J.W., and Somerville, C.R. (1990) Genetic control of root hair development in Arabidopis thaliana. Plant Cell 2, 699–710.

    Google Scholar 

  • Schoch, G., Goepfert, S., Morant, M., Hehn, A., Meyer, D., Ullmann, P., and Werck- Reichhart, D. (2001) CYP98A3 from Arabidopsis thaliana is a 3’-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway. J. Biol. Chem. 276, 36566–36574.

    PubMed  CAS  Google Scholar 

  • Schubert, R., Sperisen, C., Müller-Starck, G., La Scala, S., Ernst, D., Sandermann, Jr., H., and Häger, K.-P. (1998) The cinnamyl alcohol dehydrogenase gene structure in Picea abies (L.) Karst.: genomic sequences, Southern hybridization, genetic analysis and phylogenetic relationships. Trees 12, 453–463.

    Google Scholar 

  • Seifert, G.J. (2004) Nucleotide sugar interconversions and cell wall biosyntthesis: how to bring the inside to the outside. Curr. Opin. Plant Biol. 7, 277–284.

    PubMed  CAS  Google Scholar 

  • Seifert, G.J., Barber, C., Wells, B., Dolan, L., and Roberts, K. (2002) Galactose biosynthesis in Arabidopsis: genetic evidence for substrate channeling from UDP-D-galactose into cell wall polymers. Curr. Biol. 12, 1840–1845.

    PubMed  CAS  Google Scholar 

  • Sewalt, V.J.H., Ni, W., Blount, J.W., Jung, H.G., Masoud, S.A., Howes, P.A., Lamb, C., and Dixon, R.A. (1997) Reduced lignin content and altered lignin composition in transgenic tobacco down-regulated in expression of L-phenylalanine ammonia-lyase or cinnamate 4- hydroxylase. Plant Physiol. 115, 41–50.

    PubMed  CAS  Google Scholar 

  • Sibout, R., Eudes, A., Pollet, B., Goujon, T., Mila, I., Granier, F., Seguin, A., Lapierre, C., and Joouanin, L. (2003) Expression pattern of two paralogs encoding cinnamyl alcohol dehydrogenases in Arabidopsis. Isolation and characterization of the corresponding mutants. Plant Physiol. 132, 848–860.

    CAS  Google Scholar 

  • Sindhu, A., Langewisch, T., Olek, A., Multani, D.S., McCann, M.C., Vermerris, W., Carpita, N.C., and Johal, G. (2007) Maize Brittle stalk2 encodes a COBRA-like protein expressed in early organ development but required for tissue flexibility at maturity. Plant Physiol. 145, 1444–1459.

    PubMed  CAS  Google Scholar 

  • Smith R.C., and Fry S.C. (1991) Endotransglycosylation of xyloglucans in plantcellsuspension cultures. Biochem. J. 279, 529–535.

    PubMed  CAS  Google Scholar 

  • Somerville, C., Bauer, S., Brininstool, G., Facette, M., Hamann, T., Milne, J., Osborne, E., Parezdez, A., Persson, S., Raab, T., Vorwerk, S., and Youngs, H. (2004) Towards a systems approach to understanding plant cell walls. Science 306, 2206–2211.

    PubMed  CAS  Google Scholar 

  • Somerville, C. R. (2006) Cellulose synthesis in higher plants. Annu. Rev. Cell Dev. Biol. 22, 53–78.

    PubMed  CAS  Google Scholar 

  • Sterjiades, R., Dean, J.F.D., Gamble, G., Himmelsbach, D.S., and Eriksson, K.-E.L. (1993) Extracellular laccase and peroxidases from sycamore maple (Acer pseudoplatanus) cell suspension cultures. Reactions with monolignols and lignin model compounds. Planta 190, 75–87.

    CAS  Google Scholar 

  • Å turcová, A., His, I., Apperley, D.C., Sugiyama, J., Jarvis, M.C. (2004) Structural details of crystalline cellulose from higher plants. Biomacromolecules 5, 1333–1339.

    PubMed  Google Scholar 

  • Suzuki, K., Kitamura, S., Kato, Y., and Itoh, T., (2000) Highly substituted glucuronoarabinoxylans (hsGAXs) and low-branched xylans show a distinct localization pattern in the tissues of Zea may L. Plant Cell Physiol. 41, 948–959.

    PubMed  CAS  Google Scholar 

  • Syrjanen, K., and Brunow, G. (2000) Regioselectivity in lignin biosynthesis: the influence of dimerization and crosscoupling. J. Chem. Soc. Perkin. Trans. I 1, 183–187.

    Google Scholar 

  • Tanaka, K., Murata, K., Yamazaki, M., Onosato, K., Miyao, A., and Hirochika, H. 2003. Three distinct rice cellulose synthase catalytic sub-unit genes required for cellulose synthesis in the secondary wall. Plant Physiol. 133: 73–83.

    PubMed  CAS  Google Scholar 

  • Taylor, N. G., Scheible, W. R., Cutler, S., Somerville, C. R., and S. R. Turner, (1999) The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell 11, 769–779.

    PubMed  CAS  Google Scholar 

  • Taylor, N.G., Howells, R.M., Huttly, A.K., Vickers, K., and Turner, S.R. (2003) Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc. Natl. Acad. Sci. U.S.A. 100, 1450–1455.

    PubMed  CAS  Google Scholar 

  • Taylor, N.G., Laurie, S., and Turner, S.R. (2000) Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis. Plant Cell 12, 2529–2539.

    PubMed  CAS  Google Scholar 

  • Terashima, N., Atalla, R.H., Ralph, S.A., Landucci, L.L., Lapierre, C., and Monties, B. (1996) New preparations of lignin polymer models under conditions that approximate cell well lignification: I. Synthesis of novel lignin polymer models and their structural characterization by 13C NMR. Holzforsch. 49, 521–527.

    Google Scholar 

  • Terashima, N., Fukushima, K., He, L.-F., and Takabe, K. (1993) Comprehensive model of the lignified plant cell wall. In: H.G. Jung, D.R. Buxton, R.D. Hatfield, and J. Ralph (Eds.), Forage cell wall structure and digestibility. Madison, WI, ASA-CSSA-SSSA, pp. 247–270.

    Google Scholar 

  • Timell, T.E. (1967) Recent progress in the chemistry of wood hemicelluloses. Wood Sci. Technol. 1, 45–70.

    CAS  Google Scholar 

  • Tobias, C.M., and Chow, E.K. (2005) Structure of the cinnamyl-alcohol dehydrogenase gene family in rice and promoter activity of a member associated with lignification. Planta 220, 678–688.

    PubMed  CAS  Google Scholar 

  • Toole, G.A., Wilson, R.H., Parker, M.L., Wellner, N.K., Wheeler, T.R., Shewry, P.R., and Mills, E.N.C. (2007) The effect of environment on endosperm cell-wall development in Triticum aestivum during grain filling: an infrared spectroscopic imaging study. Planta 225, 1393–1403.

    PubMed  CAS  Google Scholar 

  • Usadel, B., Kuschinsky, A.M., Rosso, M.G., Eckermann, N., and Pauly, M. (2004) RHM2 Is involved in mucilage pectin synthesis and is required for the development of the seed coat in Arabidopsis. Plant Physiol. 134, 286–295.

    PubMed  CAS  Google Scholar 

  • Vanzin, G.F., Madson, M., Carpita, N.C., Raikhel, N.V., Keegstra, K., and Reiter, W.D. (2002) The mur2 mutant of Arabidopsis thaliana lacks fucosylated xyloglucan because of a lesion in fucosyltransferase AtFUT1. Proc. Natl. Acad. Sci. U.S.A. 99, 3340–3345.

    PubMed  CAS  Google Scholar 

  • Vermerris, W., and Nicholson, R. (2006) Phenolic Compound Biochemistry. Springer, Dordrecht, The Netherlands, 276 pp.

    Google Scholar 

  • Vermerris, W., Thompson, K.J., and McIntyre, L.M. (2002) The maize Brown midrib1 locus affects cell wall composition and plant development in a dose-dependent manner. Heredity 88, 450–457.

    PubMed  CAS  Google Scholar 

  • Vietor, R.J., Newman, R.H., Ha, M.A., Apperley, D.C., and Jarvis, M.C. (2002) Conformational features of crystal-surface cellulose from higher plants. Plant J. 30, 721–731.

    PubMed  CAS  Google Scholar 

  • Vignols, F., Rigau, J., Torres, M.A., Capellades, M., and Puigdomenech, P. (1995) The brown-midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid Omethyl transferase. Plant Cell 7, 407–416.

    PubMed  CAS  Google Scholar 

  • Wang, X., Cnops, G., Vanderhaeghen, R., De Block, S., Van Montagu, M., and Van Lijsebettens, M. (2001) AtCSLD3, a cellulose synthase-like gene important for root hair growth in Arabidopsis. Plant Physiol. 126, 575–586.

    PubMed  CAS  Google Scholar 

  • Wegenmayer, H., Ebel, J., and Grisebach, H., (1976) Enzymic synthesis of lignin precursors: purification and properties of a cinnamoyl-CoA: NADPH reductase from cell suspension cultures of soybean (Glycine max L.), Eur. J. Biochem. 65, 529–536.

    Google Scholar 

  • Wolucka, B.A., Persiau, G., Van Doorsselaere, J., Davey, M.W., Demol, H., Vandekerckhove, J., Van Montagu, M., Zabeau, M., and Boerjan, W. (2001) Partial purification and identification of GDP-mannose 3, 5-epimerase of Arabidopsis thaliana, a key enzyme of the plant vitamin C pathway. Proc. Natl. Acad. Sci. U.S.A. 98, 14843–14848.

    PubMed  CAS  Google Scholar 

  • Wu, Y., Sharp, R.E., Durachko, D.M., and Cosgrove, D.J. (1996) Growth maintenance of the maize primary root at low water potentials involves increases in cell-wall extension properties, expansin activity, and wall susceptibility to expansins. Plant Physiol. 111, 765–772.

    PubMed  CAS  Google Scholar 

  • Ye, Z.-H., Kneusel, R.E., Matern, U., and Varner, J.E. (1994) An alternative methylation pathway in lignin biosynthesis in Zinnia. Plant Cell 6, 1427–1439.

    PubMed  CAS  Google Scholar 

  • Yennawar, N.H., Li, L.C., Dudzinski, D.M., Tabuchi, A., and Cosgrove, D.J. (2006) Crystal structure and activities of EXPB1 (Zea m 1), a ß-expansin and group-1 pollen allergen from maize. Proc. Natl. Acad. Sci. U.S.A. 103, 14664–14671.

    PubMed  CAS  Google Scholar 

  • Yong, W., Link, B., O’Malley, R., Tewari, J., Hunter, C.T., Lu, C.A., Li, X., Bleecker, A.B., Koch, K.E., McCann, M.C., McCarty, D.R., Staiger, C., Thomas, S.R., Vermerris, W., and Carpita, N.C. (2005) Genomics of plant cell wall biogenesis. Planta 221, 747–751.

    PubMed  CAS  Google Scholar 

  • Zablackis, E., Huang, J., Muller, B., Darvill, A.G., and Albersheim, P. (1995) Characterization of the cell-wall polysaccharides of Arabidopsis thaliana leaves. Plant Physiol. 107, 1129–1138.

    PubMed  CAS  Google Scholar 

  • Zhong, R., Peña, M.J., Zhou, G.-K., Nairn, C.J., Wood-Jones, A., Richardson, E.A., Morrison, III W.H., Darvill, A.G., York, W.S., and Ye, Z.-H. (2005) Arabidopsis fragile fiber8, which encodes a putative glucuronyltransferase, is essential for normal secondary wall synthesis. Plant Cell 17, 3390–3408.

    PubMed  CAS  Google Scholar 

  • Zugenmaier, P. (2001) Conformation and packing of various crystalline cellulose fibers. Prog. Polym. Sci. 26, 1341–1417.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Vermerris, W. (2008). Composition and Biosynthesis of Lignocellulosic Biomass. In: Vermerris, W. (eds) Genetic Improvement of Bioenergy Crops. Springer, New York, NY. https://doi.org/10.1007/978-0-387-70805-8_4

Download citation

Publish with us

Policies and ethics